Как найти теплопроводность слоя изоляции

Определить необходимую толщину тепловой
изоляции плоской стенки дымохода
квадратного сечения, по которому
транспортируются дымовые газы при
температуре 160 °C. Дымоход установлен
в помещении, температура воздуха в
котором составляет 20 °C. В качестве
теплоизоляционного материала используется
асбест. Дымоход изготовлен из листовой
стали марки Ст3 толщиной 10 мм. На
внутренней поверхности дымохода
присутствует слой окалины (ржавчины)
толщиной 1 мм. Коэффициент теплоотдачи
от дымовых газов принять равным
8 Вт/(м²·К).

Решение

Схема профиля температур по толщине
плоской стенки дымохода представлена
на рис. 21.


Рис. 21. Профиль
температур по толщине многослойной
стенки

По технике безопасности температура
наружной поверхности изоляции аппаратов,
находящихся в помещениях, не должна
превышать 40 °C.
Таким образом,
.

Коэффициент теплоотдачи от наружной
поверхности изоляции в окружающую среду
определяем по эмпирической формуле
Линчевского, которая учитывает и
конвективный механизм переноса тепла,
и перенос тепла излучением:

.

Плотность теплового потока по уравнению
теплоотдачи:

.

Для плоской стенки плотность теплового
потока остаётся постоянной по всей
толщине стенки
.

Запишем уравнение теплоотдачи для
теплагента:
.
Откуда находим температуру поверхности
стенки со стороны дымовых газов:

.

Теплопроводность твёрдых материалов
[1, табл. XXVIII]:

ржавчина (окалина)
,
сталь Ст.3
,
асбест
.

Запишем уравнение теплопроводности
через слой окалины:
.
Откуда находим температуру на границе
слоёв окалины и стальной стенки:

.

Запишем уравнение теплопроводности
через стальную стенку:
.
Откуда находим температуру на границе
слоёв стали и асбеста:

.

Запишем уравнение теплопроводности
через слой изоляции:
.
Откуда находим толщину изоляции:

.

Вывод: основное термическое сопротивление
оказывает слой изоляции, термическими
сопротивлениями окалины и стальной
стенки можно пренебречь.

Задача 40

Определить необходимую толщину тепловой
изоляции цилиндрической стенки
паропровода, по которому транспортируется
1,5 т/ч насыщенного водяного пара при
температуре 150 °C. Паропровод установлен
в помещении, температура воздуха в
котором составляет 25 °C. В качестве
теплоизоляционного материала используется
стеклянная вата. Паропровод изготовлен
из стальной трубы диаметром 108×4 мм,
марка стали Ст3. Определить также долю
тепловых потерь в окружающую среду от
тепловой нагрузки паропровода, если
длина трубопровода 100 м.

Решение

По технике безопасности:
.

Коэффициент теплоотдачи по формуле
Линчевского:

.

Плотность теплового потока с наружной
поверхности изоляции находим по уравнению
теплоотдачи:

.

Для цилиндрической стенки трубы плотность
теплового потока уменьшается по мере
удаления от оси трубы
.

Движущая сила процесса теплопередачи
от пара к окружающему воздуху через
изолированную стенку равна разности
температур:

.

Запишем основное уравнение теплопередачи:
.

Выразим из основного уравнения
теплопередачи коэффициент теплопередачи,
записанный относительно наружной
поверхности изоляции:

.

Запишем выражение для коэффициента
теплопередачи через многослойную
плоскую стенку:

.

В данной задаче стенка двухслойная
i = 2,
с внутренней поверхностью контактирует
насыщенный водяной пар
,
с наружной – окружающий воздух
.

Внутренний диаметр стальной трубы:

.

Диаметр на границе слоёв стали и изоляции
равен наружному диаметру стальной
трубы:
.

Наружный диаметр изоляции неизвестен
и может быть найден после определения
толщины изоляции:
.

Таким образом, выражение для коэффициента
теплопередачи примет вид:

.

Коэффициент теплоотдачи со стороны
пара достаточно велик
,
настолько, что слагаемое

много меньше других, и им можно пренебречь.

Поскольку толщина стальной стенки
намного меньше толщины изоляции, а
коэффициент теплопроводности стали,
наоборот, намного больше, то
,
и термическим сопротивлением стальной
стенки можно пренебречь.

С учётом этих допущений выражение для
коэффициента теплопередачи упрощаем:

,

а температуру на границе слоёв принимаем
равной температуре насыщенного водяного
пара:
.

Теплопроводность материала изоляции
[1, табл. XXVIII]:

стеклянная вата
.

Поскольку значение коэффициента
теплопередачи известно, то из уравнения
можно найти толщину тепловой изоляции.
Однако

нельзя аналитически выразить из
полученного уравнения (уравнение
трансцендентно относительно
).
Такое уравнение может быть решено
численными методами.

Для этого в качестве первого приближения
найдём толщину изоляции для плоской
стенки:

.

подставляем известные численные
значения:

,

.

Задавшись в качестве начального
приближения толщиной изоляции для
плоской стенки, методом итераций находим
толщину тепловой изоляции для
цилиндрической стенки:
.

Наружный диаметр изоляции:

.

Площадь наружной поверхности изоляции:

.

Тепловые потери с наружной поверхности
изоляции:

.

Удельная теплота конденсации насыщенного
водяного пара при
,

[2, c. 6].

Тепловая нагрузка паропровода:

.

Доля тепловых потерь:
.

Доля тепловых потерь менее 5 % допустима
для паропроводов.

Шаг 1. Климатическая зона строительства

Место расположения строительства:

Федеральный округ:

Республика, Округ, Область:

Населенный пункт

Карта 1. Зоны влажности воздуха РФ:
Карта зон влажности РФ

Зона влажности (по карте 1), в которой расположено место строительства:

Шаг 2. Конструктив стены

Состав слоев стены:

I слой – Наружный отделочный слой (штукатурка, гипс и т.п.);
II слой – Декоративный, он же – защитный для теплоизоляции, слой (отделочный кирпич, камень и т.п.);
III слой – Воздушная прослойка (для осушения утеплителя);
IV слой – Утеплитель (минплита, пенополистерол и т.п.);
V слой – Основная стена (кирпич, пеноблок, монолитный ж/бетон и т.п.);
VI слой – Внутренний отделочный слой (штукатурка, гипс и т.п.);

Отметьте флажками все слои, входящие в состав рассчитываемой стены.

Наружный отделочный слой

Декоративный (защитный) слой

Воздушный зазор

Утеплитель

Основная стена

Внутренний отделочный слой

I II III IV V VI

Теплофизические характеристики материалов:

IV слой – Утеплитель:

Материал:
Толщину слоя утеплителя определяем данным расчётом    λа=    λб=

V слой – Основная стена:

Материал:
Толщина слоя, мм:
    λа=    λб=

  • 111693 просмотра

Коэффициент теплопроводности

Теплопроводность материалов – это способность сохранять тепловую энергию в помещении, один из важных параметров теплоизоляционных материалов. От характеристик теплоизоляторов зависит область их использования.

Коэффициент отображает количество тепла, которое проводится за 1 час через 1 кв. м поверхности утеплителя толщиной 1 м, учитывается также отсутствие утечек тепла по бокам и разность температур в 1°C для обеих поверхностей. То есть низкий параметр теплопроводности минеральной ваты говорит о минимальной теплопотере.

