Как найти тензор инерции

Тензор инерции — в механике абсолютно твёрдого тела — тензорная величина, связывающая момент импульса тела и кинетическую энергию его вращения с угловой скоростью:

 {vec  {L}}=J{vec  {omega }}

где  J — тензор инерции,  {vec  {omega }} — угловая скорость, {vec  {L}} — момент импульса

{displaystyle  E_{kin rot}={1 over 2} {vec {omega }}^{,T}cdot Jcdot {vec {omega }}}
 E_{{kin}}=E_{{kin rot}}+{p^{2} over 2m},

в компонентах это выглядит так:

 L_{i}=sum _{j}J_{{ij}}omega _{j}
 E_{{kin rot}}={1 over 2}sum _{{ij}}omega _{i}J_{{ij}}omega _{j}

Используя определение момента импульса системы N материальных точек (перенумерованных в формулах ниже индексом k):

{displaystyle  {vec {L}}=sum _{k=1}^{N}[ {vec {r}}_{k}times ( m_{k} {vec {v}}_{k} ) ]}

и кинематическое выражение для скорости через угловую скорость:

 {vec  {v}}=[ {vec  {omega }}times {vec  {r}} ]

и сравнивая с формулой, выражающей момент импульса через тензор инерции и угловую скорость (первой в этой статье), нетрудно получить явное выражение для тензора инерции:

{displaystyle  J_{ij}=sum _{k} m_{k} (delta _{ij}r_{k}^{2}-r_{i_{k}}r_{j_{k}}) }

или в непрерывном виде:

{displaystyle  J_{ij}=int (delta _{ij}r^{2}-r_{i}r_{j}) dm=int (delta _{ij}r^{2}-r_{i}r_{j}) rho dV},

где r — расстояния от точек до центра, относительно которого вычисляется тензор инерции, а ri — координатные компоненты соответствующих отрезков, i и j — номера координат (от 1 до 3), индекс же k (от 1 до N) в дискретной формуле нумерует точки системы или маленькие части, её составляющие.

Уже из этих формул явно видно, что тензор инерции любого тела зависит от точки, относительно которой он рассчитан. Обычно выделенную роль играет тензор инерции относительно центра масс тела (тогда p в третьей формуле — это просто импульс тела). Также может быть удобно пользоваться моментом инерции, рассчитанным относительно закрепленной (неподвижной) точки тела или точки, находящейся на закреплённой оси вращения. Пересчёт тензора инерции для нового центра, зная его относительно старого, позволяет легко осуществить теорема Штейнера (она же позволяет сделать это и в виде пересчёта, например, формулы кинетической энергии, позволяя, таким образом, оперировать только тензором инерции относительно центра масс).

Из этих же формул видно, что это симметричный тензор, то есть Jij=Jji.

В непрерывном виде формулу можно вывести следующим образом:

{displaystyle {vec {L}}=int limits _{(m)}[ {vec {r}}times ( {vec {v}}dm ) ]=rho int limits _{(V)}[ {vec {r}}times [ {vec {omega }}times {vec {r}} ] ]dV}

Откуда по формуле Лагранжа получим

{displaystyle {vec {L}}=rho int limits _{(V)}[ {vec {omega }}cdot r^{2}-{vec {r}}({vec {omega }}, {vec {r}}) ]dV}

Запишем разложение векторов {displaystyle  {vec {v}}} и {displaystyle  {vec {r}}} в ортонормированном базисе:

{displaystyle  {vec {r}}=x{vec {i}}+y{vec {j}}+z{vec {k}}}
{displaystyle  {vec {omega }}=omega _{x}{vec {i}}+omega _{y}{vec {j}}+omega _{z}{vec {k}}}

По свойствам скалярного произведения,

{displaystyle  ({vec {omega }}, {vec {r}})=xomega _{x}+yomega _{y}+zomega _{z}}

С учетом того, что {displaystyle  r^{2}=x^{2}+y^{2}+z^{2}} можем записать проекции вектора момента импульса на оси:

{displaystyle L_{x}=rho int limits _{(V)}left(omega _{x}(x^{2}+y^{2}+z^{2})-x(xomega _{x}+yomega _{y}+zomega _{z})right)dV}

Или, приведя подобные слагаемые

{displaystyle L_{x}=rho int limits _{(V)}left(omega _{x}(y^{2}+z^{2})-omega _{y}xy-omega _{z}xzright)dV}

Аналогично

{displaystyle L_{y}=rho int limits _{(V)}left(omega _{y}(x^{2}+z^{2})-omega _{x}yx-omega _{z}yzright)dV}
{displaystyle L_{z}=rho int limits _{(V)}left(omega _{z}(x^{2}+y^{2})-omega _{x}zx-omega _{y}zyright)dV}

Введем обозначения:

{displaystyle J_{xx}=rho int limits _{(V)}(y^{2}+z^{2})dV}
{displaystyle J_{yy}=rho int limits _{(V)}(x^{2}+z^{2})dV}
{displaystyle J_{zz}=rho int limits _{(V)}(x^{2}+y^{2})dV}
{displaystyle J_{xy}=J_{yx}=-rho int limits _{(V)}xydV}
{displaystyle J_{xz}=J_{zx}=-rho int limits _{(V)}xzdV}
{displaystyle J_{yz}=J_{zy}=-rho int limits _{(V)}yzdV}

Из них можно составить тензор инерции в матричном виде:

{displaystyle J={begin{vmatrix}J_{xx}&J_{xy}&J_{xz}\J_{yx}&J_{yy}&J_{yz}\J_{zx}&J_{zy}&J_{zz}\end{vmatrix}}}

Легко проверить, что согласно нашим обозначениям, верна тензорная связь:

{displaystyle left{{begin{aligned}L_{x}=J_{xx}omega _{x}+J_{xy}omega _{y}+J_{xz}omega _{z}\L_{y}=J_{yx}omega _{x}+J_{yy}omega _{y}+J_{yz}omega _{z}\L_{z}=J_{zx}omega _{x}+J_{zy}omega _{y}+J_{zz}omega _{z}\end{aligned}}right.}

Как и любой симметричный тензор, тензор инерции может быть диагонализован, то есть можно найти три ортогональные оси координат (собственные оси, орты которых являются собственными векторами и образуют собственный базис тензора инерции) — жестко связанные, конечно, с твёрдым телом, — в которых матрица тензора инерции диагональна, и её собственные числа (собственные числа тензора инерции) определяют главные моменты инерции тела[1].

Нетрудно видеть, что главные моменты инерции совпадают с осевыми моментами инерции относительно главных осей:

 J_{{xx}}=int (y^{2}+z^{2})dm=int r_{{yz}}^{2}dm,
 J_{{yy}}=int (x^{2}+z^{2})dm=int r_{{xz}}^{2}dm,
 J_{{zz}}=int (x^{2}+y^{2})dm=int r_{{xy}}^{2}dm,

(внимание: x, y и z в этих формулах подразумевают именно главные оси, если мы хотим совпадения с главными моментами).

Другие применения термина[править | править код]

Иногда термин тензор инерции применяется к математически аналогичным конструкциям, не имеющим прямого механического смысла, например, если ρ в формулах — не плотность массы, а плотность других величин, например, плотность статистического распределения; да и пространство, в котором происходит расчет может быть в принципе любым, хотя при этом наиболее осмыслен случай одинаковой природы всех осей (то есть одинаковых единиц измерения по ним). Это применение термина представляет собой прямую геометрическую аналогию, так же, как применение таких терминов, как центр масс или центр тяжести в подобном контексте.

