Как найти точечные оценки генеральной совокупности

Пусть
из генеральной совокупности в результате
n
испытаний над количественным признаком
X
извлечена выборка объемом n:
варианты x1,
… , xr
и
их частоты n1,
… , nr.

Точечной
называют
оценку, которая определяется одним
числом. Точечные оценки обычно используют
в тех случаях, когда число наблюдений
велико.

Выборочной
средней

xв
называют среднее арифметическое значение
вариант выборки. Если значения вариант
x1,
x2,
… , xr
имеют
соответственно частоты n1,
n2,
… , nr,
то

.
(5)

Выборочной
дисперсией
Dв
называют среднее арифметическое
квадратов отклонений вариант xi
от их среднего значения xв,
т.е.

.
(6)

Выборочным
средним квадратическим отклонением σ
в
называют
квадратный корень из выборочной дисперсии
Dв

.
(7)

Исправленную
(несмещенную оценку) дисперсию
s2
выборки получают по формуле

.
(8)

Аналогично
вводится исправленное
среднее квадратическое отклонение
s

.
(9)

3. Интервальные оценки параметров распределения выборки

Интервальной
называют оценку, которая задается в
виде интервала. Интервальные оценки
удобно использовать в тех случаях, когда
число наблюдений n
относительно невелико.

Пусть
для неизвестного параметра θ количественного
признака X
генеральной совокупности статистическими
методами найдено значение θ*. Зададимся
точностью δ, т.е. | θ – θ* | < δ.

Надежностью
оценки
неизвестного параметра θ по вычисленному
статистическими методами значению θ*
называют вероятность γ, с которой
выполняется неравенство| θ – θ* | < δ,
при этом δ называется
точностью оценки
.
В статистике обычно задаются надежностью
γ и определяют точность δ.

Доверительным
интервалом

для параметра θ называют интервал (θ* –
δ, θ* + δ), который покрывает неизвестный
параметр θ с вероятностью γ:

P[θ*
– δ <X
< θ* + δ] = γ.

Пусть
количественный признак X
генеральной совокупности распределен
нормально, причем среднее квадратическое
отклонение σ неизвестно. Требуется
оценить неизвестное математическое
ожидание a
по результатам выборки с заданной
надежностью γ.

Доверительный
интервал

с
уровнем надежности γ для математического
ожидания

a
признака
X,
распределенного нормально, при неизвестном
среднем квадратическом отклонении
определяется как

,
(10)

где
xв
– выборочное среднее; s
– исправленное среднее квадратическое
отклонение выборки; n
– объем выборки. Точность оценки δ в
этом случае
.
Значениеtγ
= t(γ,n)
можно найти из справочной таблицы
”Таблица значений tγ
= t(γ,n)”
для распределения Стьюдента.

Доверительный
интервал

с
уровнем надежности γ для

среднего
квадратического отклонения

σ признака X,
распределенного нормально, определяется
как

,
(11)

где
s
– исправленное среднее квадратическое
отклонение выборки; n
– объем выборки. Значение q
= q(γ,n)
можно найти из справочной таблицы
”Таблица значений q
= q(γ,n)”
для распределения χ2.

В
случае, когда q
>1 доверительный интервал имеет вид

. (11′)

4. Статистическая проверка статистических
гипотез

Статистической
называют гипотезу (предположение) о
виде неизвестного распределения или о
параметрах известного распределения.
Основной
или нулевой гипотезой
H0
называют выдвинутую гипотезу о неизвестном
распределении, вместе с основной H0
выдвигается
и конкурирующая
(альтернативная) гипотеза

H1,
противоречащая
основной.

Основной
принцип проверки статистических

гипотез состоит в следующем:

в
зависимости от вида гипотезы и характера
неизвестного распределения вводится
функция K,
называемая критерием,
по значениям ее будет приниматься
решение о принятии или отклонении
основной гипотезы H0.
Вводится также уровень
значимости

α как вероятность того, что будет
отвергнута верная нулевая гипотеза и
принята неверная гипотеза H1.

Областью
принятия гипотезы

H0
называют
те значения критерия K,
при которых основная гипотеза H0
принимается, критической
областью

– отвергается. Для каждой выборки и
конкретного вида критерия K
по специальным таблицам находятся
значения kкр,
называемые критическими
точками;

критические точки отделяют область
принятия гипотезы от критической
области. Правосторонней
называют критическую область, где K
> kкр,
левосторонней
K
< kкр
и
двусторонней

(и симметричной) | K|
> kкр.