Коэффициент измеряется в Вт/ (м°C), изначально зависит от исходного сырья, влияющего на структуру волокнистости. Показатель не остается постоянно на одном уровне – так, за 3 года может увеличиться на 50% из-за попадания влаги в структуру. Параметр используется в расчетах необходимой толщины слоя теплоизолятора для внутренней или наружной отделки. Чем ниже показатель, тем тоньше слой понадобится для утепления строительной конструкции (крыша, стены, полы и другое) и, соответственно, тем меньше затраты.

Увеличение или уменьшение толщины слоя никак не повлияет на коэффициент. На значение теплопроводности влияет только выбранное сырье, но толщина утеплителя важна для защиты конструкций. Например, минеральная вата толщиной до 50 мм часто используется для внутреннего утепления помещений (полы, перегородки, межэтажные перекрытия и прочее), где теплопотери небольшие, и требуется сэкономить пространство. Для наружного утепления (фасады домов, крыши) применяют минвату с толщиной слоя 100-200 мм.

Коэффициенты теплопроводности с учетом исходного сырья составляют:

  • каменная (базальтовая) вата – 0,032-0,046 Вт/ (м°C);

  • шлаковая вата – 0,46-0,48 Вт/ (м°C);

  • стекловолоконная вата – 0,038-0,046 Вт/ (м°C).

Основным недостатком минваты является изменение уровня теплопроводности при попадании влаги на материал. Так, повышение влажности на 5% ухудшает теплоизоляционные свойства почти на 50%. А попавшая внутрь влага при замерзании может деформировать утеплитель и нарушить эксплуатационные свойства.

Менее всего подвержена изменению теплопроводности каменная вата, например, из базальта. Благодаря высокому уровню паропроницаемости (водопоглощение – менее 1%) и минимальной гигроскопичности избыток влаги испаряется, а не скапливается внутри изделия. По этой причине каменная вата часто используется при наружном утеплении (фасады, кровля зданий), и для теплоизоляции полов первых этажей, чтобы снизить теплопотери.

Не подходит для наружного утепления и применения в помещениях с высокой влажностью стекловолоконная и шлаковая вата. Связано это с повышением теплопроводности при увеличении уровня влажности. Так, при монтаже данных видов минваты требуется полная изоляция от влаги.

Что это такое?

Минеральная вата состоит из тонких спрессованных в мат волокон. Внешне похожа на медицинскую вату, только более жесткая. Минвата признается специалистами одним из лучших теплоизоляционных материалов, поскольку обладает такими достоинствами:

  • эффективность,

  • безопасность для человеческого здоровья,

  • легкость монтажа,

  • доступная стоимость.

Существует 3 разновидности минеральной ваты.

  1. Каменная – производится из расплавленных горных пород. Для ее создания преимущественно используются доломит, базальт и известняк. Такой утеплитель надежен и долговечен, отличается длительным сроком эксплуатации.

  2. Шлаковая – изготавливается из расплавленного доменного шлака. При создании используются отходы черных и цветных металлов. Этот утеплитель менее долговечен, по качеству уступает каменной вате – не стоит применять в климатических зонах с повышенным уровнем влажности и резкими перепадами температуры.

  3. Стеклянная (стекловолоконная) – получают из расплавленного стекловолокна, а также из песка, соды, известняка, доломита, буры. Основные характеристики – это высокая плотность, упругость и память формы. Имеет хорошие показатели теплопроводности и паропроницаемости, но характеристики уступают по качеству каменной (базальтовой) и шлаковой вате. Популярна благодаря соотношению качества и доступной стоимости.

Несмотря на разное исходное сырье, все разновидности минеральной ваты обладают общим свойством – материал рыхлый, с волокнистой структурой и низкой плотностью, и по этой причине имеющий низкую теплопроводность.

На теплопроводность минваты влияют минералогический состав, плотность и влажность. Средним показателем для минеральной ваты разных видов обычно считается 115 кг на 1 куб. м с водопоглощением не более 1% на объем. Диаметр волокна в среднем не более 0,2 мкм.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

Влажность – злокачественный фактор, повышающий скорость прохождения тепла

Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.

«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Влияние на свойства

Большинство характеристик утеплителя взаимосвязаны. Так, показатель плотности влияет на теплопроводность.

Как известно, воздух является лучшим теплоизолятором. Большое количество воздушных пузырьков расположено между хаотично направленными волокнами минераловатных утеплителей, например, каменной ваты. Однако если увеличить удельный вес материала (по сути, сильнее сжать волокна), то объем воздушных пузырьков уменьшится, что приведет к повышению теплопроводности.

Впрочем, связь между плотностью и теплопроводностью обусловлена структурой материала. Например, при изменении плотности пенополистирола объем воздуха, содержащийся в его капсулах, остается неизменным. Это значит, что теплопроводность никак не изменяется при смене плотности утеплителя.

А вот на звукоизоляцию изменение удельного веса влияет всегда. Это обусловлено тем, что с уменьшением воздухопроницаемости теплоизолятора растут его шумопоглощающие показатели.

Иначе говоря, чем плотнее материал, тем лучшей звукоизоляцией он характеризуется. Однако по мере увеличения плотности растет и вес, толщина материала. Работать с ним становится неудобно.

Выходом из подобной ситуации станет применение специальных теплоизоляционных панелей с улучшенными звукоизоляционными свойствами. Это может быть легкая стекловата или базальтовый утеплитель с перекрученными тонкими и длинными волокнами. При этом плотность материала может не превышать 50 кг/м3.

Показатели прочности связаны также со способностью материала выдерживать большие нагрузки, причем связь здесь прямо пропорциональная. В связи с этим на нагружаемых участках следует использовать более плотные материалы. Только так можно избежать деформации утеплителя.

Наконец, от удельного веса утеплителя зависит способ его монтажа. Так, между лагами и элементами обрешетки можно применять теплоизоляторы легкие, небольшой плотностью. Если этот же вариант монтировать на стены, он просто сползет, поэтому выбор делается в пользу более прочных матов и листов.

Кроме того, плотные утеплители не нуждаются в дополнительной механической защите, они достаточно прочны, чтобы противостоять механическим нагрузкам. А более рыхлые материалы – пенопласт, пенополистирол, минеральная вата – всегда нуждаются в дополнительной защите.

Пол

Расчет толщины ничем не отличается от всех вышеприведенных расчетов. Следует учитывать все слои материалов, задействованных при постройке здания, а также наличие или отсутствие холодного подвала под ним.

Не рекомендуется использовать внутри жилых помещений в качестве утеплителя минеральную вату. Первые два материала из-за своей горючести и вредных испарений, а последний — из-за хорошей способности впитывать влагу, что впоследствии может привести к появлению плесени, грибка и гниению.

Хорошим вариантом для пола станет К минусам можно отнести его довольно высокую цену. Однако он также является очень хорошим звукоизолятором, так что можно решить сразу две строительные задачи. Этот материал достаточно прочный, его рекомендуется использовать под бетонную стяжку и наливные полы. Красивая текстура позволяет оставлять материал в качестве финишного покрытия, обрабатывая верхний слой специальным лаком.

Выбирая для укладки на пол пробковый материал, как, впрочем, и любой другой, важно правильно провести расчет толщины утеплителя, так как принцип «больше — лучше» тут не действует. Вы не только значительно поднимете уровень и уменьшите полезную площадь помещения, но и неоправданно повысите стоимость строительства

Сколько нужно утеплителя

Определяющим при закупке материалов является не только вид и толщина плит (рулонов), но и данные – сколько нужно утеплителя на известную площадь отделки. Для этого рационально использовать онлайн калькулятор утеплителя, он значительно упрощает проведение подсчетов, поскольку площадь стен, фронтонов, проемов окон и дверей вычисляются автоматически.