В случае применения термина тензор инерции к плотностям распределений, особенно если он считается относительно «центра тяжести», речь идет по сути о матрице ковариации, причем задача нахождения её собственных векторов и собственных чисел также может обсуждаться в терминах «главных осей» и «главных моментов», что соответствует не только аналогии с моментом инерции, но и вполне строгой терминологии вторых моментов многомерного распределения (многомерной случайной величины) в статистике (и суть, и терминология здесь могут быть очень близки). При этом, в двумерном случае тензор инерции и матрица ковариации в собственных осях полностью совпадают — с точностью до перестановки осей, а в случаях большей размерности речь идет не о совпадающих, а только о близко связанных формально и по смыслу матрицах, диагонализующихся при этом в одном и том же базисе (имеющих одни и те же собственные оси).

См. также[править | править код]

  • Момент инерции
  • Теорема Штейнера
  • Тензор гирации[en]

Примечания[править | править код]

  1. Шаховал С. Н., Мельников Г. И.//ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ ТЕНЗОРОВ ИНЕРЦИИ ТЕЛ НА СФЕРИЧЕСКИХ ДВИЖЕНИЯХ С МЕДЛЕННЫМ СОБСТВЕННЫМ ВРАЩЕНИЕМ Архивная копия от 19 сентября 2015 на Wayback Machine.- Статья. – Научно-технический вестник ИТМО. – январь-февраль 2012. – Выпуск 1(77). – УДК 681.5 + 531

1.
Шар
.

Центральный
тензор инерции – шаровой:
.

Складывая
моменты инерции, получим

В
качестве элемента массы
возьмем массу шарового слоя толщиной
dr:,

где
элементарный объем
,
а плотность.

.
Тогда
и окончательно

Рассмотрим
частные случаи.

а)
Шар:

dr

a R

б) Оболочка:

2.
Полый прямой круговой цилиндр

.

Z

Найдем
сначала

Выделим
двумя цилиндрическими поверхностями

радиуса

итрубку
толщинойи от тройного

интеграла
перейдем к одинарному:

Учитывая,
что
,
найдем сумму

.

Разделив
цилиндр на пластинки толщинойи массой,
найдем

.

Итак,
,

Рассмотрим
частные случаи.

а)
Сплошной цилиндр
,

б)
Оболочка (
):,

в)
Пластинка ():,

г)
Стержень (бесконечно тонкий цилиндр)
():,

3.Прямой
круговой конус

(радиус основания R, высота h, плотность
).

Найдем

.

Чтобы не вычислять
тройной интеграл по x,y,z в декартовых
А Y

координатах
( или по
,

разобьем
конус на пластинки толщиной
,

радиуса
и моментом инерции
X r

,
С 

Тогда

.

R

Далее
найдем сумму

Z

И,
вычислив интеграл
,
получим

.

Моменты
инерции относительно центральных осей
вычисляются с помощью теоремы
Гюйгенса-Штейнера ( AC=):

5.2.7. Дифференциальное уравнение вращения вокруг неподвижной оси. Физический маятник.

Пусть
твердое тело вращается вокруг неподвижной
оси Z .

Z

B

A

C

A

Уравнение
второго фундаментального закона имеет
вид

,
или

где
точка А – любая точка на оси вращения,
.– вектор угловой скорости.

Если
нас интересует только угол поворота
,
достаточно найти одну лишь проекцию на
ось Z, для чего умножим скалярно обе
части уравнения наи внесем его в производную:

.

По
определению,
осевой момент инерции, причем постоянный,
амомент
относительно оси Z. Таким образом,
получилидифференциальное
уравнение вращения вокруг неподвижной
оси:

(5.32)

Если
ось подвеса горизонтальна и внешними
воздействиями являются сила тяжести
и, разумеется, опорные воздействия, с
которыми ось подвеса действует на тело,
то тело называют физическим маятником.
В этом случае уравнение (5.32) принимает
вид нелинейного уравнения

,

которое
может быть проинтегрировано либо
численно, либо в так называемых
эллиптических функциях. Уравнение малых
колебаний, под которыми будут пониматься
движения, описываемые линейными
дифференциальными уравнениями, получим,
положив
:

,

(5.33)

где
обозначение

квадрат
собственной частоты.

Решение
уравнения (5.33) имеет вид

где
константы
определяются
из начальных условий.

Ясно,
что измеряя собственную частоту
( или период), можно экспериментальнонайти момент
инерции.

Соседние файлы в предмете Теоретическая механика

  • #
  • #
  • #
  • #

Время на прочтение
5 мин

Количество просмотров 20K

Содержание

  1. Что такое тензор и для чего он нужен?
  2. Векторные и тензорные операции. Ранги тензоров
  3. Криволинейные координаты
  4. Динамика точки в тензорном изложении
  5. Действия над тензорами и некоторые другие теоретические вопросы
  6. Кинематика свободного твердого тела. Природа угловой скорости
  7. Конечный поворот твердого тела. Свойства тензора поворота и способ его вычисления
  8. О свертках тензора Леви-Чивиты
  9. Вывод тензора угловой скорости через параметры конечного поворота. Применяем голову и Maxima
  10. Получаем вектор угловой скорости. Работаем над недочетами
  11. Ускорение точки тела при свободном движении. Угловое ускорение твердого тела
  12. Параметры Родрига-Гамильтона в кинематике твердого тела
  13. СКА Maxima в задачах преобразования тензорных выражений. Угловые скорость и ускорения в параметрах Родрига-Гамильтона
  14. Нестандартное введение в динамику твердого тела
  15. Движение несвободного твердого тела
  16. Свойства тензора инерции твердого тела
  17. Зарисовка о гайке Джанибекова
  18. Математическое моделирование эффекта Джанибекова

Введение

Начав рассматривать динамику твердого тела мы столкнулись интересной тензорной величиной, а именно

называемой тензором инерции твердого тела. Кроме того, мы выяснили, что привычный из курса теоретической механики момент инерции твердого тела, при его вращении вокруг неподвижной оси, получается из тензора инерции с помощью простой формулы

Рассмотрим подробнее свойства тензора инерции твердого тела. И для начала изучим механические величины, вычисление которых, так же как и приведение сил инерции к данному центру, приводит к понятию тензора инерции.

1. Момент количества движения твердого тела при вращении

Моментом количества движения материальной точки (МКД) относительно данного центра inline_formula называют вектор, равный

Для твердого тела, при вращении вокруг полюса МКД элементарного объема

или в тензорной форме

Интегрируя (3) получим МКД твердого тела относительно центра inline_formula

В соответствии с (4), тензор инерции есть линейный оператор, связывающий МКД твердого тела с его угловой скоростью.

2. Кинетическая энергия твердого тела при вращении

Кинетическая энергия элементарного объема тела

что эквивалентно тензорному соотношению

Интегрируя последнее выражение по всему объему тела получаем выражение кинетической энергии

В выражении (5), как видно, снова фигурирует тензор инерции inline_formula. При вращении тела вокруг неподвижной оси, в соответствии с выражением угловой скорости через конечный поворот тела inline_formula выражение (5) трансформируется в

Формула (6) — кинетическая энергия твердого тела при вращательном движении, а inline_formula, в соответствии с (2), момент инерции тела относительно оси, задаваемой ортом inline_formula.

