Как найти тепловой поток через стенку

Для
многослойной стенки плотность теплового
потока одинакова для всех слоёв

. (3.6)

где i – порядковый
номер стенки;

n – количество
слоёв.

Эквивалентный
коэффициент теплопроводности многослойной
стенки определяется из выражения:

. (3.7)

Температура
на границе раздела слоёв определяется
из следующего выражения:

, (3.8)

где

берётся из справочника.

Так
как тепловая изоляция многослойная,
первичный слой – огнеупорный, второй
и третий – теплопроводный, следовательно
потери теплоты в окружающую среду
определяются из уравнения (3.6)

Пример: Один
слой 250 мм,
,
.
Определить температуру в центре стенки,
если коэффициент теплопроводности
равен
.

Решение: ;
.

3.3 Теплопередача через плоскую однослойную стенку при граничных условиях III-рода

Теплопередача
– процесс теплообмена между двумя
средами (теплоносителями), разделёнными
стенкой (перегородкой). В этом случае
при граничных условиях III-рода
задаются температуры сред теплоносителей,
коэффициенты теплоотдачи

между горячей средой и стенкой и

между стенкой и холодной средой, т.е.
задаётся закон теплообмена. Также
задаётся коэффициент теплопроводности
и
толщина стенки δ.

Требуется
найти плотность теплового потока,
тепловой поток и температуру поверхности
стенки.

Согласно
закону Ньютона-Рихмана плотность
теплового потока между горячей средой
и поверхностью стенки:

. (3.9)

По
закону Фурье этот же поток передаётся
теплопроводностью:

. (3.9)

Этот
же тепловой поток согласно закону
Ньютона-Рихмана от наружной поверхности
стенки отдаётся холодной среде:

. (3.9)

Выражая
из этих уравнений разности температур
и складывая между собой, мы окончательно
получаем выражение для плотности
теплового потока q:

,
. (3.10)

Обозначим
величину

,
(3.11)

К
– коэффициент теплопередачи через
плоскую однослойную однородную стенку.
Он представляет собой количество
теплоты, передаваемое в единицу времени
через единицу поверхности при разности
температур между средами в один градус.
Значения коэффициентов теплопередачи
для различных видов теплообмена будут
даны в таблице в разделе конвективного
теплообмена. Коэффициент теплопередачи
всегда меньше меньшего α. Для того чтобы
увеличить теплопередачу, нужно увеличить
меньшее α.

. (3.12)

Тепловой
поток

. (3.13)

Величина
обратная коэффициенту теплопередачи
– полное термическое сопротивление
теплопередачи:

, (3.14)

где – термическое
сопротивление теплоотдачи со стороны
горячей жидкости;

– термическое
сопротивление стенки (чем меньше ,
тем выше
);

– термическое
сопротивление теплоотдачи от стенки к
холодной среде.
.

Полное
количество теплоты, передаваемое через
стенку за время τ

,
Дж.

Коэффициента
теплопередачи не является термофизическим
коэффициентом, его нет в справочниках.
Он рассчитывается по формуле (3.11).

Из
(3.9) легко найти температуры горячей и
холодной стенок:

, (3.15)

.

3.4 Теплопередача через многослойную плоскую стенку при граничных условиях III-рода

Пусть
заданы температуры сред

и
,
коэффициенты теплоотдачи

и

(закон теплообмена), коэффициенты
теплопроводности
,

и
,
толщина слоёв стенки
,

и
.

Аналогично
формуле (3.9) записывают уравнение
сохранения плотности теплового потока
q,
выражая разность температур и складывая
почленно полученные выражения плотности
теплового потока

,
, (3.16)

,
. (3.17)

Коэффициент
теплопередачи:


(3.18)


(3.19)

Из
уравнения (3.16), определяя плотность
теплового потока, находим температуры
на поверхностях стенки
,

и температуры на границах слоёв
,
.

Соседние файлы в папке ТМО. Конспект лекций

  • #
  • #
  • #

Теплопроводность через стенку

Под теплопередачей через стенку понимают процесс передачи теплоты между двумя средами через непроницаемую стенку любой геометрической формы в стационарном и нестационарном режимах теплообмена. Стенка может быть многослойной.

Рассмотрим стационарный режим теплопередачи через плоскую, цилиндрическую и сферическую стенки при котором теплопередача – величина постоянная и температурное поле не изменяется во времени и зависит только от координаты. В этом случае при условии постоянства теплофизических свойств тела температура в плоской стенке изменяется линейно, а в цилиндрической – по логарифмическому закону, т.е.

Q = const и T = f(x) – линейная (при плоской стенке) или логарифмическая функция (при круглой стенке).