Для ручных вычислений необходимо знать:

  • длину периметра строения;
  • высоту стен (а также цоколя и фундамента, если он тоже утепляется);
  • размеры и форму фронтонов;
  • размеры и количество оконных и дверных проемов.

Делать подсчет – сколько утеплителя понадобится – удобно при наличии подробного чертежа.

На иллюстрации для расчета утеплителя (онлайн или в ручном режиме) представлен архитектурный вариант чертежа. Пользователь при вычислениях ставит размеры более удобным для себя способом.

Важно помнить: в архитектурных чертежах длины стен указываются как расстояния между их осями, в реальности от угла и до угла длина составляет расстояние между осями плюс толщина стены.

Полки для ванных комнат: виды, материалы и стилевое оформление

Утеплители для стен применяемые внутри помещения

Основные требования, кроме низкой теплопроводности, которые предъявляют к термоизоляционным материалам, используемым внутри помещения:

  • небольшая толщина изоляционной конструкции, для экономии полезной площади;
  • экологическая чистота – материал не должен выделять никаких вредных веществ.

Таким параметрам отвечает несколько типов утеплителей, каждый из которых имеет свои особенности технологии монтажа.

Фольгированные утеплители

Из всей номенклатуры фольгированных материалов, для утепления стен изнутри больше всего подходит термоизоляция на основании вспененного полиэтилена.

Производители выпускают множество марок: Фольгоизол, Алюфом, Экофол, Армафлекс, Джермафлекс, Пенофол, Изолон, Изофлекс. Термоизоляция помещения происходит по двойному принципу. Инфракрасное излучение отражается алюминиевым слоем обратно в помещение, а вспененный полиэтилен толщиной от 2 до 10 мм не дает проникнуть холоду.

Монтаж производится отражающей стороной внутрь помещения. Стыки полотнищ проклеиваются алюминиевым скотчем. Главная особенность устройства такой изоляции – это наличие зазора в 10-20 мм между фольгой и внутренней стороной отделочных декоративных материалов.

Через некоторое время после монтажа тонкого фольгированного вспененного полиэтилена на стену он может провиснуть и потерять часть эффективности. Для того чтобы это предотвратить производится монтаж на клей по все площади поверхности (на бетонные или кирпичные основы), более частое крепление теплоизоляции к деревянной стене скобами из строительного степлера или использование армированного материала.

Одним из современных материалов, которые можно использовать для утепления стен еще на стадии строительства является эковата. Это экологически чистый материал, который на 80% состоит из волокон целлюлозы с активными добавками:

  • Буры – предотвращающей горение;
  • Борной кислоты – обеспечивающей защиту от грибков, гнили, грызунов и насекомых.

Монтаж эковаты производится с помощью специальных аппаратов напылителей в межстенное пространство. Более подробно процесс напыления можно увидеть здесь:

Сколько нужно вагонки для отделки – онлайн калькулятор

Планируя обшить помещение тонкой профилированной доской – вагонкой – важно точно знать необходимое ее количество с учетом. Оптимальный варианта расчета включает не только вычисление необходимой площади облицовочного материала (сколько нужно вагонки), но и подбор длины ламелей с учетом габаритов помещения

Онлайн-расчет вагонки

Для вычисления необходимой площади вагонки используется онлайн-калькулятор.

Базовыми данными для расчета площадь облицовываемой поверхности и размеры планок

При этом важно учитывать некоторые особенности вычислений:

Ручной расчет

Один из частых вариантов применения материала – внутренняя отделка балкона (лоджии). На примере простого эскиза рассчитаем, сколько стоит обшить вагонкой это помещение с учетом того, сколько стоит кв.м. вагонки разного профиля.

Итак, необходимо отделать только стены. Рассчитываем периметр при условии известных

  • длины – 1200 + 3000 + 1200 +3000 = 8400 мм;
  • высоты 2800 мм;
  • размера «вычитаемых» проемов – для балконного блока (окно и дверь на лоджию) и балконной рамы (остекление самой лоджии). Стандартный размер проема под балконный блок (размеры могут отличаться в зависимости от планировки дома). Размер проема под раму равен длине ограждения с учетом его высоты.

Соответственно рассчитать количество вагонки просто: из общей площади стен балкона (без учета проемов) необходимо вычесть площадь проемов. Для удобства расчет ведется в метрах.

8,40 х 2,80 = 23,52 кв. м;1,30 х 1,40 + 0,68 х 2,05 + 3,00 х 1,10 = 1,82 + 1,394 + 3,30 = 6,514 кв. м;

23,52 – 6,514 = 17,006 кв. м.

Далее учитывается выбранный профиль и сколько вагонки в 1 м2 помещается. Если выбран профиль с параметрами 140х15х3000, то одна такая панель имеет площадь

0,140 х 3,00 = 0,420 м.кв.В квадратном метре

1:0,420 = 2,38 ламелей.

Соответственно, для облицовки потребуется

17,006:0,420 = 40,5 панелей.

Сравнить, сколько стоит квадрат вагонки в зависимости от толщины и числа планок, можно с помощью информации из прайсов производителей (там указывается цена вагонки за квадратный метр, за упаковку с указанием количества ламелей в ней или за штуку).

Важно: при расчете необходимо заложить запас 5…10% количества материала!

Общее описание

Пенопласт представляет собой плиты различной толщины, состоящие из вспененного материала – полимера. Теплопроводность пенопласта обеспечивается воздухом, из которого он состоит на 95-98%, т.е. газа, который не пропускает тепло.

Так как пенопласт в своей основе состоит из воздуха, то он имеет крайне низкую плотность, и, соответственно, малый удельный вес. Также пенопласт обладает очень хорошей звукоизоляцией (тонкие перегородки ячеек, заполненные воздухом – очень плохой проводник звуков).

В зависимости от исходного сырья (полимера) и процессов изготовления, можно производить пенопласт разной плотности, устойчивости к воздействию механических факторов, устойчивости к иным видам воздействия. В связи с вышеперечисленным, обусловливается выбор определенного вида пенопласта и его применение.

Особенности применения

Прежде чем определиться с материалами для отделки частного дома или квартиры, необходимо правильно рассчитать толщину слоя конкретного утеплителя. Также следует придерживаться следующих рекомендаций:

  1. Для горизонтальных поверхностей (пол, потолок) можно использовать практически любой материал. Применение дополнительного слоя с высокой механической прочностью обязательно.
  2. Цокольные перекрытия рекомендуется утеплять стройматериалами с низкой гигроскопичностью. Повышенная влажность должна быть учтена. В противном случае утеплитель под воздействием влаги частично или полностью потеряет свойства.
  3. Для вертикальных поверхностей (стены) необходимо использовать материалы плитно-листового типа. Насыпные или рулонные со временем будут проседать, поэтому необходимо тщательно продумать способ крепежа.

Какие данные нужны для расчёта эксплуатационных характеристик воздуховодов?

Сравнение основных показателей

Чтобы понять, насколько эффективным будет тот или иной утеплитель, необходимо сравнить основные показатели материалов. Это можно сделать, просмотрев таблицу 1.