3. Ковариантный тензор инерции

Легко показать, что тензор (1) не является симметричным. Однако, в декартовых координатах тензор инерции есть симметричный тензор, и исходя из этого факта выводятся все основные его свойства. Вместе с тем, мы не могли не заметить, что в выражениях (2) и (5) фигурирует величина вида

Полученный тензор (7) является симметричным ковариантным тензором 2-го ранга, так как нетрудно убедится в справедливости равенства inline_formula. Будем называть тензор (7) ковариантным тензором инерции. С учетом выражения (7) можно переписать выражение (2) для осевого момента инерции через контравариантные компоненты орта оси вращения

Автор не встретил в литературе только что введенного термина, но поскольку из симметричности (7) вытекают все основные свойства тензора инерции, ввод данного понятия, как будет показано ниже, вполне оправдан.

4. Собственные числа и собственные векторы ковариантного тензора инерции

Покажем, для начала, что тензор (7), в силу своей симметричности, имеет действительные собственные значения. Пусть inline_formula — произвольное собственное число, которому соответствует собственный вектор inline_formula. Тогда справедливо соотношение

Допустив комплексные собственные числа и собственные векторы, умножим (9) слева на сопряженнй собственный вектор

Выполним комплексное сопряжение (10)

Здесь мы учитываем что компоненты (7) — действительные числа, а значит операция сопряжения эквивалентна транспонированию. Так как тензор (7) симметричный, inline_formula, то есть, с учетом (10)

или, окончательно

Равенство (12) справедливо, если inline_formula — действительное число.

Так как тензор (7) представлен матрицей в трехмерном пространстве, он имеет три действительных собственных числа inline_formula, которым соответствуют действительные же собственные векторы inline_formula, соответственно, можно записать тензорные соотношения

Умножим скалярно каждое из уравнений (13) на соответствующий собственный вектор

Поделив обе части уравнений (14) на квадрат модуля соответствующего собственного вектора, получим

Очевидно, что

контравариантные компоненты некоторых ортов. Значит в (15), согласно (8), в качестве собственных чисел ковариантного тензора инерции, представлены моменты инерции тела относительно осей inline_formula и inline_formula

Кроме того, собственные векторы inline_formula и inline_formula образуют ортогональную тройку векторов. Действительно, проведем цепочку преобразований, с участием любой пары собственных векторов

Учитывая, что inline_formula, получаем условие

которое, в силу того, что в общем случае inline_formula, справедливо, когда скалярное произведение собственных векторов равно нулю

Это означает, что inline_formula. Повторяя доказательство для любой пары собственных векторов, получим, что они действительно ортогональны друг другу.

5. Главные оси и главные моменты инерции твердого тела

По результатам предыдущего параграфа можно сказать, что с твердым телом связана ортогональная система координат, оси которой inline_formula и inline_formula направлены вдоль собственных векторов ковариантного тензора инерции. В этих осях, в соответствии с определением собственных значений, ковариантный тензор инерции приводится к диагональному виду

В диагонали стоят моменты инерции, вычисляемые по формулам (17). Эти моменты инерции называют главными моментами инерции твердого тела, а оси, направление которых задается векторами inline_formula и inline_formulaглавными осями инерции.

6. Теорема Гюйгенса-Штейнера

Предположим, что нам известен центральный (вычисленный относительно центра масс тела) тензор инерции inline_formula. Допустим, что мы хотим вычислить тензор инерции относительно точки inline_formula, отстоящей от центра масс в направлении известного вектора inline_formula. В этом случае радиус-вектор элементарного объема тела относительно точки inline_formula можно определить как сумму

где inline_formula — радиус вектор элементарного объема тела относительно центра масс

Подставим (18) в (1)

Здесь мы учитываем, что интегралы вида

задают положение центра масс тела относительно центра масс, то есть равны нулю. Окончательно получаем выражение для тензора инерции

определяющее тензор инерции относительно произвольной точки inline_formula через тензор инерции относительно центра масс. Выражение (19) называют теоремой Гюйгенса-Штейнера. Приведенное доказательство этой теоремы выполнено в самой общей форме.

7. Тензор инерции в декартовых координатах

В декартовых координатах метрика задается единичной матрицей, то есть формально

В этом случае совпадают выражения для тензора инерции и ковариантного тензора инерции

Поэтому в декартовых координатах симметричен и тензор инерции, и для него справедливы вышеперечисленные свойства, связанные с собственными значениями и собственными векторами. В декартовых координатах тензор инерции представляется матрицей

или

где диагональные элементы называют осевыми моментами инерции, а прочие элементы — центробежными моментами инерции.

Заключение

Материал данной статьи — авторская работа. В литературе господствует подход к изучению тензора инерции связанный с использованием декартовых координат. Нами же рассмотрен самый общий подход и мы убедились, что свойства тензора инерции и теорема Гюйгенса-Штейнера могут быть получены в произвольных координатах. Все приведенные в статье формулы переходят в общеизвестные из курса теоретической механики при использовании декартовой метрики.

Upd: Нашел упоминание о ковариантном тензоре инерции на каком-то богом забытом сайте. Что ж, это подтверждает идею, использованную мной в данной статье

Продолжение следует…

Содержание:

Геометрия масс:

Центр масс

При рассмотрении движения твердых тел и других механических систем важное значение имеет точка, называемая центром масс. Если механическая система состоит из конечного числа материальных точек Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — масса системы. Обозначая декартовы координаты материальных точек Геометрия масс в теоретической механике, из (1) проецированием на декартовы оси координат получим следующие формулы для координат центра масс:

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 21

Центр масс является не материальной точкой, а геометрической. Он может не совпадать ни с одной материальной точкой системы, как, например, в случае кольца. Центр масс системы характеризует распределение масс в системе.

Векторная величина Геометрия масс в теоретической механике называется статическим моментом массы относительно точки Геометрия масс в теоретической механике. Скалярная величина Геометрия масс в теоретической механике называется статическим моментом

массы относительно координатной плоскости Геометрия масс в теоретической механике. Величины Геометрия масс в теоретической механике и Геометрия масс в теоретической механике являются соответственно статическими моментами массы относительно координатных плоскостей Геометрия масс в теоретической механике и Геометрия масс в теоретической механике.

Радиус-вектор и координаты центра масс через статические моменты массы выражаются формулами

Геометрия масс в теоретической механике

Если механическая система представляет собой сплошное тело, то его разбивают на элементарные частицы с бесконечно малыми массами Геометрия масс в теоретической механике и с изменяющимися от частицы к частице радиусом-вектором Геометрия масс в теоретической механике.

Суммы в пределе переходят в интегралы. Формулы (1) и (Г) принимают форму

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — масса тела.

Для однородных сплошных тел Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике — плотность тела, общая для всех элементарных частиц; Геометрия масс в теоретической механике—объем элементарной частицы; Геометрия масс в теоретической механике—объем тела.

Для тел типа тонкого листа, которые можно принять за однородные материальные поверхности, Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике — поверхностная плотность; Геометрия масс в теоретической механике—площадь поверхности элементарной частицы; Геометрия масс в теоретической механике—площадь поверхности.

Для тонкой проволоки, которую можно принять за отрезок линии, Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике — линейная плотность; Геометрия масс в теоретической механике—длина элемента линии; Геометрия масс в теоретической механике—длина отрезка линии.

В этих случаях определение центра масс тел сводится к вычислению центра масс объемов, площадей и длин линий соответственно.

Моменты инерции

Для характеристики распределения масс в телах при рассмотрении вращательных движений требуется ввести понятия моментов инерции.