Согласно второму закону термодинамики процесс теплопередачи идет от среды с большей температурой к среде с меньшей температурой.

Теплопередача через непроницаемую стенку включает в себя следующие процессы:

  1. теплоотдачу от горячей среды к стенке;
  2. теплопроводность внутри стенки;
  3. теплоотдачу от стенки к холодной среде.

Теплопередача через плоскую стенку (граничные условия первого рода)

Теплопроводность – первое элементарное тепловое явление переноса теплоты посредством теплового движения микрочастиц в сплошной среде, обусловленное неоднородным распределением температуры.

Совокупность значений температуры для всех точек пространства в данный момент времени называется температурным полем.

Если температурное поле не изменяется во времени, то мы имеем дело со стационарным тепловым режимом.

Тепловой поток Q [Вт] – это количество теплоты, передаваемой в единицу времени (1 Дж/с=1 Вт).

Поверхностная плотность теплового потока рассчитывается по формуле:

где Q – тепловой поток [Вт]; F – площадь стенки [м 2 ].

На основании закона Фурье q=-λdT/dx, значение плотности теплового потока для однослойной стенки будет определяться по формуле:

где δ = dx – толщина стенки, λ

λ/δ; [Вт/м 2 *К] – коэфициент тепловой проводности стенки.

а обратная величина –

R = δ/λ; [м 2. К/Вт] – термическое сопротивление стенки.

Для теплового потока формулу так же можно представить в виде:

Общее количество теплоты проходящее через площадь стены S за время t можно представить как:

Распределение температуры в плоской стенке

Рассмотрим изменение температуры в нашей стене. Так как у нас тепловой поток постоянный, то dT/dx = const=C1; T=C1х+С2 (1). Определим С1 и С2 через граничные условия.

При х=0 T=T1, подставим в уравнение (1) и получим T12.
При х=δ T=T2, подставим в уравнение (1) и получим T21*δ+С2, T21*δ+T1, получим: С1=(Т2-T1)/δ. Теперь подставим в уравнение (1) найденные С1 и С2, получим следующее распределение температуры в нашей стене:

Если нам нужно узнать на какой глубине стены Т=То, то формула преобразуется в следующий вид:

Теплопроводность через многослойную стенку

Если у нас есть стенка из нескольких (n) слоев с разными коэффициентами теплопроводности λi и разной толщиной δi.

Термическое сопротивление стенки считается так:

Для теплового потока формула будет иметь вид:

Температура на границе слоя вычисляется по следующей формуле:

Например, если нужно вычислить температуру между 3-м и 4-м слоем, формула будет такая:

Эквивалентная теплопроводность многослойной стенки:

Теплопередача через плоскую стенку в граничащую среду (граничные условия третьего рода)

Теплопередача – это более сложный процесс теплообмена между жидкими и газообразными средами, разделенными твердой стенкой. Теплопередача включает в себя и процесс теплопроводности, и процесс теплоотдачи.

Коэффициент теплоотдачи α, Вт/(м 2 ·К) – это количество теплоты, отдаваемое в единицу времени единицей поверхности при разности температур между поверхностью и окружающей средой, равной одному градусу.

Коэффициент теплопередачи k, Вт/(м 2 ·К), характеризует тепловой поток, проходящий через единицу площади поверхности стенки при разности температуры сред, равной одному градусу:

q = k * (Tвозд.внутри – Tвозд.снаружи); Вт/м 2

Коэффициент теплопередачи для n слойной стенки:

Термические сопротивления теплоотдаче на внешних поверхностях стенки будут равны:

Тогда общее термическое сопротивление теплопередаче будет равно:

Температуры на поверхности стенки можно определить по формулам:

Теплопроводность через цилиндрическую стенку (граничные условия первого рода)

Теплообменные аппараты в большинстве случаев имеют не плоские, а цилиндрические поверхности, например рекуператоры типа “труба в трубе”, кожухотрубные водонагреватели и т.д. Поэтому возникает необходимость рассмотрения основных принципов расчета цилиндрических поверхностей.

Согласно закону Фурье, количество теплоты, проходящее в единицу времени через этот слой, равно:

Подставим значения граничные значение и вспомним, что разность логарифмов равна логарифму отношению аргументов, получим:

Распределение температур внутри однородной цилиндрической стенки подчиняется логарифмическому закону, и уравнение температурной кривой имеет вид:

Количество теплоты, проходящее через стенку трубы, может быть отнесено либо к единице длины трубы L, либо к единице внутренней F1 или внешней F2 поверхности трубы. При этом расчетные формулы принимают следующий вид:

Все материалы, представленные на сайте, носят исключительно справочный и ознакомительный характер и не могут считаться прямой инструкцией к применению. Каждая ситуация является индивидуальной и требует своих расчетов, после которых нужно выбирать нужные технологии.