Материал Плотность кг/м3 Теплопроводность Гигроскопичность Минимальный слой, см
Пенополистирол 30-40 Очень низкая Средняя 10
Пластиформ 50-60 Низкая Очень низкая 2
Пенофол 60-70 Низкая Средняя 5
Пенопласт 35-50 Очень низкая Средняя 10
Пеноплекс 25-32 низкая низкая 20
Минеральная вата 35-125 Низкая Высокая 10-15
Базальтовое волокно 130 Низкая высокая 15
Керамзит 500 Высокая Низкая 20
Ячеистый бетон 400-800 Высокая Высокая 20-40
Пеностекло 100-600 Низкая низкая 10-15

Таблица 1 Сравнение теплоизоляционных свойств материалов

Из приведенных видов лидером в рейтинге считается пенопласт. Материал имеет неоспоримые достоинства, в том числе доступную стоимость.

При этом многие отдают предпочтение пластиформу, минеральной вате или ячеистому бетону. Это связанно с индивидуальными предпочтениями, особенностями монтажа и некоторыми физическими свойствами.

Почему важно правильно рассчитать показатели утепления?

Теплоизоляция устанавливается для сокращения потерь энергии через стены, пол и крышу дома. Недостаточная толщина утеплителя приведет к перемещению точки росы внутрь здания. Это означает появление конденсата, сырости и грибка на стенах дома. Избыточный слой теплоизоляции не дает существенного изменения температурных показателей, но требует значительных финансовых затрат, поэтому является нерациональным. При этом нарушается циркуляция воздуха и естественная вентиляция между комнатами дома и атмосферой. Для экономии средств с одновременным обеспечением оптимальных условий проживания требуется точный расчет толщины утеплителя.

Кто на свете всех теплей?

Цель такого тщательного изучения утеплителей одна — узнать, какой из них лучше всех. Однако, это палка о двух концах, ведь материалы с высокой термоизоляцией могут иметь другие нежелательные характеристики.

Пенополиуретан или экструдированный пенополистирол

чемпион по теплоизоляции – это пенополиуретан

Но у пенополиуретана появилась настоящая альтернатива – экструдированный пенополистирол. По сути это тот же пенопласт, но прошедший дополнительную обработку – экструдировку, которая улучшила его. Это материал с равномерной структурой и замкнутыми ячейками, который представлен в виде листов разной толщины. От обычного пенопласта его отличает усиленная прочность и способность выдерживать механическое давление. Именно поэтому его можно назвать достойным конкурентом пенополиуретану. Единственный недостаток монтажа отдельных плит – швы, которые успешно заделываются монтажной пеной.

А уж чем вам удобнее пользоваться – жидким утеплителем из баллончика или плитами, выбирать только вам. Но помните, что эти материалы не «дышат» и могут образовывать эффект запотевших окон, так что все утепление может уйти из форточки во время проветривания. Поэтому утеплять такими материалами нужно разумно.

Другие утеплители

Также набирает популярности дешевое и экологичное пеностекло, которое можно применять только без нагрузок, поскольку он весьма хрупок.

Методика инженерного расчёта тепловой изоляции трубопровода

Ниже представлена краткая методика инженерного расчёта тепловой изоляции трубопровода (трубы). Оптимальную толщину теплоизоляционного слоя находят путём технико-экономического расчёта. Практически толщину слоя изоляции определяют исходя из его термического спротивления (не менее 0,86 [oС • м2/Вт] для труб с Dу <= 25 мм, и 1,22 [oС м2/Вт] для труб с Dу > 25 мм).

Качество тепловой изоляции трубопровода оценивается её КПД. В современных конструкциях тепловой изоляции при использовании материалов с теплопроводностью до 0,1 [Вт/м • K] оптимальная толщина слоя изоляции обеспечивает тепловую эффективность этой изоляции, близкой к 0,8 (т.е. эффективность 80%).

Приведенная информация может быть полезна для проведения инженерных расчётов при проектировании различных машин и узлов, содержащих трубопроводы с тепловой изоляцией. В качестве примера ниже приведены результаты расчёта тепловой изоляции для выпускного коллектора [трубопровода] высокофорсированного дизеля.

Полное термическое сопротивление изоляционной конструкции для цилиндрической стенки трубопровода (трубы) определяется по формуле:

Формула термического сопротивления изоляционной конструкции цилиндрической стенки

где

dиз – искомый наружный диаметр стенки изоляции трубопровода.

dн – наружный диаметр трубопровода.

λиз – коэффициент теплопроводности изоляционного материала.

αв – коэффициент теплоотдачи от изоляции к воздуху.



Линейная плотность теплового потока

Формула линейной плотности теплового потока

где

tн – температура наружной стенки трубопровода.

tиз – температура поверхности изоляции.

Температура внутренней стенки изоляции трубопровода

Формула температуры внутренней стенки изоляции

где

dв – внутренний диаметр трубопровода.

αг – коэффициент теплоотдачи от газа к стенке.

λт – коэффициент теплопроводности материала трубопровода.

Уравнение теплового баланса

Формула теплового баланса изоляции трубопровода

из которого определяется искомый наружный диаметр изоляции трубопровода dиз, и далее толщина изоляции этого трубопровода (трубы) вычисляется по формуле:

Формула определения толщины тепловой изоляции

Пример: Необходимо рассчитать тепловую изоляцию трубопровода высокофорсированного дизеля, наружный диаметр выпускного трубопровода составляет 0,6 м, внутренний диаметр этого трубопровода составляет 0,594 м, температура наружной стенки трубопровода принимается равной 725 К, температура наружной поверхности изоляции принимается равной 333 К, теплопроводность изоляционного материала принимается равной 0,11 Вт/(м•К), тогда проведенный расчет изоляции трубопровода по методике, описанной выше, покажет, что толщина необходимой изоляции трубопровода должна составлять не менее 0,1 м.

Методика инженерного расчета тепловой изоляции трубопровода

Ниже представлена краткая методика инженерного расчета тепловой изоляции трубопровода (трубы). Оптимальную толщину теплоизоляционного слоя находят путём технико-экономического расчета. Практически толщину слоя изоляции определяют исходя из его термического спротивления (не менее 0,86 [oС м2/Вт] для труб с Dу 25 мм).

Качество тепловой изоляции трубопровода оценивается её КПД. В современных конструкциях тепловой изоляции при использовании материалов с теплопроводностью до 0,1 [Вт/м K] оптимальная толщина слоя изоляции обеспечивает тепловую эффективность этой изоляции, близкой к 0,8 (т.е. эффективность 80%).

Приведенная на этой страничке информация может быть полезна для проведения инженерных расчетов при проектировании, например, тепловой изоляции различных трубопроводов. В качестве примера ниже приведен расчет тепловой изоляции для выпускного коллектора высокофорсированного дизеля.

Обратите внимание

Полное термическое сопротивление изоляционной конструкции для цилиндрической стенки трубопровода (трубы) определяется по формуле:

где

dиз — искомый наружный диаметр стенки изоляции трубопровода.

dн — наружный диаметр трубопровода.

λиз — коэффициент теплопроводности изоляционного материала.

αв — коэффициент теплоотдачи от изоляции к воздуху.

Линейная плотность теплового потока

где

tн — температура наружной стенки трубопровода.

tиз — температура поверхности изоляции.

Температура внутренней стенки изоляции трубопровода

где

dв — внутренний диаметр трубопровода.

αг — коэффициент теплоотдачи от газа к стенке.

λт — коэффициент теплопроводности материала трубопровода.

