Лекция № 7
Потери мощности и электроэнергии в элементах сети
План.
-
Потери мощности
в элементах сети. -
Расчет потерь
мощности в линиях электропередач. -
Расчет потерь
мощности в ЛЕП с равномерно распределенной
нагрузкой. -
Расчет потерь
мощности в трансформаторах. -
Приведенные и
расчетные нагрузки потребителей. -
Расчет потерь
электроэнергии. -
Мероприятия по
снижению потерь мощности.
Потери мощности в элементах сети
Для
количественной характеристики работы
элементов электрической сети
рассматриваются ее рабочие режимы.
Рабочий
режим
– это установившееся электрическое
состояние, которое характеризуется
значениями токов, напряжений, активной,
реактивной и полной мощностей.
Основной целью
расчета режимов является определение
этих параметров, как для проверки
допустимости режимов, так и для обеспечения
экономичности работы элементов сетей.
Определение
значений токов в элементах сети и
напряжений в ее узлах начинается с
построения картины распределения полной
мощности по элементу, т.е. с определения
мощностей в начале и конце каждого
элемента. Такую картину называют
потокораспределением.
Рассчитывая
мощности в начале и в конце элемента
электрической сети, учитывают потери
мощности в сопротивлениях элемента и
влияние его проводимостей.
Расчет потерь мощности в линиях электропередач
Потери активной
мощности на участке ЛЕП (см. рис. 7.1)
обусловлены активным сопротивлением
проводов и кабелей, а также несовершенством
их изоляции. Мощность, теряемая в активных
сопротивлениях трехфазной ЛЕП и
расходуемая на ее нагрев, определяется
по формуле:
,
где
полный,
активный и реактивный токи в ЛЕП;
P, Q, S
– активная, реактивная и полная
мощности в начале или конце ЛЕП;
U– линейное напряжение в начале или
конце ЛЕП;
R
– активное сопротивление одной
фазы ЛЕП.
Потери активной
мощности в проводимостях ЛЕП обусловлены
несовершенством изоляции. В воздушных
ЛЕП – появлением короны и, в очень
незначительной степени, утечкой тока
по изоляторам. В кабельных ЛЕП –
появлением тока проводимости а его
абсорбции. Рассчитываются потери по
формуле:
,
где U– линейное напряжение в начале или
конце ЛЕП;
G
– активная проводимость ЛЕП.
При проектировании
воздушных ЛЕП потери мощности на корону
стремятся свести к нулю, выбирая такой
диаметр провода, когда возможность
возникновения короны практически
отсутствует.
Потери реактивной
мощности на участке ЛЕП обусловлены
индуктивными сопротивлениями проводов
и кабелей. Реактивная мощность, теряемая
в трехфазной ЛЕП, рассчитывается
аналогично мощности, теряемой в активных
сопротивлениях:
Генерируемая
емкостной проводимостью зарядная
мощность ЛЕП рассчитывается по формуле:
,
где U– линейное напряжение в начале или
конце ЛЕП;
B
– реактивная проводимость ЛЕП.
Зарядная мощность
уменьшает реактивную нагрузку сети и
тем самым снижает потери мощности в
ней.
Расчет потерь мощности в леп с равномерно распределенной нагрузкой
В линиях местных
сетей ()
потребители одинаковой мощности могут
располагаться на одинаковом расстоянии
друг от друга (например, источники
света). Такие ЛЕП называются линиями с
равномерно распределенной нагрузкой
(см. рис. 7.2).
В равномерно
нагруженной линии трехфазного переменного
тока длиной L
с суммарной токовой нагрузкойIплотность тока на единицу длины составитI/L. При погонном
активном сопротивленииr0
потери активной мощности составят:
Если бы нагрузка
была сосредоточена в конце, то потери
мощности определялись бы как:
.
Сравнивая приведенные
выражения, видим, что потери мощности
в линии с равномерно распределенной
нагрузкой в 3 раза меньше.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
При передаче электрической энергии от генераторов электростанций до потребителя около 12-18% всей вырабатываемой электроэнергии теряется в проводниках воздушных и кабельных линий, а также в обмотках и стальных сердечниках силовых трансформаторов.
При проектировании нужно стремиться к уменьшению потерь электроэнергии на всех участках энергосистемы, поскольку потери электроэнергии ведут к увеличению мощности электростанций, что в свою очередь влияет на стоимость электроэнергии.
В сетях до 10кВ потери мощности в основном обусловлены нагревом проводов от действия тока.
Потери мощности в линии.
Потери активной мощности (кВт) и потери реактивной мощности (кВАр) можно найти по следующим формулам:
Формулы для расчета потери мощности в линии
где Iрасч – расчетный ток данного участка линии, А;
Rл – активное сопротивление линии, Ом.
Потери мощности в трансформаторах.
Потери мощности в силовых трансформаторах состоят из потерь, не зависящих и зависящих от нагрузки. Потери активной мощности (кВт) в трансформаторе можно определить по следующей формуле:
Потери активной мощности в трансформаторе
где ?Рст – потери активной мощности в стали трансформатора при номинальном напряжении. Зависят только от мощности трансформатора и приложенного к первичной обмотке трансформатора напряжения. ?Рст приравнивают ?Рх;
?Рх— потери холостого хода трансформатора;
?Роб – потери в обмотках при номинальной нагрузке трансформатора, кВт; ?Роб приравнивают ?Рк.
?Рк– потери короткого замыкания;
?=S/Sном – коэффициент загрузки трансформатора равен отношению фактической нагрузки трансформатора к его номинальной мощности;
Потери реактивной мощности трансформатора (кВАр) можно определить по следующей формуле:
Потери реактивной мощности в трансформаторе
где ?Qст – потери реактивной мощности на намагничивание, кВАр. ?Qст приравнивают ?Qх.
?Qх – намагничивающая мощность холостого хода трансформатора;
?Qрас – потери реактивной мощности рассеяния в трансформаторе при номинальной нагрузке.
Значения ?Рст(?Рх) и ?Роб(?Рк) приведения в каталогах производителей силовых трансформаторов. Значения ?Qст(?Qх) и ?Qрас определяют по данным каталогов из следующих выражений:
Формулы для расчета потери реактивной мощности
где Iх – ток холостого хода трансформатора, %;
Uк – напряжение короткого замыкания, %;
Iном – номинальный ток трансформатора, А;
Xтр – реактивное сопротивление трансформатора;
Sном – номинальная мощность трансформатора, кВА.
Потери электроэнергии.