Пусть
из генеральной совокупности в результате
n
испытаний над количественным признаком
X
извлечена выборка объемом n:
равноотстоящие с шагом h
варианты x1,
… , xr
и
их частоты n1,
… , nr.
Для нее подсчитаны по формулам (5-9)
выборочное среднее xв
и выборочное среднее квадратическое
отклонение σв.

Для
проверки гипотезы
о нормальном распределении

генеральной совокупности c
уровнем значимости α используется
критерий
χ
2
Пирсона:

(12)

Критическое
значение χ2кр
= χ2
(α,k)
для этого критерия находится из справочной
таблицы “Критические точки распределения
χ2”.
Здесь k
= r
– 3. Если вычисленное по результатам
наблюдений по формуле (12) значение
критерия χ2набл
больше χ2кр,
основная гипотеза отвергается, если
меньше – нет оснований отвергнуть
основную гипотезу.

Если
варианты x1,
x2,
… , xr
не
являются равноотстоящими или число их
сравнительно велико, удобно сгруппировать
варианты в отдельные интервалы ( не
обязательно равноотстоящие ) [x1*;x2*),
[x2*;x3*),
…, [xm-1*;xm*).
Каждому интервалу назначается
представительное значение, равное
середине интервала xi.ср*
= (xi*
+ xi-1*)/2
и частота ni*,
равная сумме частот, попавших на интервал.
В соответствии с критерием Пирсона,
частоты ni*,
попавшие на интервалы [xi*
; xi-1*),
сравниваются с теоретическими частотами
ni‘,
вычисленными для соответствующих
интервалов нормальной случайной величины
Z
с нулевым математическим ожиданием и
единичным средним квадратическим
отклонением (Z
принадлежит N(0,1)).

,
(13)

ni
= nPi,
где n
– обьем выборки;

Pi
= Ф(zi+1)
– Ф(zi),
вероятности попадания X
на интервал (xi*,xi+1*)
или

Z
на (zi,zi+1);

zi
= (xi
ср
*–xв*)
/ σ*; i
= 2,3,..,m-1;
крайние интервалы открываем z1
= –∞,

zm
= ∞, а Ф(zi)
– значение функции Лапласа.

Критическое
значение χ2кр
= χ2
(α,k)
для этого критерия находится из справочной
таблицы “Критические точки распределения
χ2”.
Здесь k
= m
– 3. Если вычисленное по результатам
наблюдений по формуле (13) значение
критерия χ2набл
меньше χ2кр,
нет оснований отвергнуть основную
гипотезу, если больше – основная гипотеза
не принимается.

Для
проверки гипотез
о дисперсии σ
2
генеральной совокупности

с нормальным законом распределения при
заданном уровне значимости α используется
критерий

,
(14)

где
s2
– исправленная дисперсия выборки; n
– объем выборки; σ02
– гипотетическое значение дисперсии.

А)
Пусть выдвинута нулевая гипотеза H0:
σ2
=
σ02
о
равенстве неизвестной генеральной
дисперсии σ2
предполагаемому значению σ02
при конкурирующей гипотезе H1:
σ2

σ02.
Для проверки этой гипотезы по результатам
выборки вычисляется значение критерия
(14) χ2выб.
Затем по таблице «Критические точки
распределения χ2»,
по заданному уровню значимости α и числу
степеней свободы k
= n
– 1 находятся левое критическое значение
χ2лев.кр(1
– α/2;k)
и правое критическое значение
χ2прав.кр(α/2;k).
Если при этом χ2лев.кр
< χ2выб
< χ2прав.кр,
нет
оснований отвергнуть основную гипотезу,
конкурирующая – отвергается. В противном
случае принимается конкурирующая
гипотеза и отвергается основная.

Б)
Пусть теперь выдвинута нулевая гипотеза
H0:
σ2
=
σ02
о
равенстве неизвестной генеральной
дисперсии σ2
предполагаемому значению σ02
при конкурирующей гипотезе H1:
σ2
>
σ02.
Для проверки этой гипотезы по результатам
выборки вычисляется значение критерия
(14) χ2выб.
Затем по таблице «Критические точки
распределения χ2»,
по заданному уровню значимости α и числу
степеней свободы k
= n
– 1 находится критическое значение
χ2кр(
α;k).
Если при этом χ2выб
< χ2кр,
нет оснований отвергнуть основную
гипотезу, а конкурирующая – отвергается.