Уравнение теплового баланса

из которого определяется искомый наружный диаметр изоляции трубопровода dиз, и далее толщина изоляции этого трубопровода (трубы) вычисляется по формуле:

Пример: Необходимо рассчитать тепловую изоляцию трубопровода высокофорсированного дизеля, наружный диаметр выпускного трубопровода составляет 0,6 м, внутренний диаметр этого трубопровода составляет 0,594 м, температура наружной стенки трубопровода принимается равной 725 К, температура наружной поверхности изоляции принимается равной 333 К, теплопроводность изоляционного материала принимается равной 0,11 Вт/(м К), тогда проведенный расчет изоляции трубопровода по методике, описанной выше, покажет, что толщина необходимой изоляции трубопровода должна составлять не менее 0,1 м.

Источник: http://www.highexpert.ru/methods/isolation_pipe.html

расчет изоляции трубопровода по СНиП 2.04.14-88

Выберите метод расчета нормированной плотности теплового потока через изолированную поверхность:

Оборудование и трубопроводы с положительными температурами, расположенными на открытом воздухе и общая продолжительность работы в год более 5000 ч. (П4, табл. 1)

Оборудование и трубопроводы с положительными температурами, расположенными на открытом воздухе и общая продолжительность работы в год 5000 ч. и менее (П4, табл. 2)

Оборудование и трубопроводы с положительными температурами, расположенными в помещении и общая продолжительность работы в год более 5000 ч. (П4, табл. 3)

Оборудование и трубопроводы с положительными температурами, расположенными в помещении и тоннеле и общая продолжительность работы в год 5000 ч. и менее (П4, табл. 4)

Оборудование и трубопроводы с отрицательными температурами, расположенное на открытом воздухе (Прил. 5, табл. 1)

Оборудование и трубопроводы с отрицательными температурами, расположенное в помещении (Прил. 5, табл. 2)

Важно

Паропроводы с конденсатопроводами при их совместной прокладке в непроходных каналах(Прил. 6)

Трубопроводы двухтрубных водяных тепловых сетей при прокладке в непроходных каналах и подземной бесканальной прокладке, общая продолжительность работы в год 5000 ч. и менее (Прил. 7, табл. 1)

Трубопроводы двухтрубных водяных тепловых сетей при прокладке в непроходных каналах и подземной бесканальной прокладке, общая продолжительность работы в год более 5000 ч. (Прил. 7, табл. 2)

Диаметр условного прохода трубопровода d:

Температура вещества в трубопроводе tw:

Температура окружающей среды te, принимается согласно п. 3.6:

Теплоизоляционный материал:

Введите теплопроводность теплоизоляционного материала:

Выберите расположение изолируемой поверхности, тип изолируемой поверхности, и коэффициент излучения для определения коэффициента теплоотдачи alfae:

Введите глубину заложения труб (расстояние от оси трубы до поверхности земли) H:

Введите расстояние между осями труб по горизонтали L12:

Выберите грунт для определения его теплопроводности:

Введите теплопроводность грунта:

Выберите тип грунта по ГОСТ 25100-82 для определения коэффициента увлажнения изоляции К:

Выберите тип опор трубопроводов для определения коэффициента Кred, учитывающего дополнительный поток теплоты через опоры (принимается по табл.4):

Выберите район строительства для определения коэффициента К1, учитывающего изменение стоимости теплоты и теплоизоляционной конструкции:

Тепловой поток через теплоизоляционную конструкцию Q:

Теплоотдающая поверхность изолируемого объекта А:

Длина теплоотдающего объекта (трубопровода) l:

Заданное время хранения вещества Z:

Плотность материала стенки Pm:

Удельная теплоемкость материала стенки cm:

Объем вещества в емкости Vw:

Удельная теплоемкость вещества cw:

Начальная температура вещества tw1:

Конечная температура вещества tw2:

Коэффициент, определяющий допустимое количество конденсации в паре, m:

Удельное количество теплоты конденсации пара, rp:

Температура замерзания/твердения вещества twz:

Приведенный объем вещества трубопровода к метру длины Vw1:

Приведенный объем материала трубопровода к метру длины Vm1:

Удельное количество теплоты замерзания/твердения жидкого вещества rw:

Заданное время приостановки движения вещества Z:

Температура на поверхности изоляции tp:

Относительная влажность воздуха W:

Температура внутренней поверхности изолируемого объекта t_int:

Коэффициент теплоотдачи от транспортируемого вещества к внутренней поверхности изолируемого объекта alfa_int:

Источник: http://a1heat.ru/count-isolation.php

Как рассчитать толщину теплоизоляции трубопроводов

Иметь представление о расчете толщины теплоизоляционного слоя для системы трубопроводов важно каждому, кто понимает важность поддержания функционала технологических трубопроводов независимо от параметров транспортируемой среды. Речь идет о температуре, плотности среды и прочих важных показателях, влияющих на выбор толщины утеплителя. Итоговые показатели определяет расчет, основанный на требованиях нормативной документации.

Нормативная методика вычисления: характеристики

Процесс расчета теплоизоляции поверхностей цилиндрического типа непростой, поэтому по возможности его доверяют специалистам. Если работы приходится выполнять самостоятельно, то оптимальным методом для расчета теплоизоляции разного типа трубопроводов считается вычисление с учетом нормируемых показателей потери тепла.

Данные о величинах теплопотерь установлены и прописаны в специальной нормативной документации и зависят от типа прокладки и диаметра труб. Обычно возможны следующие варианты размещения трубопроводов:

  • под открытым небом;
  • в закрытом помещении;
  • в непроходных каналах;
  • бесканальным методом.

Суть расчета сводится к выбору теплоизоляции с такой толщиной, чтобы тепловые потери на практике не преувеличивали данных, прописанных в СНиПе. Соответствующим Сводом Правил регулируется и метод проведения расчета с упрощенным алгоритмом, приспособленным для среднестатистического пользователя. По большей мере упрощения касаются следующих моментов:

  • не учитываются потери тепла при повышении температуры стенок труб в трубопроводах;
  • не принимается во внимание сопротивление теплопередаче стальной стенки трубы из-за низкой способности к этому металла .

Практически для расчета толщины теплоизоляции используют формулы, рассчитанные как для стационарной, так и для нестационарной передачи тепла через стенки из разного типа материалов. Важно помнить о том, что принцип расчета толщины утеплителя для трубопроводов должен учитывать условия работы:

  • материалы в основе теплоизоляции;
  • перепады температур в зависимости от сезона;
  • уровень влажности и пр.

Удобнее всего для расчета толщины утеплителя трубопроводов использовать специальные таблицы, в которых прописаны диаметр труб с температурой носителя. Что касается типа теплоизоляции, то оптимальный вариант — использование специальных цилиндров, не требующих сложного монтажа и сохраняющих эксплуатационные характеристики на протяжении всего срока использования.

Рассмотрим два основных метода расчета толщины теплоизоляции: на основании онлайн калькулятора и инженерных формул, позволяющих получить результат, максимально правильный с учетом всех параметров.

Как пользоваться онлайн приложениями правильно

Процесс расчета толщины утеплителя с использованием онлайн калькулятора простой и доступный. Сегодня таким способом пользуются все, кто считают услуги инженеров дорогими, а инженерные формулы для собственного расчета — слишком сложными.

Частные пользователи без проблем могут подобрать калькуляторы для быстрого и достаточно точного расчета параметров теплоизоляции для трубопровода.

Большинство источников предоставляют возможность пользоваться калькулятором без оплаты и даже регистрации на сайте. Более того, приложения не нужно скачивать и устанавливать. Онлайн калькуляторы позволяют проводить расчеты изоляции по нескольким целям:

  • теплоизоляции трубопроводов для образования нужной температуры на поверхности;
  • изоляции труб для защиты среды от промерзания при минусовых температурах;
  • утеплению трубопроводов для гарантии защиты поверхностей от образования конденсата и коррозии;
  • изоляции для двухтрубной тепловой магистрали, монтированной под землей.