На основании потерь мощности можно посчитать потери электроэнергии. Здесь следует быть внимательными. Нельзя посчитать потери электроэнергии умножив потери мощности при какой либо определенной нагрузке на число часов работы линии. Этого делать не стоит, т.к в течение суток или сезона потребляемая нагрузка изменяется и таким образом мы получим необоснованно завышенное значение.
Чтобы правильно посчитать потери электроэнергии используют метод, основанный на понятиях времени использования потерь и времени использовании максимума нагрузки.
Время максимальных потерь ? – условное число часов, в течение которых максимальный ток, протекающий в линии, создает потери энергии, равные действительным потерям энергии в год.
Временем использования максимальной нагрузки или временем использования максимума Тмах называют условное число часов, в течение которых линия, работая с максимальной нагрузкой, могла бы передать потребителю за год столько энергии, сколько при работе по действительному переменному графику. Пусть W(кВт*ч) – энергия переданная по линии за некоторый промежуток времени, Рмах(кВт) -максимальная нагрузка, тогда время использования максимальной нагрузки:
Тмах=W/Рмах
На основании статистических данных для отдельных групп электроприемников были получены следующие значения Тмах:
- Для внутреннего освещения – 1500—2000 ч;
- Наружного освещения – 2000—3000 ч;
- Промышленного предприятия односменного – 2000—2500 ч;
- Двухсменного – 3000—4500 ч;
- Трехсменного – 3000—7000 ч;
Время потерь ? можно найти по графику, зная Тмах и коэффициент мощности.
Зависимость времени максимальных потерь от продолжительности использования максимума нагрузки
Теперь зная ? можно посчитать потери электроэнергии в линии и в трансформаторе.
Потери энергии в линии:
Потери энергии в линии
Потери энергии в трансформаторе:
Потери энергии в трансформаторе
где ?Wатр –общая потеря активной энергии (кВт*ч) в трансформаторе;
?Wртр –общая потеря реактивной энергии (кВАр*ч) в трансформаторе.
Советую почитать:
Потери мощности в трансформаторе определяются по формулам:
потери активной мощности
потери реактивной мощности
где — потери холостого хода трансформатора (потери в стали), квт;
— потери к. з. трансформатора (потери в обмотках) при номинальной нагрузке, квт;
— ток холостого хода трансформатора, %;
— падение напряжения в реактивном сопротивлении трансформатора, %;
— номинальная мощность трансформатора, ква;
— коэффициент загрузки трансформатора;
где S — фактическая нагрузка трансформатора, ква.
Формула (9-4) для определения потерь реактивной мощности в трансформаторе может быть представлена в виде:
где — потери реактивной мощности в трансформаторе при холостом ходе (потери на намагничивание), квар:
— потери реактивной мощности рассеяния в трансформаторе при номинальной нагрузке, квар:
Падение напряжения в реактивном сопротивлении трансформатора определяется по формуле
где Uк — напряжение к. з. трансформатора, %;
Ur — падение напряжения в активном сопротивлении трансформатора, определяемое из выражения
Для трансформаторов мощностью более 10 Мва можно принять
Некоторые значения величин для понижающих трансформаторов приведены в табл. 9-2. В табл. 9-2 уровень Б потерь активной мощности холостого хода относится к трансформаторам, в которых использована электротехническая сталь толщиной 0,35 мм марки Э 330 А по ГОСТ 802-58 с жаростойким покрытием и отжигом пластин. В табл. 9-2 даны значения активных и реактивных сопротивлений трансформаторов, приведенные по отношению к номинальному напряжению обмотки ВН.
Таблица 9-2 Технические данные трехфазных двухобмоточных силовых масляных трансформаторов общего назначения (ГОСТ 12022-66) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Номинальная мощность, ква | Верхний предел номиналього напряжения обмотки, кв | Схема и группа соединений обмоток | Потери активной мощности, квт | Напряжение к.з., % | Ток холостого хода | Сопротивления обмоток трансформатора, ом | Потери реактивной мощности, квар | ||||
холостого хода | к.з. | ||||||||||
уровень А | уровень Б | активное | реактивное | холостого хода | к.з. | ||||||
25 | 10 10 |
У/Ун-0 У/Zн-11 |
0,105 0,105 |
0,125 0,125 |
0,6 0,69 |
4,5 4,7 |
3,2 3,2 |
96,0 110 |
152 152 |
0,80 0,80 |
0,95 0,95 |
40 | 10 10 |
У/Ун-0 У/Zн-11 |
0,15 0,15 |
0,18 0,18 |
0,88 1,0 |
4,5 4,7 |
3,0 3,0 |
55,0 62,5 |
98,1 99,5 |
1,20 1,20 |
1,57 1,59 |
63 | 10 10 20 20 |
У/Ун-о У/Zн-11 У/Ун-0 У/Zн-11 |
0,22 0,22 0,245 0,245 |
0,265 0,265 0,29 0,29 |
1,28 1,47 1,28 1,47 |
4,5 4,7 5,0 5,3 |
2,8 2,8 2,8 2,8 |
32,3 37,0 129 148 |
63,7 64,8 290 302 |
1,76 1,76 1,76 1,76 |
2,53 2,57 2,88 3,00 |
100 | 10 10 35 35 |
У/Ун-0 У/Zн-11 У/Ун-0 У/Zн-11 |
0,31 0,31 0,39 0,39 |
0,365 0,365 0,465 0,465 |
1,97 2,27 1,97 2,27 |
4,5 4,7 6,5 6,8 |
2,6 2,6 2,6 2,6 |
19,7 22,7 241 278 |
40,5 41,2 759 785 |
2,60 2,60 2,60 2,60 |
4,05 4,12 6,19 6,41 |
160 | 10 10 10 35 35 35 |
У/Ун-0 У/Д-11 У/Zн-11 У/Ун-0 У/Д-11 У/Zн-11 |
0,46 0,46 0,46 0,56 0,56 0,56 |
0,54 0,54 0,54 0,66 0,66 0,66 |
2,65 2,65 3,1 2,65 2,65 3,1 |
4,5 4,5 4,7 6,5 6,5 6,8 |
2,4 2,4 2,4 2,4 2,4 2,4 |
10,4 10,4 12,1 127 127 148 |