В)
Пусть теперь выдвинута нулевая гипотеза
H0:
σ2
=
σ02
о
равенстве неизвестной генеральной
дисперсии σ2
предполагаемому значению σ02
при конкурирующей гипотезе H1:
σ2
<
σ02.
Для проверки этой гипотезы по результатам
выборки вычисляется значение критерия
(14) χ2выб.
Затем по таблице «Критические точки
распределения χ2»,
по заданному уровню значимости α и числу
степеней свободы k
= n
– 1 находится критическое значение
χ2кр(
1- α;k).
Если при этом χ2выб
> χ2кр,
нет оснований отвергнуть основную
гипотезу, конкурирующая – отвергается.

Для
проверки гипотез
неизвестной средней
a
генеральной совокупности

с
нормальным законом распределения

с неизвестной дисперсией при заданном
уровне значимости α используется
критерий Стьюдента

,
(15)

где
xвыб
– выборочное среднее;
a0

гипотетическое значение средней; n
– объем выборки; s
– исправленное среднее квадратическое
отклонение.

А)
Пусть выдвинута нулевая гипотеза H0:
a

=
a0
о
равенстве неизвестной генеральной
средней a
предполагаемому значению a0
при конкурирующей гипотезе H1:
a

a0
.
Для проверки этой гипотезы по результатам
выборки вычисляется значение критерия
(15) Tвыб.
Затем по таблице «Критические точки
распределения Стьюдента», по заданному
уровню значимости α и числу степеней
свободы k
= n
– 1 находится двустороннее критическое
значение Tдвустор.кр(α;k).
Если при этом | Tвыб
| <
Tдвустор.кр,
нет оснований отвергнуть основную
гипотезу, а конкурирующая – отвергается.

Б)
Пусть теперь выдвинута нулевая гипотеза
H0:
a
=
a0
о
равенстве неизвестной генеральной
средней a
предполагаемому значению a0
при конкурирующей гипотезе H1:
a
>
a0
.
Для проверки этой гипотезы по результатам
выборки вычисляется значение критерия
(15) Tвыб.
Затем по таблице «Критические точки
распределения Стьюдента», по заданному
уровню значимости α и числу степеней
свободы k
= n
– 1 находится критическое значение
Tправостор.кр(α;k).
Если при этом Tвыб
< Tправостор.кр,
нет оснований отвергнуть основную
гипотезу
,
а конкурирующая – отвергается.

В)
Пусть теперь выдвинута нулевая гипотеза
H0:
a
=
a0
о
равенстве неизвестной генеральной
средней a
предполагаемому значению a0
при конкурирующей гипотезе H1:
a

< a0
.
Для проверки этой гипотезы по результатам
выборки вычисляется значение критерия
(15) Tвыб.
Затем по таблице «Критические точки
распределения Стьюдента», по заданному
уровню значимости α и числу степеней
свободы k
= n
– 1 находится критическое значение
Tправостор.кр(α;k)
и полагают Tлевостор.кр
= –Tправостор.кр.
Если при этом Tвыб
> Tлевостор.кр,
нет оснований отвергнуть основную
гипотезу, а конкурирующая – отвергается.

Содержание:

  1. Точечные статистические оценки параметров генеральной совокупности 
  2. Методы определения точечных статистических оценок
  3. Законы распределения вероятностей для 
  4. Интервальные статистические оценки для параметров генеральной совокупности 
  5. Построение доверчивого интервала для  при известном значении  с заданной надежностью  
  6. Построение доверительного интервала для  при неизвестном значении  из заданной надежности 
  7. Построение доверительных интервалов с заданной надежностью  для 
  8. Построение доверительного интервала для  генеральной совокупности с заданной надежностью 
  9. Построение доверительного интервала для  с помощью неравенства Чебишова с заданной надежностью 

Информация, которую получили на основе обработки выборки про признак генеральной совокупности, всегда содержит определенные погрешности, поскольку выборка содержит только незначительную часть от нее Статистические оценки то есть объем выборки значительно меньше объема генеральной совокупности. 

Потому, следует организовать выборку так, чтобы эта информация была более полной (выборка может быть репрезентабельной) и обеспечивала с наибольшей степенью доверия о параметрах генеральной совокупности ил закон распределение ее признака. 

Параметры генеральной совокупности Статистические оценки являются величинами постоянными, но их числовые значения неизвестные. Эти параметры оцениваются параметрами выборки:  Статистические оценки которые получаются при обработке выборки. Они являются величинами непредсказуемыми, то есть случайными. Схематично это можно показать так (рис. 115). 