Моменты инерции относительно точки и оси

Моментом инерции механической системы, состоящей из Геометрия масс в теоретической механике материальных точек, относительно точки Геометрия масс в теоретической механике называется сумма произведений масс этих точек на квадраты их расстояний до точки Геометрия масс в теоретической механике (рис. 22), т. е.

Геометрия масс в теоретической механике

Момент инерции относительно точки часто называют полярным моментом инерции. В случае сплошного тела сумма переходит в интеграл и для полярного момента инерции имеем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — масса элементарной частицы тела, принимаемой в пределе за точку; Геометрия масс в теоретической механике—ее расстояние до точки Геометрия масс в теоретической механике.

Моментом инерции  Геометрия масс в теоретической механике системы материальных точек относительно оси Геометрия масс в теоретической механике называется сумма произведений масс этих точек на квадраты их расстояний Геометрия масс в теоретической механике до оси Геометрия масс в теоретической механике (рис. 22), т. е.

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 22

В частном случае сплошного тела сумму следует заменить интегралом:

Геометрия масс в теоретической механике

Моменты инерции одинаковых по форме однородных тел, изготовленных из разных материалов, отличаются друг от друга. Характеристикой, не зависящей от массы материала, является радиус инерции. Радиус инерции Геометрия масс в теоретической механике относительно оси Геометрия масс в теоретической механике определяется по формуле

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике—масса тела.

Момент инерции относительно оси через радиус инерции относительно этой оси определяется выражением

Геометрия масс в теоретической механике

В справочниках по моментам инерции приводят таблицы значений радиусов инерции различных тел.

Формула (5′) позволяет считать радиус  инерции тела относительно оси расстоянием от этой оси до такой точки, в которой следует поместить массу тела, чтобы ее момент инерции оказался равным моменту инерции тела относительно рассматриваемой оси.

Моменты инерции относительно оси и точки имеют одинаковую размерность — произведение массы на квадрат длины Геометрия масс в теоретической механике.

Кроме моментов инерции относительно точки и оси используются также моменты инерции относительно плоскостей и центробежные моменты инерции. Эти моменты инерции удобно рассмотреть относительно координатных плоскостей и осей декартовой системы координат.

Моменты инерции относительно осей координат

Моменты инерции относительно декартовых осей координат Геометрия масс в теоретической механике, Геометрия масс в теоретической механике и Геометрия масс в теоретической механике и их начала — точки Геометрия масс в теоретической механике (рис. 23) — определяются выражениями

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — координаты материальных точек системы. Для сплошных тел эти формулы примут вид

Геометрия масс в теоретической механике

Из приведенных формул следует зависимость

Геометрия масс в теоретической механике

Если через точку Геометрия масс в теоретической механике провести другую систему декартовых осей координат Геометрия масс в теоретической механике, то для них по формуле (8) получим

Геометрия масс в теоретической механике

Из сравнения (8) и (8′) следует, что

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 23

Сумма моментов инерции относительно декартовых осей координат не зависит от ориентации этих осей в рассматриваемой точке, т. е. является величиной, инвариантной по отношению к направлению осей координат.

Для осей координат Геометрия масс в теоретической механике можно определить следующие три центробежных момента инерции:

Геометрия масс в теоретической механике

Центробежные моменты инерции часто называют произведениями инерции.

Моменты инерции относительно осей и точек — величины положительные, так как в них входят квадраты координат. Центробежные моменты инерции содержат произведения координат и могут быть как положительными, так и отрицательными.

Центробежные моменты инерции имеют важное значение при рассмотрении давлений на подшипники при вращении твердого тела вокруг неподвижной оси и в других случаях.

Кроме рассмотренных моментов инерции иногда используются моменты инерции относительно координатных плоскостей Геометрия масс в теоретической механике, которые определяются выражениями

Геометрия масс в теоретической механике

Теорема о моментах инерции относительно параллельных осей (теорема Штейнера)

Установим зависимость между моментами инерции системы относительно параллельных осей, одна из которых проходит через центр масс. Пусть имеем две системы прямоугольных, взаимно параллельных осей координат Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Начало системы координат Геометрия масс в теоретической механике находится в” центре масс системы (рис. 24).

Геометрия масс в теоретической механике

Рис. 24

По определению момента инерции относительно оси имеем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — масса точки Геометрия масс в теоретической механике, а Геометрия масс в теоретической механике и Геометрия масс в теоретической механике — координаты этой точки относительно систем координат Геометрия масс в теоретической механике и Геометрия масс в теоретической механике соответственно. Если обозначить Геометрия масс в теоретической механике координаты центра масс относительно системы координат Геометрия масс в теоретической механике, то для взаимно параллельных осей координаты одной и той же точки Геометрия масс в теоретической механике связаны соотношениями параллельного переноса

Геометрия масс в теоретической механике

Подставим эти значения координат в выражение момента инерции Геометрия масс в теоретической механике. После преобразований получим

Геометрия масс в теоретической механике

В этом соотношении Геометрия масс в теоретической механике—масса системы, Геометрия масс в теоретической механике, так как Геометрия масс в теоретической механике и Геометрия масс в теоретической механике вследствие k = 1

того, что по условию центр масс находится в начале координат этой системы координат.

Величина Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике—расстояние между осями Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Окончательно

Геометрия масс в теоретической механике

Связь моментов инерции относительно двух параллельных осей, одна из которых проходит через центр масс, составляет содержание так называемой теоремы Штейнера или Гюйгенса— Штейнера: момент инерции системы относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр масс, плюс произведение массы системы на квадрат расстояния между этими осями.

Из теоремы Штейнера следует, что для совокупности параллельных осей момент инерции является наименьшим относительно оси, проходящей через центр масс.

Если взять ось Геометрия масс в теоретической механике параллельной Геометрия масс в теоретической механике, то для нее получим

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — расстояние между параллельными осями Геометрия масс в теоретической механике и Геометрия масс в теоретической механике.

Исключая момент инерции Геометрия масс в теоретической механике из двух последних формул, получим зависимость моментов инерции относительно двух параллельных осей, не проходящих через центр масс:

Геометрия масс в теоретической механике

Установим изменение центробежных моментов инерции при параллельном переносе осей координат. Имеем

Геометрия масс в теоретической механике

Учитывая, что Геометрия масс в теоретической механике получаем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — координаты центра масс относительно системы координат Геометрия масс в теоретической механике. Аналогичные формулы получаются для двух других центробежных моментов инерции:

Геометрия масс в теоретической механике

Так как начало системы координат Геометрия масс в теоретической механике находится в центре масс, то Геометрия масс в теоретической механике, Геометрия масс в теоретической механике, Геометрия масс в теоретической механике и тогда

Геометрия масс в теоретической механике

т. е. центробежные моменты инерции при параллельном переносе осей координат из любой точки в центре масс изменяются в соответствии с (10).

Если производится параллельный перенос осей Геометрия масс в теоретической механике из точки Геометрия масс в теоретической механике в центр масс, то, согласно (10), имеем:

Геометрия масс в теоретической механике

Исключая из (10) и (10′) центробежные моменты инерции Л’з” Лу, получим формулы для изменения центробежных моментов инерции при параллельном переносе осей координат из точки Геометрия масс в теоретической механике в точку Геометрия масс в теоретической механике:

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике и Геометрия масс в теоретической механике — координаты центра масс в двух системах взаимно параллельных осей координат.

Моменты инерции простейших однородных тел

Моменты инерции тел сложной формы часто удается вычислить, если их предварительно разбить на тела простой формы. Моменты инерции сложных тел получают суммируя моменты инерции частей этих тел. Получим формулы для вычисления моментов инерции некоторых однородных простейших тел.