26,2 26,2 26,8 481 481 499 |
3,84 3,84 3,84 3,84 3,84 3,84 |
6,69 6,69 6,85 10,1 10,1 10,4 |
250 | 10 10 10 35 35 35 |
У/Ун-0 У/Д-11 У/Zн-11 У/Ун-0 У/Д-11 У/Zн-11 |
0,66 0,66 0,66 0,82 0,82 0,82 |
0,78 0,78 0,78 0,96 0,96 0,96 |
3,7 3,7 4,2 3,7 3,7 4,2 |
4,5 4,5 4,7 6,5 6,5 6,8 |
2,3 2,3 2,3 2,3 2,3 2,3 |
5,92 5,92 6,72 72,5 72,5 82,3 |
17,0 17,0 17,6 310 310 322 |
7,25 5,75 5,75 5,75 5,75 5,75 |
10,6 10,6 11,0 15,8 15,8 16,5 |
400 | 10 10 10 35 35 |
У/Ун-0 Ун/Д-11 Д/Ун-11 У/Ун-0 У/Д-11 |
0,62 0,92 0,92 1,15 1,15 |
1,08 1,08 1,08 1,35 1,35 |
5,5 5,5 5,9 5,5 5,5 |
4,5 4,5 4,5 6,5 6,5 |
2,1 2,1 2,1 2,1 2,1 |
3,44 3,44 3,69 42,1 42,1 |
10,7 10,7 10,6 195 195 |
8,40 8,40 8,40 8,40 8,40 |
17,1 17,1 17,0 25,4 25,4 |
630 | 10 10 10 10 35 35 |
У/Ун-0 Ун/Д-11 Д/Ун-11 У/Ун-0 У/Ун-0 У/Д-11 |
1,42 1,42 1,42 1,42 1,7 1,7 |
1,68 1,68 1,68 1,68 2,0 2,0 |
7,6 7,6 8,5 8,5 7,6 7,6 |
5,5 5,5 5,5 5,5 6,5 6,5 |
2,0 2,0 2,0 2,0 2,0 2,0 |
1,91 1,91 2,14 2,14 23,5 23,5 |
8,52 8,52 8,46 8,46 124 124 |
12,6 12,6 12,6 12,6 12,6 12,6 |
33,8 33,8 33,6 33,6 40,2 40,2 |
Для других номинальных напряжений обмоток сопротивления пересчитываются по формулам:
где Uн — номинальное напряжение обмотки, указанное в табл. 9-2, кв;
— номинальное напряжение обмотки, по отношению к которому пересчитываются сопротивления, кв;
R и X — соответственно активное и реактивное сопротивления трансформатора, определяемые по табл. 9-2, ом.
Потери электроэнергии в сети определяются по формуле
где — наибольшие потери мощности в сети, кет;
— число часов максимальных потерь, определенное в зависимости от годового графика нагрузки.
Потери электроэнергии в трансформаторе определяются по формуле
где tТ — число часов работы трансформатора.
Число часов максимальных потерь, если известен годовой график нагрузки, может быть определено по формуле
где — сумма произведений квадратов полных нагрузок на годовую продолжительность каждой из них, вычисленная для всего годового графика нагрузок рассматриваемого элемента сети;
Sб — наибольшая полная нагрузка элемента сети. Для типичного графика, имеющего сниженные нагрузки ночью и утренний и вечерний максимумы, число часов максимальных потерь согласно в зависимости от числа часов использования максимума может определяться по табл. 9-7.
Таблица 9-7 Число часов максимальных потерь | |||||
---|---|---|---|---|---|
Число часов использования максимума | 3000 | 3500 | 4000 | 4500 | 5000 |
Число часов максимальных потерь | 1300 | 1650 | 2000 | 2500 | 3000 |
Число часов использования максимума | 5500 | 6000 | 6500 | 7000 | 7500 |
Число часов максимальных потерь | 3650 | 4300 | 5000 | 5700 | 6450 |
Пример 9-1.
Определить годовые потери электроэнергии в трансформаторе типа ТМ мощностью 6,3 Мва с напряжением высшей стороны 10 кв, если трансформатор включен постоянно и годовой график его нагрузки представлен на рис. 9-1.
Решение.
Годовые потери электроэнергии в трансформаторе определяем по (9-10).
По справочным данным находим потери активной мощности в трансформаторе при холостом ходе для уровня Б: ΔРс=9 квт
и нагрузочные потери (потери к. з.) при номинальной нагрузке трансформатора: ΔРк.з=46,5 квт
По условию примера годовое число часов работы трансформатора tТ = 8 760.
Коэффициент загрузки трансформатора при наибольшей нагрузке составляет:
Число часов максимальных потерь определяем из графика на рис. 9-1, подставив в (9-11) значения нагрузок трансформатора в мегавольт-амперах и соответствующие им продолжительности работы в тысячах часов:
Подставив числовые значения в (9-10), определим годовые потери энергии в трансформаторе:
Рис. 9-1.
Годовой график нагрузки
Пример 9-2.
На рис. 9-2 представлена схема линии 6 кв с указанием длин участков линии (км) и расчетных (наибольших) нагрузок (Мва). Магистраль АБ выполнена кабелем с алюминиевыми жилами сечением 3X70 мм.кв, а ответвления БВ и БГ — воздушной линией с алюминиевыми проводами сечением 35 мм.кв.
Определить годовые потери электроэнергии в сопротивлениях проводов и кабелей линии, если годовая продолжительность использования максимума нагрузок составляет 3000 ч и график нагрузок является типичным (имеются утренний и вечерний максимумы и снижение нагрузки в ночное время).
Решение.
Наибольшие потери мощности в сопротивлениях проводов и кабелей линии находим по (9-1), в которой значение коэффициента определяется из табл. 9-1:
Удельные сопротивления участков линии находим по табл. 5-1: для алюминиевого кабеля сечением 70 мм.кв — 0,46 ом/км; для алюминиевого провода сечением 35 мм.кв — 0,92 ом/км.
Определяем значение величины N для магистрали АБ:
для ответвлений БВ и БГ
Из (9-1) находим наибольшие потери мощности в сети:
По табл. 9-7 в зависимости от продолжительности использования максимума Т=3000 ч находим значение числа часов максимальных потерь τ=1300. Величину потерь электроэнергии определяем по (9-9):
Содержание
- Как найти потерю мощности тока
- Физика
- Потери электроэнергии в электрических сетях
- Виды и структура потерь
- Основные причины потерь электроэнергии
- Расходы на поддержку работы подстанций
- Коммерческая составляющая
- Понятие норматива потерь
- Кто платит за потери электричества?