Как только нужная задача будет установлена, в поля калькулятора вводят данные для проведения нужного расчета. Обычно речь идет о диметре трубы, температуре среды, продолжительности замерзания жидкости без прокачки, материале в основе труб, температуре на их поверхности, коэффициенте теплопроводности теплоизолятора.

Готовый результат поможет определиться с выбором толщины теплоизолятора. Выбирать материал нужно в соответствии с данными калькулятора, не пытаясь покупать утеплитель с «запасом» толщины, так как это не даст нужного эффекта, но значительно повлияет на увеличение итоговой стоимости утепления.

Как рассчитать толщину по формуле самостоятельно

Когда данные, полученные с помощью онлайн калькулятора кажутся сомнительными, стоит попробовать аналоговый метод с использованием инженерной формулы для расчета толщины теплоизоляционного материала. Для расчета работают по следующему алгоритму:

  1. По формуле вычисляют температурное сопротивление утеплителя.
  2. Высчитывают линейную плотность потока тепла.
  3. Рассчитывают показатели температуры на внутренней поверхности теплоизоляции.
  4. Переходят к расчету теплового баланса и толщины теплоизоляции по формуле.

Эти же формулы используются для составления алгоритма работы онлайн-калькулятора.

Источник: http://remontami.ru/raschet-tolshhiny-teploizolyacii-truboprovodov/

Расчет толщины теплоизоляции трубопроводов

С целью обеспечения оптимальной транспортировки по трубопроводам различных сред цилиндрические конструкции принято изолировать. Нормативными документами установлены определенные требования к толщине теплоизоляции.

Процесс вычисления толщины теплоизоляционного слоя трубопроводов является сложным и трудоемким. Наиболее распространенной методикой является определение данного параметра по нормируемым показателям теплопотерь. Величины потерь установлены СНиПом и зависят от способов прокладки трубопроводов разного диаметра:

  • открыто на улице;
  • открыто в помещении;
  • бесканальным путем;
  • в непроходных каналах.

Суть расчета сводится к подбору такой толщины теплоизоляционного материала, чтобы значение фактических теплопотерь не превышало установленных в СНиПе показателей.

Вычисление толщины однослойной изоляции конструкции

Главная формула для расчета изоляции трубопровода представлена в следующем виде:

ln B = 2πλ [К*(tT — to)/qL — RH], где

  • λ — коэффициент теплопроводности изоляции (справочный);
  • К — коэффициент дополнительных теплопотерь через крепления или опоры;
  • tT — температура транспортируемой среды (среднегодовая);
  • to — температура наружного воздуха (среднегодовая);
  • qL — величина теплового потока;
  • RH — сопротивление теплопередаче на наружной поверхности утеплителя (табличное значение).

Значение показателя В определяется отдельно:

В = (dиз + 2δ) / dтр, где

  • δ — толщина изоляционной конструкции;
  • dиз — наружный диаметр трубопровода;
  • dтр — наружный диаметр изолируемой трубы.

Параметр ln находят по таблице логарифмов. В итоге толщина изоляции должна быть такой, при которой будет соблюдено условие тождественности левой и правой частей уравнения.

Вычисление толщины многослойной теплоизоляции

В случае перемещения по трубопроводу теплоносителя с высокой температурой (500-600 ℃) поверхность объекта изолируется двумя слоями из разных материалов.

Один из слоев выступает в качестве ограждения горячей поверхности от второго, который, в свою очередь, служит для защиты трубопровода от низкой температуры воздуха снаружи.

При этом важно, чтобы температура на границе слоев t1,2 была допустимой для материала наружного слоя изоляции.

Чтобы рассчитать толщину теплоизоляции первого слоя, используется уже знакомая нам формула:

δ = К*(tT — to)/[qF — RH]

Для определения толщины второго слоя вместо значения температуры поверхности трубопровода tT принимают температуру на границе двух изоляционных слоев t1,2.

Если диаметр трубопровода меньше 2 м, формула имеет следующий вид:

ln B1 = 2πλ [К*(tT — to)/qL — RH]

Довольно громоздкие расчеты толщины теплоизоляции трудно вести вручную. Поэтому с целью упрощения процесса и быстрого получения результата алгоритм рекомендуется внести в программу Microsoft Excel.

Расчет изоляции трубопроводов по заданной величине снижения температуры теплоносителя

В отдельных случаях требуется, чтобы теплоноситель был доставлен по трубопроводу в конечный пункт назначения с определенной температурой. Согласно этому условию и должен быть выполнен расчет толщины теплоизоляции.

Сначала находится полное тепловое сопротивление изоляции RП :

RП = 3,6 К l / GC ln [(tт.нач — tо )/(tт.кон — tо )], где

  • К — коэффициент дополнительных теплопотерь через крепления или опоры;
  • tт.нач — начальная температура теплоносителя;
  • tо — температура окружающей среды;
  • tт.нач — конечная температура теплоносителя;
  • l — длина трубопровода;
  • G — расход теплоносителя;
  • C — удельная теплоемкость транспортируемой среды.

Далее значение толщины теплоизоляции рассчитывается по знакомой формуле:

δ = dиз (В — 1) / 2

Расчет изоляции трубопроводов по заданной температуре поверхности утепляющего слоя

На многих промышленных предприятиях трубопроводы проложены внутри рабочих помещений, в которых находятся люди. В этой связи правила охраны труда диктуют повышенные требования к температуре труб. Вычисление толщины теплоизоляционного слоя для труб диаметром более 2 м по заданной температуре поверхности утеплителя выполняется по формуле:

δ = λ (tT — tП) / α (tT — tО), где

  • α — коэффициент теплоотдачи (справочный);
  • tП — нормируемая температура поверхности утеплителя;
  • остальные параметры — из предыдущих формул.

Несмотря на то, что данная методика имеют незначительную погрешность, она применяется в настоящее время для вычисления показателей изолирующего слоя. Для получения более точных расчетов лучше воспользоваться специализированным программным обеспечением.

Источник: https://edvans.com.ua/statji/raschet-teploizolyatsii-trub/

Расчет толщины тепловой изоляции

⇐ ПредыдущаяСтр 4 из 6Следующая ⇒

В конструкциях теплоизоляции оборудования и трубопроводов с температурой содержащихся в них веществ в диапазоне от 20°С до 300°С для всех способов прокладки, кроме бесканальной, следует применять теплоизоляционные материалы и изделия с плотностью не более 200 кг/м3 и коэффициентом теплопроводности в сухом состоянии не более 0,06 Вт/(м·К).

Для теплоизоляционного слоя трубопроводов при бесканальной прокладке следует применять материалы с плотностью не более 400 кг/м3 и коэффициентом теплопроводности не более 0,07 Вт/(м · К).

При бесканальной прокладке тепловых сетей следует преимущественно применять предварительно изолированные в заводских условиях трубы с изоляцией из пенополиуретана в полиэтиленовой оболочке или армопенобетона с учетом допустимой температуры применения материалов и температурного графика работы тепловых сетей. Трубопроводы с изоляцией из пенополиуретана в полиэтиленовой оболочке должны быть снабжены системой дистанционного контроля влажности изоляции.