Однородный стержень

Имеем однородный стержень длиной Геометрия масс в теоретической механике и массой Геометрия масс в теоретической механике (рис. 25). Направим по стержню ось Геометрия масс в теоретической механике. Вычислим момент инерции стержня относительно оси Геометрия масс в теоретической механике, проходящей перпендикулярно стержню через его конец. Согласно определению момента инерции сплошного тела относительно оси, имеем

Геометрия масс в теоретической механике

так как Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике—плотность стержня.

Вычисляя интеграл, получаем

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 25

Таким образом,

Геометрия масс в теоретической механике

Момент инерции стержня относительно оси Геометрия масс в теоретической механике, проходящей через центр масс и параллельной оси Геометрия масс в теоретической механике, определяется по теореме Штейнера:

Геометрия масс в теоретической механике

Следовательно,

Геометрия масс в теоретической механике

т. е.

Геометрия масс в теоретической механике

Прямоугольная пластина

Прямоугольная тонкая пластина имеет размеры Геометрия масс в теоретической механике и Геометрия масс в теоретической механике и массу Геометрия масс в теоретической механике (рис. 26). Оси Геометрия масс в теоретической механике и Геометрия масс в теоретической механике расположим в плоскости пластины, а ось Геометрия масс в теоретической механике—перпендикулярно ей. Для определения момента инерции пластины относительно оси Геометрия масс в теоретической механике разобьем пластину на элементарные полоски шириной Геометрия масс в теоретической механике и массой Геометрия масс в теоретической механике и проинтегрируем по Геометрия масс в теоретической механике от 0 до Геометрия масс в теоретической механике. Получим

Геометрия масс в теоретической механике

так как Геометрия масс в теоретической механике.

Аналогичные вычисления для оси Геометрия масс в теоретической механике дадут

Геометрия масс в теоретической механике

так как эта ось Геометрия масс в теоретической механике проходит через середину пластины. Для определения момента инерции пластины относительно оси Геометрия масс в теоретической механике следует предварительно вычислить момент инерции отдельной заштрихованной полоски относительно параллельной оси Геометрия масс в теоретической механике по формуле (12) для стержня и применить затем теорему Штейнера. Для элементарной полоски имеем

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 26

Интегрируя это выражение в пределах от 0 до Геометрия масс в теоретической механике, получим

Геометрия масс в теоретической механике

Итак, для моментов инерции пластины относительно осей координат получены следующие формулы:

Геометрия масс в теоретической механике

Круглый диск

Имеем тонкий однородный диск радиусом Геометрия масс в теоретической механике и массой Геометрия масс в теоретической механике (пис. 27). Вычислим момент его инерции Геометрия масс в теоретической механике относительно точки Геометрия масс в теоретической механике. Этот момент инерции для тонкого диска совпадает с моментом инерции Геометрия масс в теоретической механике относительно координатной оси Геометрия масс в теоретической механике, перпендикулярной плоскости диска. Разобьем диск на концентрические полоски шириной Геометрия масс в теоретической механике, принимаемые в пределе за материальные окружности. Масса полоски равна ее площади Геометрия масс в теоретической механике, умноженной на плотность Геометрия масс в теоретической механике, т.е. Геометрия масс в теоретической механике. Момент одной полоски относительно точки Геометрия масс в теоретической механике равен Геометрия масс в теоретической механике. Для всего диска

Геометрия масс в теоретической механике

Таким образом, 

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 27

Для осей координат Геометрия масс в теоретической механике и Геометрия масс в теоретической механике, расположенных в плоскости диска, в силу симметрии Геометрия масс в теоретической механике. Используя (8), имеем Геометрия масс в теоретической механике, но Геометрия масс в теоретической механике, поэтому

Геометрия масс в теоретической механике

В случае тонкого проволочного кольца или круглого колеса, у которых масса распределена не по площади, а по его ободу, имеем

Геометрия масс в теоретической механике

Круглый цилиндр

Геометрия масс в теоретической механике

Рис. 28

Для круглого однородного цилиндра, масса которого Геометрия масс в теоретической механике, радиус Геометрия масс в теоретической механике и длина Геометрия масс в теоретической механике(рис. 28), вычислим прежде всего его момент инерции относительно продольной оси симметрии Геометрия масс в теоретической механике. Для этого разобьем цилиндр плоскостями, перпендикулярными оси Геометрия масс в теоретической механике, на тонкие диски массой Геометрия масс в теоретической механике и толщиной Геометрия масс в теоретической механике. Для такого диска момент инерции относительного оси Геометрия масс в теоретической механике равен Геометрия масс в теоретической механике. Для всего цилиндра

Геометрия масс в теоретической механике

т.е.

Геометрия масс в теоретической механике

Вычислим момент инерции цилиндра относительно его поперечной оси симметрии Геометрия масс в теоретической механике. Для этого разобьем цилиндр поперечными сечениями, перпендикулярными его продольной оси, на элементарные диски толщиной Геометрия масс в теоретической механике. Момент инерции элементарного диска массой Геометрия масс в теоретической механике относительно оси Геометрия масс в теоретической механике, по теореме Штейнера, Геометрия масс в теоретической механике.

Чтобы получить момент инерции всего цилиндра относительно оси Геометрия масс в теоретической механике, следует проинтегрировать полученное выражение по Геометрия масс в теоретической механике в пределах от 0 до Геометрия масс в теоретической механике и результат удвоить. Получим

Геометрия масс в теоретической механике

Но Геометрия масс в теоретической механике — масса цилиндра. Следовательно,

Геометрия масс в теоретической механике

Таким образом, момент инерции цилиндра относительно его поперечной оси симметрии получается как сумма моментов инерции относительно этой оси диска и стержня, массы которых равны по отдельности массе цилиндра. Диск получается из цилиндра симметричным сжатием его с торцов до срединной плоскости при сохранении радиуса, а стержень — сжатием цилиндра в однородный стержень, расположенный по оси цилиндра, при сохранении длины.

Шар

Пусть масса шара Геометрия масс в теоретической механике, радиус Геометрия масс в теоретической механике (рис. 29). Разобьем шар на концентрические сферические слои радиусом Геометрия масс в теоретической механике и толщиной Геометрия масс в теоретической механике. Масса такого слоя Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике; Геометрия масс в теоретической механике—объем слоя, равный произведению площади поверхности сферы радиусом Геометрия масс в теоретической механике на толщину слоя Геометрия масс в теоретической механике, т.е. Геометрия масс в теоретической механике. Таким образом, масса элементарного слоя Геометрия масс в теоретической механике.  Для момента инерции шара относительно его центра Геометрия масс в теоретической механике имеем

Геометрия масс в теоретической механике

т.е.

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 29

Для осей координат, проходящих через центр шара, в силу симметрии Геометрия масс в теоретической механике. Но Геометрия масс в теоретической механике. Следовательно,

Геометрия масс в теоретической механике

Моменты инерции относительно осей, проходящих через заданную точку

В заданной точке Геометрия масс в теоретической механике выберем декартову систему осей координат Геометрия масс в теоретической механике. Ось Геометрия масс в теоретической механике образует с осями координат углы  Геометрия масс в теоретической механике (рис. 30). По определению момента инерции относительно оси Геометрия масс в теоретической механике имеем

Геометрия масс в теоретической механике

или для сплошных тел

Геометрия масс в теоретической механике

В дальнейшем используется определение (20). Сплошные тела считаются разбитыми на Геометрия масс в теоретической механике малых частей, принимаемых за точки.