- Способы уменьшения потерь в электрических сетях
- Методика и пример расчета потерь электроэнергии
- Лекция № 7. Потери мощности и электроэнергии в элементах сети
- Потери мощности в элементах сети
- Расчет потерь мощности в линиях электропередач
Как найти потерю мощности тока
При передаче электрической энергии от генераторов электростанций до потребителя около 12-18% всей вырабатываемой электроэнергии теряется в проводниках воздушных и кабельных линий, а также в обмотках и стальных сердечниках силовых трансформаторов.
При проектировании нужно стремиться к уменьшению потерь электроэнергии на всех участках энергосистемы, поскольку потери электроэнергии ведут к увеличению мощности электростанций, что в свою очередь влияет на стоимость электроэнергии.
В сетях до 10кВ потери мощности в основном обусловлены нагревом проводов от действия тока.
Потери мощности в линии.
Потери активной мощности (кВт) и потери реактивной мощности (кВАр) можно найти по следующим формулам:
Формулы для расчета потери мощности в линии
где Iрасч – расчетный ток данного участка линии, А;
Rл – активное сопротивление линии, Ом.
Потери мощности в трансформаторах.
Потери мощности в силовых трансформаторах состоят из потерь, не зависящих и зависящих от нагрузки. Потери активной мощности (кВт) в трансформаторе можно определить по следующей формуле:
Потери активной мощности в трансформаторе
где ?Рст – потери активной мощности в стали трансформатора при номинальном напряжении. Зависят только от мощности трансформатора и приложенного к первичной обмотке трансформатора напряжения. ?Рст приравнивают ?Рх;
?Рх— потери холостого хода трансформатора;
?Роб – потери в обмотках при номинальной нагрузке трансформатора, кВт; ?Роб приравнивают ?Рк.
?Рк– потери короткого замыкания;
?=S/Sном – коэффициент загрузки трансформатора равен отношению фактической нагрузки трансформатора к его номинальной мощности;
Потери реактивной мощности трансформатора (кВАр) можно определить по следующей формуле:
Потери реактивной мощности в трансформаторе
где ?Qст – потери реактивной мощности на намагничивание, кВАр. ?Qст приравнивают ?Qх.
?Qх – намагничивающая мощность холостого хода трансформатора;
?Qрас – потери реактивной мощности рассеяния в трансформаторе при номинальной нагрузке.
Значения ?Рст(?Рх) и ?Роб(?Рк) приведения в каталогах производителей силовых трансформаторов. Значения ?Qст(?Qх) и ?Qрас определяют по данным каталогов из следующих выражений:
Формулы для расчета потери реактивной мощности
где Iх – ток холостого хода трансформатора, %;
Uк – напряжение короткого замыкания, %;
Iном – номинальный ток трансформатора, А;
Xтр – реактивное сопротивление трансформатора;
Sном – номинальная мощность трансформатора, кВА.
Потери электроэнергии.
На основании потерь мощности можно посчитать потери электроэнергии. Здесь следует быть внимательными. Нельзя посчитать потери электроэнергии умножив потери мощности при какой либо определенной нагрузке на число часов работы линии. Этого делать не стоит, т.к в течение суток или сезона потребляемая нагрузка изменяется и таким образом мы получим необоснованно завышенное значение.
Чтобы правильно посчитать потери электроэнергии используют метод, основанный на понятиях времени использования потерь и времени использовании максимума нагрузки.
Время максимальных потерь ? – условное число часов, в течение которых максимальный ток, протекающий в линии, создает потери энергии, равные действительным потерям энергии в год.
Временем использования максимальной нагрузки или временем использования максимума Тмах называют условное число часов, в течение которых линия, работая с максимальной нагрузкой, могла бы передать потребителю за год столько энергии, сколько при работе по действительному переменному графику. Пусть W(кВт*ч) – энергия переданная по линии за некоторый промежуток времени, Рмах(кВт) -максимальная нагрузка, тогда время использования максимальной нагрузки:
Тмах=W/Рмах
На основании статистических данных для отдельных групп электроприемников были получены следующие значения Тмах:
- Для внутреннего освещения – 1500—2000 ч;
- Наружного освещения – 2000—3000 ч;
- Промышленного предприятия односменного – 2000—2500 ч;
- Двухсменного – 3000—4500 ч;
- Трехсменного – 3000—7000 ч;
Время потерь ? можно найти по графику, зная Тмах и коэффициент мощности.
Зависимость времени максимальных потерь от продолжительности использования максимума нагрузки
Теперь зная ? можно посчитать потери электроэнергии в линии и в трансформаторе.
Потери энергии в линии:
Потери энергии в линии
Потери энергии в трансформаторе:
Потери энергии в трансформаторе
где ?Wатр –общая потеря активной энергии (кВт*ч) в трансформаторе;
?Wртр –общая потеря реактивной энергии (кВАр*ч) в трансформаторе.
Источник
Физика
Полная мощность источника тока:
P полн = P полезн + P потерь ,
где P полезн — полезная мощность, P полезн = I 2 R ; P потерь — мощность потерь, P потерь = I 2 r ; I — сила тока в цепи; R — сопротивление нагрузки (внешней цепи); r — внутреннее сопротивление источника тока.
Полная мощность может быть рассчитана по одной из трех формул:
P полн = I 2 ( R + r ), P полн = ℰ 2 R + r , P полн = I ℰ,
где ℰ — электродвижущая сила (ЭДС) источника тока.
Полезная мощность — это мощность, которая выделяется во внешней цепи, т.е. на нагрузке (резисторе), и может быть использована для каких-то целей.
Полезная мощность может быть рассчитана по одной из трех формул:
P полезн = I 2 R , P полезн = U 2 R , P полезн = IU ,
где I — сила тока в цепи; U — напряжение на клеммах (зажимах) источника тока; R — сопротивление нагрузки (внешней цепи).
Мощность потерь — это мощность, которая выделяется в источнике тока, т.е. во внутренней цепи, и расходуется на процессы, имеющие место в самом источнике; для каких-то других целей мощность потерь не может быть использована.
Мощность потерь, как правило, рассчитывается по формуле
P потерь = I 2 r ,
где I — сила тока в цепи; r — внутреннее сопротивление источника тока.
При коротком замыкании полезная мощность обращается в нуль
так как сопротивление нагрузки в случае короткого замыкания отсутствует: R = 0.
Полная мощность при коротком замыкании источника совпадает с мощностью потерь и вычисляется по формуле
где ℰ — электродвижущая сила (ЭДС) источника тока; r — внутреннее сопротивление источника тока.
Полезная мощность имеет максимальное значение в случае, когда сопротивление нагрузки R равно внутреннему сопротивлению r источника тока:
Максимальное значение полезной мощности:
P полезн max = 0,5 P полн ,
где P полн — полная мощность источника тока; P полн = ℰ 2 / 2 r .