Не принимайте необдуманных решений. Имейте ввиду, что то что сработало у других, в ваших условиях может не сработать.

Администрация сайта и авторы статей не несут ответственности за любые убытки и последствия, которые могут возникнуть при использовании материалов сайта.

Сайт может содержать контент, запрещенный для просмотра лицам до 18 лет.

Теплопроводность через однослойную плоскую стенку

Дифференциальное уравнение теплопроводности позволяет опре­делить температуру в зависимости от времени и координат в любой точке поля.

Для любого конкретного случая к нему надо присоединить не­обходимые краевые условия.

Рассмотрим наиболее распространенный случай — теплопровод­ность через однослойную плоскую стенку, длина и ширина которой бесконечно велики по сравнению с толщиной б (рис. 23-1). Стенка имеет во всех своих частях оди­наковую толщину, причем температуры поверхно­стей t’cr и tcr поддерживаются постоянными, т. е. являются изотермическими поверхностями. Темпе­ратура меняется только в направлении, перпен­дикулярном к плоскости стенки, которое прини­маем за ось х. Коэффициент теплопроводности К по­стоянен для всей стенки. При стационарном теп­ловом режиме температура в любой точке тела не­изменна и не зависит от времени, т. е. Тог­да дифференциальное уравнение теплопроводности после сокращения коэффициента температуропроводности принимает вид

Но при принятых условиях первые и вторые производные от ( по y иz также равны нулю:

поэтому уравнение теплопроводности можно написать в следующем виде:

(23-1)

Интегрируя уравнение (23-1), находим

После вторичного интегрирования получаем

При постоянном коэффициенте теплопроводности это урав­нение прямой линии. Следовательно, закон изменения температуры при прохождении теплоты через плоскую стенку будет линейным.

Найдем постоянные интегрирования А и В.

При х = 0 температура t = t’cr — B; при х = δ температура t = t”cr — Аδ +tст, откуда

Плотность теплового потока найдем из уравнения Фурье (22-7)

(23-2)

Зная удельный тепловой поток, можно вычислить общее коли­чество теплоты, которое передается через поверхность стенки F за время τ:

(23-3)

Количество теплоты, которое передается теплопроводностью через плоскую стенку, прямо пропорционально коэффициенту теп­лопроводности стенки К, ее площади F, промежутку времени т, раз­ности температур на наружных поверхностях стенки (t’ст — t”ст) и обратно пропорционально толщине стенки δ. Тепловой поток за­висит не от абсолютного значения температур, а от их разности

t’ст — t”ст = Δt наtзываемой температурным напором.

Полученное уравнение (23-2) является справедливым для случая, когда коэффициент теплопроводности является постоянной вели­чиной. В действительности коэффициент теплопроводности реальных тел зависит от температуры и закон изменения температур будет выражаться кривой линией. Если коэффициент теплопроводности зависит от температуры в незначительной степени, то на практике закон изменения температур считают линейным.

Уравнение (23-2) можно получить непосредственно из закона Фурье (22-6), считая, что температура изменяется только в направ­лении оси х:

Разделив переменные, получаем

Интегрируя последнее уравнение при условии Q = const, на­ходим

Постоянную интегрирования С найдем из граничных условий:

при х = 0 температура

при х = δ температура откуда

Введем в уравнение (23-2) поправки па зависимость λ от t, считая эту зависимость линейной:

(а)

В этом случае, подставив в уравнение Фурье вместо К его зна­чение из формулы (а), получаем

(б)

Разделив переменные и интегрируя в пределах от х = 0 до x = δ и в интервале температур от t’ст до t”ст, получаем

(23-4)

Полученное уравнение (23-4) позволяет определить плотность теплового потока при переменном коэффициенте теплопроводности. В этом уравнении множитель

является среднеинтегралыюй величиной коэффициента теплопро­водности.

В уравнении (23-2) было принято λ,=const и равным среднему значению λср. Поэтому, сравнивая уравнения (23-2) и (23-4), полу­чаем

(23-5)

Следовательно, если λср определяется при среднеинтегральной температуре то формулы (23-2) и (23-4) равнозначны.

При этом плотность теплового потока может определяться из уравнения

(23-6)

Интегрируя уравнение (б) в пределах от х — О до любой текущей координаты х и в интервале температур от t’ст ДО tx, получим урав­нение температурного поля

(23-7)

Из этого уравнения следует, что температура внутри стенки из­меняется по кривой. Если коэффициент b отрицателен, то кривая будет направлена выпуклостью вниз; если b положителен, то вы­пуклостью вверх.