Из прямоугольного треугольника Геометрия масс в теоретической механике получаем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — координаты точки Геометрия масс в теоретической механике. Отрезок Геометрия масс в теоретической механике является проекцией радиуса-вектора Геометрия масс в теоретической механике на ось Геометрия масс в теоретической механике. Для получения проекции вектора Геометрия масс в теоретической механике на ось Геометрия масс в теоретической механике его следует умножить скалярно на единичный вектор этой оси Геометрия масс в теоретической механике. Имеем

Геометрия масс в теоретической механике

Умножая в (21) Геометрия масс в теоретической механике, выраженный через координаты точки Геометрия масс в теоретической механике, на единицу в виде Геометрия масс в теоретической механике и используя значение (22) для Геометрия масс в теоретической механике, получим

Геометрия масс в теоретической механике

Подставляя (23) в (20) и вынося косинусы углов за знаки сумм, имеем

Геометрия масс в теоретической механике

Учитывая, что

Геометрия масс в теоретической механике

—    моменты инерции относительно осей координат, а

Геометрия масс в теоретической механике

—    центробежные моменты инерции относительно тех же осей, получим

Геометрия масс в теоретической механике

Для определения момента инерции Геометрия масс в теоретической механике, кроме углов Геометрия масс в теоретической механике, определяющих направление оси, необходимо знать в точке Геометрия масс в теоретической механике шесть моментов инерции: Геометрия масс в теоретической механике. Их удобно расположить как элементы единой таблицы или матрицы:

Геометрия масс в теоретической механике

Матрица, или таблица (25), составленная из осевых и центробежных моментов инерции относительно декартовых осей координат, называется тензором инерции в точке Геометрия масс в теоретической механике. В тензоре инерции условились центробежные моменты инерции брать со знаком минус. Компоненты тензора инерции (отдельные осевые или центробежные моменты инерции) зависят не только от выбора точки, но и от ориентации осей координат в этой точке.

Для определения момента инерции относительно какой-либо оси, проходящей через заданную точку, для рассматриваемого тела необходимо иметь тензор инерции в этой точке и углы, определяющие направление оси с осями координат.

Геометрия масс в теоретической механике

Рис. 30

Эллипсоид инерции

Для характеристики распределения моментов инерции тела относительно различных осей, проходящих через заданную точку, используется поверхность второго порядка — эллипсоид инерции. Для построения этой поверхности на каждой оси Геометрия масс в теоретической механике (см. рис. 31), проходящей через точку Геометрия масс в теоретической механике, откладывают от этой точки отрезок

Геометрия масс в теоретической механике

Геометрическое место концов отрезков Геометрия масс в теоретической механике расположится на поверхности, которая называется эллипсоидом инерции. Получим уравнение эллипсоида инерции. Для этого выразим косинусы углов Геометрия масс в теоретической механике через координаты Геометрия масс в теоретической механике точки Геометрия масс в теоретической механике. Имеем:

Геометрия масс в теоретической механике

Подставляя эти значения косинусов углов в (24) и сокращая на Геометрия масс в теоретической механике, получим уравнение поверхности второго порядка:

Геометрия масс в теоретической механике

Это действительно уравнение эллипсоида, так как отрезок Геометрия масс в теоретической механике имеет конечную длину для всех осей, для которых моменты инерции не обращаются в нуль. Другие поверхности второго порядка, например гиперболоиды и параболоиды, имеют бесконечно удаленные точки. Эллипсоид инерции вырождается в цилиндр для тела в виде прямолинейного отрезка, если точка Геометрия масс в теоретической механике расположена на самом отрезке. Для оси, направленной по этой прямой линии, момент инерции обращается в нуль и соответственно отрезок Геометрия масс в теоретической механике равен бесконечности.

Для каждой точки Геометрия масс в теоретической механике имеется свой эллипсоид инерции. Эллипсоид инерции для центра масс тела называют центральным эллипсоидом инерции. Оси эллипсоида инерции (его сопряженные диаметры) называются главными осями инерции. В общем случае эллипсоид инерции имеет три взаимно перпендикулярные главные оси инерции. Они являются его осями симметрии.

В случае эллипсоида вращения все прямые, расположенные в экваториальной плоскости эллипсоида, перпендикулярной оси вращения, будут главными осями инерции. Для шара любая прямая, проходящая через его центр, есть главная ось инерции.

Моменты инерции относительно главных осей инерции называются главными моментами инерции, а относительно главных центральных осей инерции — главными центральными моментами инерции.

Если уравнение эллипсоида инерции отнести к его главным осям Геометрия масс в теоретической механике, то оно примет вид

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике —текущие координаты точки, расположенной на эллипсоиде инерции, относительно главных осей инерции; Геометрия масс в теоретической механикеГеометрия масс в теоретической механике— главные моменты инерции. Уравнение эллипсоида инерции (27′) не содержит слагаемых с произведениями координат точек. Поэтому центробежные моменты инерции относительно главных осей инерции равны нулю, т. е.

Геометрия масс в теоретической механике

Справедливо и обратное утверждение: если центробежные моменты инерции относительно трех взаимно перпендикулярных осей равны нулю, то эти оси являются главными осями инерции. Обращение в нуль трех центробежных моментов инерции является необходимым и достаточным условием того, что соответствующие прямоугольные оси координат есть главные оси инерции.

Главные моменты инерции часто обозначают Геометрия масс в теоретической механике, вместо Геометрия масс в теоретической механикеГеометрия масс в теоретической механике. Для главных осей инерции формула (24) принимает форму

Геометрия масс в теоретической механике

  • Заказать решение задач по теоретической механике

Свойства главных осей инерции

Теорема 1. Если одна из декартовых осей координат, например Геометрия масс в теоретической механике (рис. 31), является главной осью инерции для точки Геометрия масс в теоретической механике, а две другие оси Геометрия масс в теоретической механике и Геометрия масс в теоретической механике— любые, то два центробежных момента инерции, содержащих индекс главной оси инерции Геометрия масс в теоретической механике, обращаются в нуль, т.е. Геометрия масс в теоретической механике и Геометрия масс в теоретической механике.

Главная ось инерции Геометрия масс в теоретической механике является осью симметрии эллипсоида инерции. Поэтому каждой точке эллипсоида, например Геометрия масс в теоретической механике, соответствует симметричная относительно этой оси точка Геометрия масс в теоретической механике. Подставляя в уравнение эллипсоида инерции (27) последовательно координаты этих точек, получим

Геометрия масс в теоретической механике

Вычитая из первого уравнения второе, имеем

Геометрия масс в теоретической механике

Так как всегда можно выбрать точки, для которых Геометрия масс в теоретической механике и Геометрия масс в теоретической механике отличны от нуля, то Геометрия масс в теоретической механике.

Геометрия масс в теоретической механике

Рис. 31

Аналогичные рассуждения для двух симметричных относительно оси Геометрия масс в теоретической механике точек Геометрия масс в теоретической механике и Геометрия масс в теоретической механике приводят к заключению, что Геометрия масс в теоретической механике. В аналитической геометрии при исследовании уравнений поверхностей второго порядка доказывается обратное утверждение, что если Геометрия масс в теоретической механике и Геометрия масс в теоретической механике, то ось Геометрия масс в теоретической механике есть главная ось. Таким образом, обращение в нуль центробежных моментов инерции Геометрия масс в теоретической механике и Геометрия масс в теоретической механике является необходимым и достаточным условием, чтобы ось Геометрия масс в теоретической механике была главной осью инерции для точки Геометрия масс в теоретической механике.