В явном виде формула для расчета максимальной полезной мощности выглядит следующим образом:
P полезн max = ℰ 2 4 r .
Для упрощения расчетов полезно помнить два момента:
- если при двух сопротивлениях нагрузки R 1 и R 2 в цепи выделяется одинаковая полезная мощность, то внутреннее сопротивление источника тока r связано с указанными сопротивлениями формулой
- если в цепи выделяется максимальная полезная мощность, то сила тока I * в цепи в два раза меньше силы тока короткого замыкания i :
Пример 15. При замыкании на сопротивление 5,0 Ом батарея элементов дает ток силой 2,0 А. Ток короткого замыкания батареи равен 12 А. Рассчитать наибольшую полезную мощность батареи.
Решение . Проанализируем условие задачи.
1. При подключении батареи к сопротивлению R 1 = 5,0 Ом в цепи течет ток силой I 1 = 2,0 А, как показано на рис. а , определяемый законом Ома для полной цепи:
где ℰ — ЭДС источника тока; r — внутреннее сопротивление источника тока.
2. При замыкании батареи накоротко в цепи течет ток короткого замыкания, как показано на рис. б . Сила тока короткого замыкания определяется формулой
где i — сила тока короткого замыкания, i = 12 А.
3. При подключении батареи к сопротивлению R 2 = r в цепи течет ток силой I 2 , как показано на рис. в , определяемый законом Ома для полной цепи:
I 2 = ℰ R 2 + r = ℰ 2 r ;
в этом случае в цепи выделяется максимальная полезная мощность:
P полезн max = I 2 2 R 2 = I 2 2 r .
Таким образом, для расчета максимальной полезной мощности необходимо определить внутреннее сопротивление источника тока r и силу тока I 2 .
Для того чтобы найти силу тока I 2 , запишем систему уравнений:
i = ℰ r , I 2 = ℰ 2 r >
и выполним деление уравнений:
I 2 = i 2 = 12 2 = 6,0 А.
Для того чтобы найти внутреннее сопротивление источника r , запишем систему уравнений:
I 1 = ℰ R 1 + r , i = ℰ r >
и выполним деление уравнений:
I 1 i = r R 1 + r .
r = I 1 R 1 i − I 1 = 2,0 ⋅ 5,0 12 − 2,0 = 1,0 Ом.
Рассчитаем максимальную полезную мощность:
P полезн max = I 2 2 r = 6,0 2 ⋅ 1,0 = 36 Вт.
Таким образом, максимальная полезная мощность батареи составляет 36 Вт.
Источник
Потери электроэнергии в электрических сетях
Потери электроэнергии в электрических сетях неминуемы, поэтому важно чтобы они не превышали экономически обоснованного уровня. Превышение норм технологического расхода говорит о возникших проблемах. Чтобы исправить ситуацию необходимо установить причины возникновения нецелевых затрат и выбрать способы их снижения. Собранная в статье информация описывает многие аспекты этой непростой задачи.
Виды и структура потерь
Под потерями подразумевается разница между отпущенной потребителям электроэнергией и фактически поступившей к ним. Для нормирования потерь и расчетов их фактической величины, была принята следующая классификация:
- Технологический фактор. Он напрямую зависит от характерных физических процессов, и может меняться под воздействием нагрузочной составляющей, условно-постоянных затрат, а также климатических условий.
- Расходы, затрачиваемые на эксплуатацию вспомогательного оборудования и обеспечение необходимых условий для работы техперсонала.
- Коммерческая составляющая. К данной категории относятся погрешности приборов учета, а также другие факторы, вызывающие недоучет электроэнергии.
Ниже представлен среднестатистический график потерь типовой электрокомпании.
Примерная структура потерь
Как видно из графика наибольшие расходы связаны с передачей по воздушным линиям (ЛЭП), это составляет около 64% от общего числа потерь. На втором месте эффект коронированния (ионизация воздуха рядом с проводами ВЛ и, как следствие, возникновение разрядных токов между ними) – 17%.
Коронный разряд на изоляторе ЛЭП
Исходя из представленного графика, можно констатировать, что наибольший процент нецелевых расходов приходится на технологический фактор.
Основные причины потерь электроэнергии
Разобравшись со структурой, перейдем к причинам, вызывающим нецелевой расход в каждой из перечисленных выше категорий. Начнем с составляющих технологического фактора:
- Нагрузочные потери, они возникают в ЛЭП, оборудовании и различных элементах электросетей. Такие расходы напрямую зависят от суммарной нагрузки. В данную составляющую входят:
- Потери в ЛЭП, они напрямую связаны с силой тока. Именно поэтому при передаче электроэнергии на большие расстояния используется принцип повышения в несколько раз, что способствует пропорциональному уменьшению тока, соответственно, и затрат.
- Расход в трансформаторах, имеющий магнитную и электрическую природу ( 1 ). В качестве примера ниже представлена таблица, в которой приводятся данные затрат на трансформаторах напряжения подстанций в сетях 10 кВ.
Потери в силовых трансформаторах подстанций
Нецелевой расход в других элементах не входит в данную категорию, ввиду сложностей таких расчетов и незначительного объема затрат. Для этого предусмотрена следующая составляющая.
- Категория условно-постоянных расходов. В нее входят затраты, связанные со штатной эксплуатацией электрооборудования, к таковым относятся:
- Холостая работа силовых установок.
- Затраты в оборудовании, обеспечивающем компенсацию реактивной нагрузки.
- Другие виды затрат в различных устройствах, характеристики которых не зависят от нагрузки. В качестве примера можно привестисиловую изоляцию, приборы учета в сетях 0,38 кВ, змерительные трансформаторы тока, ограничители перенапряжения и т.д.
- Климатическая составляющая. Нецелевой расход электроэнергии может быть связан с климатическими условиями характерными для той местности, где проходят ЛЭП. В сетях 6 кВ и выше от этого зависит величина тока утечки в изоляторах. В магистралях от 110 кВ большая доля затрат приходится на коронные разряды, возникновению которых способствует влажность воздуха. Помимо этого в холодное время года для нашего климата характерно такое явление, как обледенение на проводах высоковольтных линий, а также обычных ЛЭП. Гололед на ЛЭП
Учитывая последний фактор, следует учитывать затраты электроэнергии на расплавление льда.