Статистические оценки

Тут через  Статистические оценки обозначен оценочный параметр генеральной совокупности, а через  Статистические оценки  – его статистическую оценку, Которую называют еще статистикой. При этом Статистические оценки  а Статистические оценки – случайная величина, что имеет полный закон распределения вероятностей. заметим, что для реализации выборки каждую ее варианту рассматривают как случайную величину, что имеет закон распределения вероятностей признака генеральной совокупности с соответственными числовыми характеристиками: 

Статистические оценки

Точечные статистические оценки параметров генеральной совокупности 

Статистическая оценка Статистические оценки , которая обозначается одном числом, называется точечной. Возьмем во внимание, что Статистические оценки является случайной величиной, точечная статистическая оценка может быть смещенной или несмещенной: когда математическое надежда этой оценки точно равны оценочному параметру Статистические оценки а именно: 

Статистические оценки

то Статистические оценки называется несмещенной; в противоположном случае, то есть когда 

Статистические оценки 

точечная статистическая оценка  Статистические оценки   называется смещенной относительно параметра генеральной совокупности Статистические оценки

 Разница 

Статистические оценки

называется смещением статистической оценки Статистические оценки

Оценочный параметр может иметь несколько точечных несмещенных статистических оценок, что можно изобразить так (рис. 116):

Статистические оценки

Например, пусть Статистические оценки которая имеет две несмещенные точечные статистические оценки – Статистические оценки  и Статистические оценки Тогда плотность вероятностей для Статистические оценки Статистические оценки  имеют такой вид (рис. 117): 

Статистические оценки

Из графиков плотности видим, что оценка  Статистические оценки сравнено с оценкой Статистические оценки имеет то преимущество, что около параметра Статистические оценкиСтатистические оценки  Отсюда получается,  что оценка Статистические оценки чаще получает значение в этой области, чем оценка Статистические оценки

Но на “хвостах” распределений имеет другую картину: большие отклонения от Статистические оценки будут наблюдаться для статистической оценки Статистические оценки, чаще, чем для Статистические оценки Потому, сравнивая дисперсии статистических Статистические оценки как меру рассеивания, видим, что Статистические оценки  имеет меньшую дисперсию, чем оценка Статистические оценки

Точечная статистическая оценка называется эффективной, когда при заданном объеме выборки она имеет минимальную дисперсию. Следует, оценка Статистические оценки будет несмещенной и эффективной. 

Точечная статистическая оценка называется основой, если в случае неограниченного увеличения объема выборки Статистические оценки приближается к оценке параметра Статистические оценки, а именно: 

Статистические оценки

Методы определения точечных статистических оценок

Существует три метода определения точечных статистических оценок для параметров генеральной совокупности. 

Метод аналогий. Этот метод основывается на том, что для параметров генеральной совокупности выбирают такие же параметры выборки, то есть для оценки Статистические оценки выбирают аналогичные статистики – Статистические оценки

Метод наименьших квадратов. Согласно с этим методом статистические оценки обозначаются с условием минимизации суммы квадратов отклонений вариант выборки от статистической оценки Статистические оценки

Итак, используя метод наименьших квадратов, можно, например, обозначить статистическую оценку для Статистические оценки Для этого воспользуемся функцией Статистические оценки  Используя условие экстремума, получим: 

Статистические оценки

Отсюда, для Статистические оценки точечной статистической оценкой будет Статистические оценки – выборочная средняя. 

Метод максимальной правдоподобности. Этот метод занимает центральное место в теории статистической оценки параметров Статистические оценки На него в свое время обратил внимание К. Гаусс, а  разработал его Р. Фишер. Этот метод рассмотрим подробнее. 

Пусть признак генеральной совокупности Статистические оценки  обозначается только одном параметром Статистические оценки  и имеет плотность вероятности Статистические оценки  В случае реализации выборки с вариантами Статистические оценки  плотность вероятности выборки будет такой: 

Статистические оценки

В этом варианте рассматриваются как независимые случайные величины, которые имеют один и тот же закон распределения, что ее признак генеральной совокупности Статистические оценки

Суть этого метода состоит в том, что фиксируя значение вариант Статистические оценки,  обозначают такие значение параметра  Статистические оценки, при котором функция  Статистические оценки максимизуется. Она называется функцией максимальной правдоподобности и обозначается так: Статистические оценки

Например, когда признак генеральной совокупности  Статистические оценки имеет нормальный закон распределения, то функция максимальной правдоподобности приобретет такой вид: 

Статистические оценки

При этом статистические оценки Статистические оценки  выбирают и ее значения, по которых заданная выборка будет верной, то есть функция Статистические оценки  достигает максимума. 