Теорема 2. Если однородное тело имеет плоскость симметрии, то для любой точки, лежащей в этой плоскости, одна из главных осей инерции перпендикулярна плоскости симметрии, а две другие главные оси инерции расположены в этой плоскости.

Геометрия масс в теоретической механике

Рис. 32

Для доказательства теоремы выберем в плоскости симметрии Геометрия масс в теоретической механике точку Геометрия масс в теоретической механике и в ней оси прямоугольной системы координат Геометрия масс в теоретической механике, причем ось Геометрия масс в теоретической механике направим перпендикулярно плоскости симметрии (рис. 32). Тогда каждой точке тела Геометрия масс в теоретической механике массой Геометрия масс в теоретической механике соответствует симметричная относительно плоскости Геометрия масс в теоретической механике точка Геометрия масс в теоретической механике с такой же массой. Координаты точек Геометрия масс в теоретической механике и Геометрия масс в теоретической механике отличаются только знаком у координат Геометрия масс в теоретической механике.

Для центробежного момента инерции Геометрия масс в теоретической механике имеем

Геометрия масс в теоретической механике

так как часть тела (I), соответствующая точкам с положительными координатами Геометрия масс в теоретической механике, одинакова с частью тела (II), у которой точки имеют такие же координаты Геометрия масс в теоретической механике, но со знаком минус. Аналогично доказывается, что

Геометрия масс в теоретической механике

Так как центробежные моменты инерции Геометрия масс в теоретической механике и Геометрия масс в теоретической механике обращаются в нуль, то ось Геометрия масс в теоретической механике есть главная ось инерции для точки Геометрия масс в теоретической механике. Другие две главные оси инерции перпендикулярны оси Геометрия масс в теоретической механике и, следовательно, расположены в плоскости симметрии.

Центр масс однородного симметричного тела находится в плоскости симметрии. Поэтому одна из главных центральных осей инерции перпендикулярна плоскости симметрии, а две другие расположены в этой плоскости.

Доказанная теорема справедлива и для неоднородного тела, имеющего плоскость материальной симметрии.

Теорема 3. Если однородное тело имеет ось симметрии или неоднородное тело имеет ось материальной симметрии, то эта ось является главной центральной осью инерции.

Теорема доказывается аналогично предыдущей. Для каждой точки тела Геометрия масс в теоретической механике с положительными координатами Геометрия масс в теоретической механике и массой Геометрия масс в теоретической механике существует симметричная относительно оси точка с такой же массой и такими же по величине, но отрицательными координатами Геометрия масс в теоретической механике, если осью симметрии является ось Геометрия масс в теоретической механике. Тогда

Геометрия масс в теоретической механике

так как суммы по симметричным относительно оси частям тела (I) и (II) отличаются друг от друга только знаком у координаты Геометрия масс в теоретической механике.

Аналогично доказывается, что Геометрия масс в теоретической механике.

Таким образом, ось Геометрия масс в теоретической механике является главной осью инерции для любой точки, расположенной на оси симметрии тела. Она есть главная центральная ось инерции, так как центр масс находится на оси симметрии.

Теорема 4. Главные оси инерции для точки Геометрия масс в теоретической механике, расположенной на главной центральной оси инерции, параллельны главным центральным осям инерции (рис. 33).

Выберем в точке Геометрия масс в теоретической механике главной центральной оси инерции Геометрия масс в теоретической механике систему декартовых осей координат Геометрия масс в теоретической механике, взаимно параллельных главным центральным осям инерции Геометрия масс в теоретической механике. Тогда координаты точки тела Геометрия масс в теоретической механике в двух системах осей координат будут связаны между собой формулами параллельного переноса осей

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике. Используя эти формулы, вычисляем центробежные моменты инерции Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Имеем

Геометрия масс в теоретической механике

так как

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике—масса тела; Геометрия масс в теоретической механике — координата центра масс относительно системы координат Геометрия масс в теоретической механике. Аналогично получаем

Геометрия масс в теоретической механике

Если Геометрия масс в теоретической механике— центр масс системы, то Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Для главных центральных осей инерции центробежные моменты инерции равны нулю, т. е.

Геометрия масс в теоретической механике

Используя полученные формулы при этих условиях, имеем:    

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 33

Следовательно, оси Геометрия масс в теоретической механике есть главные оси инерции для произвольной точки Геометрия масс в теоретической механике, расположенной на главной центральной оси инерции Геометрия масс в теоретической механике. Теорема доказана.

Из доказанной теоремы в качестве следствия получаем: главная центральная ось инерции является главной осью инерции для всех своих точек. Действительно, главная ось инерции Геометрия масс в теоретической механике для точки Геометрия масс в теоретической механике, лежащей на главной центральной оси инерции Геометрия масс в теоретической механике, совпадает с этой осью. Главная ось инерции таким свойством не обладает. Главные оси инерции для точки Геометрия масс в теоретической механике, расположенной на главной оси инерции точки Геометрия масс в теоретической механике, не параллельны главным осям инерции для этой точки. Они в общем случае повернуты относительно этих осей.

Определение главных моментов инерции и направления главных осей

Пусть известны компоненты тензора инерции в точке Геометрия масс в теоретической механике относительно осей координат Геометрия масс в теоретической механике. Для определения направления главных осей инерции в точке Геометрия масс в теоретической механике используем уравнение эллипсоида инерции относительно этих осей

Геометрия масс в теоретической механике

Если оси координат Геометрия масс в теоретической механике являются главными осями инерции, то радиус-вектор Геометрия масс в теоретической механике точки Геометрия масс в теоретической механике эллипсоида инерции, расположенной на главной оси инерции, например оси Геометрия масс в теоретической механике (рис. 34), направлен по нормали к эллипсоиду, т. е. параллельно вектору Геометрия масс в теоретической механике, который, согласно его определению, вычисляется по формуле

Геометрия масс в теоретической механике

Параллельные векторы отличаются друг от друга скалярным множителем, который обозначим Геометрия масс в теоретической механике. Тогда для параллельных векторов Геометрия масс в теоретической механике и Геометрия масс в теоретической механике и их проекций на оси координат имеем:

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 34

В этих уравнениях Геометрия масс в теоретической механике являются координатами точки конца вектора Геометрия масс в теоретической механике, проведенного из точки Геометрия масс в теоретической механике вдоль какой-либо главной оси инерции для этой точки.

Для частных производных из (27′) получаем:

Геометрия масс в теоретической механике

Подставляя их значения в (28′) и перенося все слагаемые в левую часть, после объединения и сокращения на общий множитель получим следующую систему уравнений для определения координат Геометрия масс в теоретической механике точки Геометрия масс в теоретической механике, находящейся на главной оси инерции:

Геометрия масс в теоретической механике

Так как (29) является однородной системой линейных уравнений, то отличные от нуля решения для координат Геометрия масс в теоретической механике получаются только при условии, что определитель этой системы равен нулю, т. е.

Геометрия масс в теоретической механике

Это кубическое уравнение для определения Геометрия масс в теоретической механике называется уравнением собственных значений тензора инерции.