Расходы на поддержку работы подстанций
К данной категории отнесены затраты электрической энергии на функционирование вспомогательных устройств. Такое оборудование необходимо для нормальной эксплуатации основных узлов, отвечающих за преобразование электроэнергии и ее распределение. Фиксация затрат осуществляется приборами учета. Приведем список основных потребителей, относящихся к данной категории:
- системы вентиляции и охлаждения трансформаторного оборудования;
- отопление и вентиляция технологического помещения, а также внутренние осветительные приборы;
- освещение прилегающих к подстанциям территорий;
- зарядное оборудование АКБ;
- оперативные цепи и системы контроля и управления;
- системы обогрева наружного оборудования, например, модули управления воздушными выключателями;
- различные виды компрессорного оборудования;
- вспомогательные механизмы;
- оборудование для ремонтных работ, аппаратура связи, а также другие приспособления.
Коммерческая составляющая
Под данными затратами подразумевается сальдо между абсолютными (фактическими) и техническими потерями. В идеале такая разница должна стремиться к нулю, но на практике это не реально. В первую очередь это связано с особенностями приборов учета отпущенной электроэнергии и электросчетчиков, установленных у конечных потребителей. Речь идет о погрешности. Существует ряд конкретных мероприятий для уменьшения потерь такого вида.
К данной составляющей также относятся ошибки в счетах, выставленных потребителю и хищения электроэнергии. В первом случае подобная ситуация может возникнуть по следующим причинам:
- в договоре на поставку электроэнергии указана неполная или некорректная информация о потребителе;
- неправильно указанный тариф;
- отсутствие контроля за данными приборов учета;
- ошибки, связанные с ранее откорректированными счетами и т.д.
Что касается хищений, то эта проблема имеет место во всех странах. Как правило, такими противозаконными действиями занимаются недобросовестные бытовые потребители. Заметим, что иногда возникают инциденты и с предприятиями, но такие случаи довольно редки, поэтому не являются определяющими. Характерно, что пик хищений приходится на холодное время года, причем в тех регионах, где имеются проблемы с теплоснабжением.
Различают три способа хищения (занижения показаний прибора учета):
- Механический. Под ним подразумевается соответствующее вмешательство в работу прибора. Это может быть притормаживание вращения диска путем прямого механического воздействия, изменение положения электросчетчика, путем его наклона на 45° (для той же цели). Иногда применяется более варварский способ, а именно, срываются пломбы, и производится разбалансирование механизма. Опытный специалист моментально обнаружит механическое вмешательство.
- Электрический. Это может быть как незаконное подключение к воздушной линии путем «наброса», метод инвестирования фазы тока нагрузки, а также использование специальных приборов для его полной или частичной компенсации. Помимо этого есть варианты с шунтированием токовой цепи прибора учета или переключение фазы и нуля.
- Магнитный. При данном способе к корпусу индукционного прибора учета подносится неодимовый магнит.
Магнит может воздействовать только некоторые старые модели электросчетчиков
Практически все современные приборы учета «обмануть» вышеописанными способами не удастся. Мало того, подобные попытки вмешательства могут быть зафиксированы устройством и занесены в память, что приведет к печальным последствиям.
Понятие норматива потерь
Под данным термином подразумевается установка экономически обоснованных критериев нецелевого расхода за определенный период. При нормировании учитываются все составляющие. Каждая из них тщательно анализируется отдельно. По итогу производятся вычисления с учетом фактического (абсолютного) уровня затрат за прошедший период и анализа различных возможностей, позволяющих реализовать выявленные резервы для снижения потерь. То есть, нормативы не статичны, а регулярно пересматриваются.
Под абсолютным уровнем затрат в данном случае подразумевается сальдо между переданной электроэнергией и техническими (относительными) потерями. Нормативы технологических потерь определяются путем соответствующих вычислений.
Кто платит за потери электричества?
Все зависит от определяющих критериев. Если речь идет о технологических факторах и расходах на поддержку работы сопутствующего оборудования, то оплата потерь закладывается в тарифы для потребителей.
Совсем по иному обстоит дело с коммерческой составляющей, при превышении заложенной нормы потерь, вся экономическая нагрузка считается расходами компании, осуществляющей отпуск электроэнергии потребителям.
Способы уменьшения потерь в электрических сетях
Снизить затраты можно путем оптимизации технической и коммерческой составляющей. В первом случае следует принять следующие меры:
- Оптимизация схемы и режима работы электросети.
- Исследование статической устойчивости и выделение мощных узлов нагрузки.
- Снижение суммарной мощности за счет реактивной составляющей. В результате доля активной мощности увеличится, что позитивно отразится на борьбе с потерями.
- Оптимизация нагрузки трансформаторов.
- Модернизация оборудования.
- Различные методы выравнивания нагрузки. Например, это можно сделать, введя многотарифную систему оплаты, в которой в часы максимальной нагрузки повышенная стоимость кВт/ч. Это позволит существенно потребление электроэнергии в определенные периоды суток, в результате фактическое напряжение не будет «проседать» ниже допустимых норм.
Уменьшить коммерческие затраты можно следующим образом:
- регулярный поиск несанкционированных подключений;
- создание или расширение подразделений, осуществляющих контроль;
- проверка показаний;
- автоматизация сбора и обработки данных.
Методика и пример расчета потерь электроэнергии
На практике применяют следующие методики для определения потерь:
- проведение оперативных вычислений;
- суточный критерий;
- вычисление средних нагрузок;
- анализ наибольших потерь передаваемой мощности в разрезе суток-часов;
- обращение к обобщенным данным.
Полную информацию по каждой из представленных выше методик, можно найти в нормативных документах.
В завершении приведем пример вычисления затрат в силовом трансформаторе TM 630-6-0,4. Формула для расчета и ее описание приведены ниже, она подходит для большинства видов подобных устройств.
Расчет потерь в силовом трансформаторе
Для понимания процесса следует ознакомиться с основными характеристиками TM 630-6-0,4.
Параметры TM 630/6/0,4
Теперь переходим к расчету.
Итоги расчета
Источник
Лекция № 7. Потери мощности и электроэнергии в элементах сети
Потери мощности и электроэнергии в элементах сети
1. Потери мощности в элементах сети.
2. Расчет потерь мощности в линиях электропередач.
3. Расчет потерь мощности в ЛЕП с равномерно распределенной нагрузкой.
4. Расчет потерь мощности в трансформаторах.
5. Приведенные и расчетные нагрузки потребителей.
6. Расчет потерь электроэнергии.
7. Мероприятия по снижению потерь мощности.
Потери мощности в элементах сети
Для количественной характеристики работы элементов электрической сети рассматриваются ее рабочие режимы. Рабочий режим – это установившееся электрическое состояние, которое характеризуется значениями токов, напряжений, активной, реактивной и полной мощностей.