Совет

Расчет толщины тепловой изоляции трубопроводов dк по нормированной плотности теплового потока выполняют по формуле

, (2.65)

где d — наружный диаметр трубопровода, м;

В — отношение наружного диаметра изоляционного слояк диаметру трубопровода d. ();

Величину В определяют по формуле:

, (2.66)

где е — основание натурального логарифма;

lк – коэффициент теплопроводности теплоизоляционного слоя, Вт/(м ·°С), определяемый по приложениям 9,10 учебного пособия;

Rк — термическое сопротивление слоя изоляции, м ·°С/Вт, величину которого определяют из следующего выражения

, (2.67)

где- суммарное термическое сопротивление слоя изоляции и других дополнительных термических сопротивлений на пути теплового потока определяемое по формуле

(2.68)

где- нормированная линейная плотность теплового потока, Вт/м, принимаемая по [4], а также по приложению 8 учебного пособия;

— средняя за период эксплуатации температура теплоносителя,

— коэффициент, принимаемый по приложению 11 учебн. посо-

бия;

— среднегодовая температура окружающей среды;

При подземной прокладке- среднегодовая температура грунта, которая для большинства городов находится в пределах от +1до +5.

При прокладке в тоннелях, в помещениях, в неотапливаемых техподопольях,

при надземной прокладке на открытом воздухе- средняя за период эксплуатации температура окружающего воздуха, которая принимается:

при прокладке в тоннелях= 40; при прокладке в помещениях= 20;

в неотапливаемых техподопольях= 5; при надземной прокладке на открытом воздухе — средняя за период эксплуатации температура окружающего воздуха;

Виды дополнительных термических сопротивленийзависят от способа прокладки тепловых сетей.

При надземной прокладке, а также прокладке в тоннелях и техподпольях

(2.69)

При подземной канальной прокладке

(2.70)

При подземной бесканальной прокладке

(2.71)

где- термическое сопротивление поверхности изоляционного слоя, м·°С /Вт, определяемое по формуле

, (2.72)

где- коэффициент теплоотдачи с поверхности тепловой изоляции в окружающий воздух, Вт/(м² ·°С) который, согласно [4], принимается:

при прокладке в каналах= 8 Вт/(м² ·°С);

при прокладке в техподпольях, закрытых помещениях и на открытом воздухе по табл. 2.1;

d — наружный диаметр трубопровода, м;

Таблица 2.1 Значения коэффициента теплоотдачи a, Вт/(м2×°С)

Изолированный объект В закрытом помещении На открытом воздухе при скорости ветра3, м/с
Покрытия с малым коэффициентом излучения1 Покрытия с высоким коэффициентом излучения2
Горизонтальные трубопроводы
1 К ним относятся кожухи из оцинкованной стали, листов алюминиевых сплавов и алюминия с оксидной пленкой.
2 К ним относятся штукатурки, асбестоцементные покрытия, стеклопластики, различные окраски (кроме краски с алюминиевой пудрой).
3 При отсутствии сведений о скорости ветра принимают значения, соответствующие скорости 10 м/с.

— термическое сопротивление поверхности канала, определяемое по формуле

, (2.73)

где- коэффициент теплоотдачи от воздуха к внутренней поверхности канала;= 8 Вт/(м² ·°С);

— внутренний эквивалентный диаметр канала, м, определяемый по формуле

, (2.74)

где F — внутреннее сечение канала, м2;

P — периметр сторон по внутренним размерам, м;

— термическое сопротивление стенки канала определяемое по формуле

, (2.75)

где- теплопроводность стенки канала; для железобетона

= 2,04 Вт/(м·°С);

— наружный эквивалентный диаметр канала, определяемый по наружным размерам канала, м;

— термическое сопротивление грунта определяемое по формуле

, (2.76)

где- теплопроводность грунта, зависящая от его структуры и влажности. При отсутствии данных его значение можно принимать для влажных грунтов= 2-2.5 Вт/(м·°С), для сухих грунтов

= 1,0-1,5 Вт/(м·°С);

h — глубина заложения оси теплопровода от поверхности земли, м;

— добавочное термическое сопротивление, учитывающее взаимное влияние труб при бесканальной прокладке, величину которого определяют по формулам:

· для подающего трубопровода

; (2.77)

· для обратного трубопровода

, (2.78)

где h — глубина заложения осей трубопроводов, м;

b — расстояние между осями трубопроводов, м, принимаемое в зависимости от их диаметров условного прохода по табл. 2.2

Таблица 2.2 Расстояние между осями трубопроводов.

dу, мм 50-80 125-150
b, мм

,- коэффициенты, учитывающие взаимное влияние температурных полей соседних теплопроводов, определяемые по формулам:

, (2.79)

, (2.80)

где,- нормированные линейные плотности тепловых потоков соответственно для подающего и обратного трубопроводов, Вт/м (см. формулу (2.68)).

Расчетную толщину теплоизоляционного слоя в конструкциях тепловой изоляции на основе волокнистых материалов и изделий (матов, плит, холстов) следует округлять до значений, кратных 10 мм.

В конструкциях на основе минераловатных цилиндров, жестких ячеистых материалов, материалов из вспененного синтетического каучука, пенополиэтилена и пенопластов следует принимать ближайшую к расчетной толщину изделий по нормативным документам на соответствующие материалы.

Обратите внимание

Если расчетная толщина теплоизоляционного слоя не совпадает с номенклатурной толщиной выбранного материала, следует принимать по действующей номенклатуре ближайшую более высокую толщину теплоизоляционного материала.

Допускается принимать ближайшую более низкую толщину теплоизоляционного слоя в случаях расчета по температуре на поверхности изоляции и нормам плотности теплового потока, если разница между расчетной и номенклатурной толщиной не превышает 3 мм.

Минимальную толщину теплоизоляционного слоя следует принимать:

при изоляции цилиндрами из волокнистых материалов — равной минимальной толщине, предусматриваемой государственными стандартами или техническими условиями;

при изоляции тканями, полотном стекловолокнистым, шнурами — 20 мм.

при изоляции изделиями из волокнистых уплотняющихся материалов — 20 мм;

при изоляции жесткими материалами, изделиями из вспененных полимеров — равной минимальной толщине, предусматриваемой государственными стандартами или техническими условиями.

Предельная толщина теплоизоляционного слоя в конструкциях тепловой изоляции оборудования и трубопроводов приведена в таблице 2.3.

Таблица 2.3 Предельные толщины теплоизоляционных конструкций для оборудовании и трубопроводов.

Наружный диаметр, мм Способ прокладки трубопровода
Надземный В тоннеле В непроходном канале
Предельная толщина теплоизоляционного слоя, мм, при температуре, °С
20 и более 20 и более до 150 вкл.
1020 и более
Примечания 2 В случае если расчетная толщина изоляции больше предельной, следует принимать более эффективный теплоизоляционный материал и ограничиться предельной толщиной тепловой изоляции, если это допустимо по условиям технологического процесса.

Примеры расчетов толщины слоя изоляции при различных способах прокладки тепловых сетей приведены на стр. 76-82 учебного пособия.

⇐ Предыдущая123456Следующая ⇒

Рекомендуемые страницы:

Источник: https://lektsia.com/2x109a.html

Расчет теплоизоляции трубопровода

Человек, который сталкивался с проблемой перемерзания труб знает, что это за беда. И на всю жизнь делает вывод о необходимости правильного утепления водопроводных систем. Учиться практичнее всего на чужих ошибках, и во всех деталях хорошо представлять, как правильно произвести расчет теплоизоляции трубопровода.

Важным фактором при укладке труб является глубина их залегания. Если точка промерзания грунта находится на 1,5-2 м. от поверхности земли, то работы по утеплению весьма затруднительны. В этом случае приходит на помощь выбор теплоизолирующего материала и грамотный расчет нужной толщины слоя покрытия.