Теплопроводность плоской однослойной стенки

Теплопроводность плоской однослойной стенки

  • Рис. 11. 3. Плоские стены. Рассмотрим однородную стенку толщиной b, выполненную из материала, теплопроводность которого l не зависит от температуры. Поверхность левой стороны стены поддерживается при постоянной постоянной температуре l, по высоте стены, а правой-низкой, но при постоянной температуре 1 г.

Давление р определяется отношением суммы нормальных к поверхности составляющих сил образующихся вследствие ударов о стенку хаотически движущихся микрочастиц рабочего тела, к площади поверхности А. Людмила Фирмаль

Температура стены изменяется только по ее толщине, направлению оси x рис. 11. 3. То есть температурное поле является 1-мерным, а температурный градиент равен d1 dx. Найти плотность теплового потока через заданную стенку и установить характер изменения температуры вдоль толщины стенки.

  • Уравнение Фурье одномерного температурного поля. Чтобы интегрировать это уравнение, разделите переменные 11 — х- После интеграции 11. 2 Чтобы найти интегральную постоянную, используйте известные температуры x-0, −6 и x-1 2. Таким образом, c f таким образом, уравнение k. 2 будет иметь следующий формат АГ.

Термодинамической системой называется совокупность макроскопических тел, которые могут взаимодействовать между собой и с другими телами, составляющими внешнюю среду, в виде обмена энергией или веществом. Людмила Фирмаль

Когда вы решаете уравнение Хорошо О Плотность теплового потока плоской стенки прямо пропорциональна теплопроводности, перепаду температур и обратно пропорциональна толщине стенки. Изменение температуры по отношению к толщине стенки выражается формулой 11. 2.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

[spoiler title=”источники:”]

http://helpiks.org/3-16578.html

http://lfirmal.com/teploprovodnost-ploskoj-odnoslojnoj-stenki/

[/spoiler]

Тема 12.Теплопередача

12.1. Теплопередача через плоскую стенку

Теплопередачей
называется передача теплоты от горячего теплоносителя к холодному теплоносителю
через стенку, разделяющую эти теплоносители.

Примерами теплопередачи являются: передача теплоты от греющей воды
нагревательных элементов (отопительных систем) к воздуху помещения; передача
теплоты от дымовых газов к воде через стенки кипятильных труб в паровых котлах;
передача теплоты от раскаленных газов к охлаждающей воде (жидкости) через
стенку цилиндра двигателя внутреннего сгорания; передача теплоты от внутреннего
воздуха помещения к наружному воздуху и т. д. При этом ограждающая стенка
является проводником теплоты, через которую теплота передается
теплопроводностью, а от стенки к окружающей среде конвекцией и излучением.
Поэтому процесс теплопередачи является сложным процессом теплообмена.

При передаче теплоты от стенки к окружающей среде в основном преобладает
конвективный теплообмен, поэтому будут рассматриваться такие задачи.

1). Теплопередача через плоскую стенку.

Рассмотрим однослойную плоскую стенку толщиной

d и
теплопроводностью l (рис12.1).

Q = a1 · (tж – t1) · F, (12.1)

где a1
– коэффициент теплоотдачи от горячей среды с температурой tж
к поверхности стенки• с температурой t1;

F – расчетная поверхность плоской стенки.

Тепловой поток, переданный через стенку определяется по уравнению:

Q = l/d · (t1 – t2) · F. (12.2)

Тепловой поток от второй поверхности стенки к холодной среде
определяется по формуле:

Q = б2 · (t2 – tж) · F, (12.3)

где a2
– коэффициент теплоотдачи от второй поверхности стенки к холодной среде с
температурой tж.

Решая эти три уравнения получаем:

Q
= (tж – tж) • F • К, (12.4)

где К = 1 / (1/a1 + / l + 1/a2) – коэффициент теплопередачи, (12.5)

или

R0
= 1/К = (1/a1
+ d/l + 1/a2) – полное термическое сопротивление теплопередачи через
однослойную плоскую стенку. (12.6)

1/a1,
1/a2
– термические сопротивления теплоотдачи поверхностей стенки;

d/l – термическое
сопротивление стенки.

Для многослойной плоской стенки полное термическое сопротивление будет
определяться по следующей формуле:

R0
= (1/a1
+ d1/l1 + d2/l2 + … + dn/ln +1/a2),
(12.7)

а коэффициент теплопередачи:

К
= 1 / (1/a1
+ d1/l1 + d2/l2 + … + dn/ln +1/a2),
(12.8)

Добавить комментарий