Основной целью расчета режимов является определение этих параметров, как для проверки допустимости режимов, так и для обеспечения экономичности работы элементов сетей.
Определение значений токов в элементах сети и напряжений в ее узлах начинается с построения картины распределения полной мощности по элементу, т. е. с определения мощностей в начале и конце каждого элемента. Такую картину называют потокораспределением.
Рассчитывая мощности в начале и в конце элемента электрической сети, учитывают потери мощности в сопротивлениях элемента и влияние его проводимостей.
Расчет потерь мощности в линиях электропередач
Потери активной мощности на участке ЛЕП (см. рис. 7.1) обусловлены активным сопротивлением проводов и кабелей, а также несовершенством их изоляции. Мощность, теряемая в активных сопротивлениях трехфазной ЛЕП и расходуемая на ее нагрев, определяется по формуле:
где полный, активный и реактивный токи в ЛЕП;
P, Q, S – активная, реактивная и полная мощности в начале или конце ЛЕП;
U – линейное напряжение в начале или конце ЛЕП;
R – активное сопротивление одной фазы ЛЕП.
Потери активной мощности в проводимостях ЛЕП обусловлены несовершенством изоляции. В воздушных ЛЕП – появлением короны и, в очень незначительной степени, утечкой тока по изоляторам. В кабельных ЛЕП – появлением тока проводимости а его абсорбции. Рассчитываются потери по формуле:
где U – линейное напряжение в начале или конце ЛЕП;
G – активная проводимость ЛЕП.
При проектировании воздушных ЛЕП потери мощности на корону стремятся свести к нулю, выбирая такой диаметр провода, когда возможность возникновения короны практически отсутствует.
Потери реактивной мощности на участке ЛЕП обусловлены индуктивными сопротивлениями проводов и кабелей. Реактивная мощность, теряемая в трехфазной ЛЕП, рассчитывается аналогично мощности, теряемой в активных сопротивлениях:
Генерируемая емкостной проводимостью зарядная мощность ЛЕП рассчитывается по формуле:
где U – линейное напряжение в начале или конце ЛЕП;
B – реактивная проводимость ЛЕП.
Зарядная мощность уменьшает реактивную нагрузку сети и тем самым снижает потери мощности в ней.
Расчет потерь мощности в ЛЕП с равномерно распределенной нагрузкой
В линиях местных сетей ( ) потребители одинаковой мощности могут располагаться на одинаковом расстоянии друг от друга (например, источники света). Такие ЛЕП называются линиями с равномерно распределенной нагрузкой (см. рис. 7.2).
В равномерно нагруженной линии трехфазного переменного тока длиной L с суммарной токовой нагрузкой I плотность тока на единицу длины составит I/L. При погонном активном сопротивлении r0 потери активной мощности составят:
Если бы нагрузка была сосредоточена в конце, то потери мощности определялись бы как:
Сравнивая приведенные выражения, видим, что потери мощности в линии с равномерно распределенной нагрузкой в 3 раза меньше.
Расчет потерь мощности в трансформаторах
Потери активной и реактивной мощности в трансформаторах и автотрансформаторах разделяются на потери в стали и потери в меди (нагрузочные потери). Потери в стали – это потери в проводимостях трансформаторов. Они зависят от приложенного напряжения. Нагрузочные потери – это потери в сопротивлениях трансформаторов. Они зависят от тока нагрузки.
Потери активной мощности в стали трансформаторов – это потери на перемагничивание и вихревые токи. Определяются потерями холостого хода трансформатора , которые приводятся в его паспортных данных.
Потери реактивной мощности в стали определяются по току холостого хода трансформатора, значение которого в процентах приводится в его паспортных данных:
Потери мощности в обмотках трансформатора можно определить двумя путями:
· по параметрам схемы замещения;
· по паспортным данным трансформатора.
Потери мощности по параметрам схемы замещения определяются по тем же формулам, что и для ЛЕП:
где S – мощность нагрузки;
U – линейное напряжение на вторичной стороне трансформатора.
Для трехобмоточного трансформатора или автотрансформатора потери в меди определяются как сумма потерь мощности каждой из обмоток.
Получим выражения для определения потерь мощности по паспортным данным двухобмоточного трансформатора.
Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей
Потери короткого замыкания, приведенные в паспортных данных, определены при номинальном токе трансформатора
При любой другой нагрузке потери в меди трансформатора равны
Разделив выражение (7.1) на (7.2), получим
Если в выражение для расчета , подставить выражение для определения реактивного сопротивления трансформатора, то получим:
Таким образом, полные потери мощности в двухобмоточном трансформаторе равны:
Если на подстанции с суммарной нагрузкой S работает параллельно n одинаковых трансформаторов, то их эквивалентные сопротивления в n раз меньше, а проводимости в n раз больше. Тогда,
Для n параллельно работающих одинаковых трехобмоточных трансформаторов (автотрансформаторов) потери мощности рассчитываются по формулам:
где Sв, Sс, Sн – соответственно мощности, проходящие через обмотки высшего, среднего и низшего напряжений трансформатора.
Приведенные и расчетные нагрузки потребителей
Расчетная схема замещения участка сети представляет собой довольно сложную конфигурацию, если учитывать полную схему замещения ЛЕП и трансформаторов. Для упрощения расчетных схем сетей с номинальным напряжением до 220 кВ включительно вводят понятие “приведенных”, “расчетных” нагрузок.
Приведенная к стороне высшего напряжения нагрузка потребительской ПС представляет собой сумму заданных мощностей нагрузок на шинах низшего и среднего напряжений и потерь мощности в сопротивлениях и проводимостях трансформаторов. Приведенная к стороне высшего напряжения нагрузка ЭС представляет собой сумму мощностей генераторов за вычетом нагрузки местного района и потерь мощности в сопротивлениях и проводимостях трансформаторов.
Расчетная нагрузкка ПС или ЭС определяется как алгебраическая сумма приведенной нагрузки и половин зарядных мощностей ЛЕП, присоединенных к шинам высшего напряжения ПС или ЭС.
Зарядные мощности определяются до расчета режима по номинальному, а не реальному напряжению, что вносит вполне допустимую погрешность в расчет.
Возможность упрощения расчетной схемы при использовании понятий “при-веденных” и “расчетных” нагрузок показано на рис. 7.3:
Расчет потерь электроэнергии
При передаче электроэнергии часть ее расходуется на нагрев, создание электромагнитных полей и другие эффекты. Этот расход принято называть потерями. В электроэнергетике термин “потери” имеет специфическое значение. Если в дру-гих производствах потери связаны с браком продукции, то потери электроэнергии – это технологический расход на ее передачу.