Виды материалов для утепления труб

На основе этого материала производится много модификаций : Стекловата, Роквул, Изовер, и т.п.

При низкой теплопроводности требует дополнительного покрытия из водонепроницаеиого материала

  • Базальтовые утеплители

Выпускаются в виде цилиндров и просты в монтаже. Имеют защитный покров в виде водотталкивающих материалов.

Производится в виде скорлуп, прост в использовании, не требует дополнительного покрытия. Обладает низкой теплопроводностью.

При монтаже теплоизоляции следует учитывать весовую нагрузку на трубопровод и соответственно рассчитать его крепление.

Важно

Расчет толщины слоя изолирующего покрытия определяется теплопроводностью выбранного материала а также конструктивные характеристики системы. Важный момент: теплопроводность повышается пропорционально нагреву трубы.

То есть, к утеплению системы горячего водоснабжения следует применить более жесткие требования. Если используется материал с покрытием из фольги или стеклохолста, то максимальная температура не должна превышать 100*С.

Учитывая знания по теплопроводности выбранного материала возможно самостоятельно произвести расчет теплоизоляции трубопровода.

Варианты утепления труб

  • теплозащита обогревающим кабелем.

Трубу обвивают специализированным кабелем.Это очень удобно, если учитывать, что утепление трубы требуется всего полгода. То есть, только в это время возможно ожидать перемерзание труб.

В случае такого обогрева происходит значительная экономия средств на земляные работы по прокладке трубопровода на необходимой глубине, на утеплителе и прочих моментах. Кабель может находиться как снаружи трубы, так и внутри ее. Известно.

, что наиболее промерзаемым местом является вход трубопроводы в дом. Эту проблему легко решить с помощью греющего кабеля.

  • Утепление трубопровода воздухом

Ошибкой современных систем теплоизоляции является один момент. Они не учитывают, что промерзание грунта происходит сверху вниз, а навстречу ему стремится тепло, поднимающееся из глубины земли.

Теплоизоляцию производят со всех сторон трубы, в том числе изолируя ее и от восходящего потока тепла. Поэтому практичнее устанавливать утеплитель в виде зонтика над трубой.

А воздушная прослойка в этом случае будет являться теплоаккумулятором.

  • Прокладка трубопровода по принципу «труба в трубе»

Прокладка водопроводных труб в трубах из полипропилена, предназначенных для канализации. У этого метода есть несколько преимуществ.

  1. — в аварийных ситуациях возможно быстрое протягивание аварийного шланга
  2. — водопроводную трубу можно прокладывать без раскопочных работ
  3. — трубу можно отогреть в любых случаях
  4. — возможен обогрев с помощью устройства по всасыванию теплого воздуха

Такой расчет производят не только с целью уменьшить теплопотери, но чтобы понизить саму температуру поверхности труб, с целью их безопасной эксплуатации. Следует учитывать и температурные колебания окружающей среды.

При произведении такого расчета принимаются во внимание следующие факторы:

  1. температура изолируемой поверхности и окружающей среды
  2. допустимые нагрузки
  3. наличие виьрации и других воздействий
  4. стойкость утеплителя к деформации
  5. теплопроводность утеплителя
  6. учет нагрузок от вышележащего грунта и транспортных средств

Рассчитываются тепловые потери по следующей формуле:

Q=2п*Л*L*(Tвн- Tнар)/ln(D/d), где

Q – теплопотери, Вт П – константа = 3,14

Л – коэффициент теплопроводности теплоизоляции, обычно = 0,04 Вт/м20С

L – длина трубы, м

Tвн – температура жидкости в трубопроводе,0С

Tнар – температура наружного воздуха или земли,0С D – наружный диаметр трубопровода с теплоизоляцией, м

d – внутренний диаметр трубопровода, м

Итоговую теряемую мощность необходимо увеличить на 30 – 40% (это запас 1,3-1,4 раза).

Чтобы каждый раз не считать теплопотери по формуле, существуют таблицы с типовыми параметрами толщины теплоизоляции.

Источник: http://semidelov.ru/mar/raschet-teploizolyatsii-truboprovoda/

Расчет теплоизоляции трубопроводов

Прежде чем выбрать утеплитель  для трубопровода, необходимо с помощью расчетов определить оптимальный материал, его толщин и плотность для каждого отдельного случая. Производя расчет теплоизоляции трубопровода, нужно учитывать:

  • температуру поверхности, которая будет изолироваться,
  • температуру окружающей среды,
  • предел допустимых нагрузок,
  • вибрации и все возможные механические воздействия,
  • уровень теплопроводности и устойчивость материалов к деформации.

Нагрузки от вышележащего грунта и транспортных средств нужно учитывать с солидным запасом на будущее.

Также смотрите: 7 причин выбрать Утеплитель для стен — Роквул.

Для чего нужен расчет теплоизоляции трубопроводов

Теплоизоляцию трубопроводов производят не только для того, чтобы сократить тепловые потери. Таким образом можно снизить температуру поверхности труб, что обеспечит безопасную эксплуатацию. Наружная поверхность всех элементов трубопровода, расположенных в доступных местах, строго регламентирована – это не более 550. 

По этой причине расчет толщины теплоизоляции могут производить по двум нормам: плотности теплового потока или температуры, заданной на поверхности теплоизоляции.

Во втором случае теплоизоляция берет на себя обе функции, но на практике толщина слоя, которая была рассчитана с ориентировкой на температуру поверхности, не может обеспечить необходимых энергосберегающих качеств.

Возможные ошибки при расчетах

Часто монтажные бригады ошибочно за ориентир берут безопасность температуры поверхности трубопровода. Привлекательность этого метода в том, что он позволяет обойтись тонким слоем теплоизоляции и тем самым снизить его стоимость. Да и большинство популярных видов современной продукции производятся с недостаточной толщиной.

К примеру, толщина изоляции, выполненной из вспененных полимеров – от 13 до 25 мм. Такая малая толщина обусловлена особенностями технологии производства. Обеспечивая превосходный уровень безопасности температуры поверхности, он не удовлетворяет принятым на сегодня понятиям об энергоэффективности.

Из соображений энергосбережения производить расчет теплоизоляции трубопровода следует исходя из норм теплового потока, которые регламентированы СНиП 41 – 03 – 2003! В нем дана необходимая формула, позволяющая безошибочно рассчитать необходимую толщину.

Обратите внимание: Как правильно сделать расчет системы горячего водоснабжения?

Пример расчета теплоизоляции трубопроводов

Для примера рассмотрим такую ситуацию:

  • диаметр отопления – 42 мм,
  • температура теплоносителя – 900,
  • температура воздуха в помещении, где проходит трубопровод – 100,
  • сам трубопровод в год работает более 5 тыс. часов.

Приблизительное значение теплопроводности современных  полимерных или волокнистых теплоизоляционных материалов в условиях повышенной температуры 0,04 Вт/м*град.

По результатам такого приблизительного расчёта получается, что толщина теплоизоляции в этом случае должна быть минимум 38 мм.

Нужной толщиной обладают материалы из минеральной ваты. Наиболее удобной формой продукции, используемой в монтаже теплоизоляции на трубопроводах – это цилиндры. Выпускают их с довольно большим диаметром.

Информация по теме: Мои советы по расчету газового отопления.

Источник: http://www.vgazele.ru/uteplitel/raschet-teploizolyatsii-truboprovodov.html

Добавить комментарий