В общем случае имеется три различных действительных корня кубического уравнения Геометрия масс в теоретической механике,  которые являются главными моментами инерции. Действительно, если ось Геометрия масс в теоретической механике совпадает с главной осью инерции, то для точки Геометрия масс в теоретической механике эллипсоида инерции, расположенной на этой оси, Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Первое уравнение (29) принимает вид

Геометрия масс в теоретической механике

Так как Геометрия масс в теоретической механике, то Геометрия масс в теоретической механике и Геометрия масс в теоретической механике, которое следует обозначить Геометрия масс в теоретической механике. Аналогично можно получить Геометрия масс в теоретической механике, если оси Геометрия масс в теоретической механике и Геометрия масс в теоретической механике — главные оси инерции.

Подставляя в (29) Геометрия масс в теоретической механике получим только два независимых уравнения для определения координат точки Геометрия масс в теоретической механике эллипсоида инерции, соответствующих главной оси инерции, для которой главный момент инерции есть Геометрия масс в теоретической механике. Третье уравнение системы будет следствием двух других уравнений, так как определитель этой системы равен нулю. Из (29) можно найти только две величины, например Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Они определят направление вектора вдоль главной оси инерции, момент инерции относительно которой есть Геометрия масс в теоретической механике. Модуль радиуса-вектора Геометрия масс в теоретической механике остается неопределенным. Аналогично определяются направления векторов Геометрия масс в теоретической механике и Геометрия масс в теоретической механике вдоль двух других главных осей инерции, для которых главные моменты инерции равны Геометрия масс в теоретической механике и . Можно доказать, что векторы Геометрия масс в теоретической механике, Геометрия масс в теоретической механикеГеометрия масс в теоретической механике, направленные вдоль главных осей инерции, взаимно перпендикулярны.

Таким образом, если известен тензор инерции для осей  Геометрия масс в теоретической механике, то можно определить как направление главных осей инерции, так и главные моменты инерции. Для главных осей инерции тензор инерции (25) принимает форму

Геометрия масс в теоретической механике

Выражение компонентов тензора инерции через главные моменты инерции

Определим компоненты тензора инерции в точке Геометрия масс в теоретической механике относительно осей координат Геометрия масс в теоретической механике, если в этой точке известны главные моменты инерции относительно главных осей инерции Геометрия масс в теоретической механике, т. е. Геометрия масс в теоретической механике. Предположим, что ориентация осей координат Геометрия масс в теоретической механике относительно главных осей инерции Геометрия масс в теоретической механике задана таблицей углов:

Геометрия масс в теоретической механике

Осевые моменты инерции относительно осей Геометрия масс в теоретической механике через главные моменты инерции определяются по формуле (24′). Принимая последовательно за ось Геометрия масс в теоретической механике оси координат Геометрия масс в теоретической механике, получим

Геометрия масс в теоретической механике

Для выражения центробежных моментов инерции через главные моменты инерции используем формулы преобразования координат точек тела при повороте осей координат вокруг точки Геометрия масс в теоретической механике (рис. 35). Эти формулы получим проецированием на оси Геометрия масс в теоретической механике радиуса-вектора Геометрия масс в теоретической механике точки Геометрия масс в теоретической механике, разложенного предварительно на составляющие, параллельные осям двух систем осей координат в точке Геометрия масс в теоретической механике. Имеем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — координаты точки Геометрия масс в теоретической механике относительно системы осей координат Геометрия масс в теоретической механике, а Геометрия масс в теоретической механике — относительно Геометрия масс в теоретической механике. Проецирование вектора на какую-либо ось прямоугольной системы координат эквивалентно скалярному умножению этого вектора на единичный вектор оси. Умножая обе части (32) последовательно на единичные векторы осей координат Геометрия масс в теоретической механике и учитывая таблицу углов для осей, получим

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 35

Используя (33) для центробежного момента инерции Геометрия масс в теоретической механике, имеем

Геометрия масс в теоретической механике

так как центробежные моменты инерции относительно главных осей инерции равны нулю, т. е.

Геометрия масс в теоретической механике

Оси координат Геометрия масс в теоретической механике и Геометрия масс в теоретической механике взаимно перпендикулярны, поэтому косинусы их углов удовлетворяют условию

Геометрия масс в теоретической механике

или

Геометрия масс в теоретической механике

Используя это соотношение для исключения величины Геометрия масс в теоретической механике и добавляя в первом слагаемом (34) под знаком суммы Геометрия масс в теоретической механике, а во втором Геометрия масс в теоретической механике, после объединения слагаемых с одинаковыми произведениями косинусов получим

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике

— главные моменты инерции. Аналогично получаются выражения для Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Итак имеем

Геометрия масс в теоретической механике

Формулы (31) и (35) дают выражения всех компонентов тензора инерции для осей координат Геометрия масс в теоретической механике через главные моменты инерции, если известны углы этих осей с главными осями инерции. В приложениях встречаются частные случаи, когда одна из осей координат Геометрия масс в теоретической механике совпадает с главной осью инерции.

Если ось Геометрия масс в теоретической механике совпадает с главной осью инерции Геометрия масс в теоретической механике (рис. 36), то Геометрия масс в теоретической механике. Это же можно получить из (35). Необходимые для вычисления углы соответственно равны:

Геометрия масс в теоретической механике

Из (35) имеем

Геометрия масс в теоретической механике

В формуле (35′) с полюсом следует брать главный момент инерции с индексом той оси, на положительное направление которой указывает дуговая стрелка поворота осей Геометрия масс в теоретической механике на угол Геометрия масс в теоретической механике до совпадения с осями Геометрия масс в теоретической механике. В рассматриваемом случае поворот осей Геометрия масс в теоретической механике вокруг Геометрия масс в теоретической механике до совпадения с главными осями производится от оси Геометрия масс в теоретической механике к оси Геометрия масс в теоретической механике; следовательно, с плюсом следует взять главный момент инерции Геометрия масс в теоретической механике и с минусом — Геометрия масс в теоретической механике.

Геометрия масс в теоретической механике

Рис. 36    

Если оси расположены, как показано на рис. 37, то дуговая стрелка поворота осей Геометрия масс в теоретической механике до совпадения с главными осями инерции Геометрия масс в теоретической механике на угол Геометрия масс в теоретической механике направлена к отрицательному направлению оси Геометрия масс в теоретической механике. Поэтому в (35′) Геометрия масс в теоретической механике, следует взять со знаком минус, а Геометрия масс в теоретической механике знаком плюс, в чем нетрудно убедиться, используя (35) и таблицу углов. Имеем:

= 90°; р2 = а; Р3 = 90° + а;

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 37

Аналогично при совпадении осей Геометрия масс в теоретической механике с Оу’ и повороте осей Oxz вокруг Геометрия масс в теоретической механике до совпадения с осями Геометрия масс в теоретической механике на угол Геометрия масс в теоретической механике от Геометрия масс в теоретической механике к Геометрия масс в теоретической механике в направлении против часовой стрелки имеем:

Геометрия масс в теоретической механике

При совпадении осей Геометрия масс в теоретической механике и Геометрия масс в теоретической механике и повороте осей вокруг Геометрия масс в теоретической механике на угол Геометрия масс в теоретической механике от Геометрия масс в теоретической механике к Геометрия масс в теоретической механике против часовой стрелки получим:

Геометрия масс в теоретической механике

  • Свойства внутренних сил системы 
  • Дифференциальное уравнение движения системы
  • Теоремы об изменении количества движения и о движении центра масс
  • Теорема об изменении кинетического момента
  • Прямолинейное движение точки
  • Криволинейное движение материальной точки
  • Движение несвободной материальной точки
  • Относительное движение материальной точки

Добавить комментарий