Величина потерь электроэнергии зависит от характера изменения нагрузки в рассматриваемый период времени. Например, в ЛЕП, работающей с неизменной нагрузкой, потери электроэнергии за время t рассчитываются следующим образом:
где суммарные потери активной мощности в сопротивлении и проводимости ЛЕП.
Если нагрузка меняется, то потери электроэнергии можно рассчитать различными способами. В зависимости от используемой математической модели методы делятся на две групп:
Наиболее точным из детерминированных методов является метод расчета потерь электроэнергии по графику нагрузок для каждого потребителя.
Предположим, что нагрузка потребителя в году менялась по следующему графику (см. рис. 7.4). Тогда,
Интеграл – это фактически площадь, ограниченная графиком изменения квадрата тока. Таким образом, потери активной электроэнергии пропорциональны площади квадратичного годового графика нагрузки.
Так как напряжение на шинах электроприемника меняется незначительно, то его значение можно считать неизменным. Заменяя интеграл суммой площадей прямоугольников с шагом Δti, получим:
Потери электроэнергии в трансформаторах при заданном графике нагрузки при использовании его паспортных данных рассчитываются по формулам:
· для трехобмоточных трансформаторов (автотрансформаторов)
Достоинство метода – высокая точность расчета. Недостаток – большое количество вычислений.
Графики нагрузок не всегда известны. В этом случае потери электроэнергии можно вычислить другим детерминированным методом – через τм. Метод основан на двух допущениях:
· максимальные потери в электрической сети наблюдаются в период максимума нагрузки в энергосистемы (утренний максимум с 9 до 11 часов; вечерний – с 17 до 21 часа);
· графики активной и реактивной мощности подобны, т. е. график реактивной мощности пересчитан из графика активной мощности.
Время максимальных потерь τм – это время, в течении которого при работе потребителя с максимальной нагрузкой из сети потребляется такое же количество электроэнергии, что и при работе по реальному графику нагрузки. Исходя из определения, запишем:
Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей
где соответственно время максимальных потерь для активной и реактивной нагрузок.
На практике эти значения усредняют и заменяют общим – τм. Тогда,
Для типовых графиков нагрузки величина τм определяется по известной величине Tм:
В соответствии с этим методом потери электроэнергии в элементах сети рассчитываются по формулам:
· в линии электропередач
· в двухобмоточных трансформаторах
· в трехобмоточных трансформаторах (автотрансформаторах)
Величина τмв рассчитывается по формуле (7.3) по величине Tмв, значение которой определяется как средневзвешенное:
Аналогично определяется величина τм для ЛЕП, питающей несколько потребителей.
Мероприятия по снижению потерь мощности
Потери мощности и электроэнергии достигают значительных величин и являются одним из основных фактов, влияющих на экономичность сетей. Их величина регламентируется постановлениями Национального комитета по регулированию электроэнергии (НКРЭ) в сетях напряжением до 35 кВ и в сетях напряжениям 35 кВ и выше.
Большая часть потерь электроэнергии (60 – 70%) приходится на сети напряжением 6 – 10 кВ. Поэтому перечисленные ниже мероприятия относятся к сетям этих напряжений и к электроприемникам:
· применение более высокой ступени напряжения (10 кВ вместо 6 кВ);
· повышение уровня напряжения в сети путем применения устройств регулирования напряжения;
· регулирование потоков активной и реактивной мощностей в отдельных звеньях сети;
· применение рациональных схем питания потребителей, которые позволяют осуществлять более экономичную загрузку ЛЕП и трансформаторов;
· рационализация энергохозяйств предприятий – улучшение cosφ, правильный выбор мощности и загрузка электродвигателей.
Источник
Сравнение потерь в однофазной и трехфазной линиях при одинаковом токе. Потеря мощности в проводах однофазной линии передачи равна в трехфазной трехпроводной линии передачи потеря мощности будет в 1,5 раза больше, если ток в проводах будет тем же самым и если неизменным остается сечение провода.
Действительно, потеря мощности для такой трехфазной равномерно нагруженной линии, очевидно, будет равна так как в каждом из проводов потеря мощности будет определяться законом Джоуля — Ленца.
Однако при трехфазном токе общая передаваемая мощность будет в 1,732 раза больше, если напряжения между проводами и токи в проводах в случае однофазной и трехфазной линий будут одинаковы.
Сравнение потерь в однофазной и трехфазной линиях при одинаковой передаваемой мощности. Если же, не изменяя напряжения, довести мощность однофазной линии до мощности трехфазной линии, то ток в однофазной линии должен быть увеличен в 1,732 раза.
Потери в проводах при этом возрастут [формула (Б)] в 3 раза, т. е. будут в 2 раза больше потерь в трехфазной линии.
Рис. 7.10. Однофазная передача к трем лампам
Рис. 7.11. Трехфазная передача. Следует обратить внимание на то, что здесь нагрузка соединена треугольником
Пример. Определить потерю мощности в медных проводах, имеющих сечение 4 мм2, по которым на расстояние 100 м (длина линии) передается энергия, необходимая для питания трех 500-ваттных ламп при напряжении на лампах 120 В.
Предположим сначала, что энергия передается однофазным переменным током (рис. 7.10).
Общая мощность ламп напряжение , следовательно, ток, идущий по проводам, будет равен
Сопротивление каждого из проводов определим по формуле
(полагая удельное сопротивление ).
Мощность, теряемая в проводах, при этом
Предположим теперь, что согласно, схеме, представленной на рис. 7.11, передача энергии к тем же трем лампам производится трехфазным током по трехпроводной линии при помощи проводов того же сечения. –
В этом случае мощность Р, ток I (линейный) и напряжение U (линейное, равное напряжению в лампах) будут связаны уравнением
Следовательно, при той же. мощности Р=1500 Вт и при том же напряжении находим
Сопротивление проводов нам известно: для каждого провода
А так как потеря мощности теперь происходит в трех проводах, то находим, что общая потеря мощности составляет
Таким образом, при передаче трехфазным током потеря мощности будет в 2 раза меньше, чем при передаче однофазным током.
Преимущества трехфазных систем. Из рассмотренных примеров достаточно отчетливо видим преимущества трехфазного тока при передаче электрической энергии по проводам. Но самым существенным достоинством трехфазных систем является их удобство для устройства электрических двигателей.