На практике удобно от функции Статистические оценки перейти к ее логарифму, а именно: 

Статистические оценки

согласно с необходимым условием экстремума для этой функции получим: 

Статистические оценки

Из первого уравнения системы  Статистические оценки  получим: 

Статистические оценки

из уравнение системы Статистические оценки  получим: 

Статистические оценки

Следует, для Статистические оценки точечной функции статистической оценкой будет  Статистические оценки  для  Статистические оценки

Свойства Статистические оценки Исправленная дисперсия, исправленное среднее квадратичное отклонение. Точечной несмещенной статистической оценкой для Статистические оценки  будет Статистические оценки

И на самом деле, 

Статистические оценки  учитывая то. что Статистические оценки Статистические оценки

Следует, Статистические оценки

Проверим на несмещенность статистической оценки Статистические оценки

Статистические оценки

Статистические оценки

Статистические оценки

Таким образом, получим Статистические оценки

Следует, Статистические оценки будет точечной смещенной статистической оценкой для Статистические оценки,  где  Статистические оценки – коэффициент смещения, который уменьшается с увеличением объема выборки  Статистические оценки

Когда Статистические оценки умножить на Статистические оценки  то получим Статистические оценки

Тогда 

Статистические оценки

Следует, Статистические оценки будут точеной несмещенной статистической оценкой для Статистические оценки Ее называли исправленной дисперсией и обозначили через  Статистические оценки

Отсюда точечной несмещенной статистической оценкой для Статистические оценки будет исправленная дисперсия  Статистические оценки  или 

Статистические оценки

Величину 

Статистические оценки

называют исправленным средним квадратичным отклонением.

Исправленное среднее квадратичное отклонение, следует подчеркнуть, будет смещенной точечной статистической оценкой для    Статистические оценки  поскольку 

Статистические оценки

где Статистические оценки является ступенью свободы;

Статистические оценки  – коэффициенты смещения. 

Пример. 200 однотипных деталей были отданы на шлифование. Результаты измерения приведены как дискретное статистическое распределение, подан в табличной форме: 

Статистические оценки

Найти точечные смещенные статистические оценки для Статистические оценки Статистические оценки

Решение. Поскольку точечной несмещенной оценки для Статистические оценки  будет Статистические оценки  то вычислим 

Статистические оценки

Для обозначение точечной несмещенной статистической оценки для Статистические оценки  вычислим Статистические оценки

Статистические оценки

Статистические оценки

тогда точечная несмещенная статистическая оценка для Статистические оценки равно: 

Статистические оценки

Пример. Граничная нагрузка на стальной болт Статистические оценки  что измерялась в лабораторных условий, задано как интервальное статистическое распределение: 

Статистические оценки

Обозначить точечные несмещенные статистические оценки для Статистические оценки

Решение. Для обозначения точечных несмещенных статистических распределений к дискретному, который приобретает такой вид: 

Статистические оценки

Вычислим Статистические оценки

Статистические оценки

Следует, точечная несмещенная статистическая оценка для Статистические оценки Статистические оценки

Для обозначения Статистические оценки  вычислим Статистические оценки

Статистические оценки

Отсюда точечная несмещенная статистическая оценка для Статистические оценки  будет Статистические оценки

Законы распределения вероятностей для Статистические оценки

Как уже обозначалось, числовые характеристики выборки являются случайными величинами, что имеют определенные законы распределения вероятностей. Так,  Статистические оценки (выборочная средняя) на основании центральной граничной теоремы теории вероятностей (теоремы Ляпунова) имеем нормальный закон распределения с числовыми характеристиками 

Статистические оценки

следует, случайная величина  Статистические оценки имеет закон распределения Статистические оценки

Чтобы обозначить закон распределения для Статистические оценки необходимо выявить связь между Статистические оценки и распределением Статистические оценки

Пусть признак генеральной совокупности  Статистические оценки  имеет нормальный закон распределения Статистические оценки. При реализации выборки каждую из вариант Статистические оценки  рассматривают как случайную величину. то также имеет закон распределения Статистические оценки. При этом вариант выборки является независимым, то есть Статистические оценки  а случайная величина Статистические оценки  соответственно имеет закон распределения Статистические оценки

Рассмотрим случай,  когда варианты выборки имеют частоты Статистические оценки тогда 

Статистические оценки 

Перейдем от случайных величин Статистические оценки к случайным величинам Статистические оценки которые линейно выражаются через Статистические оценки а именно:  

Статистические оценки

Поскольку случайные величины  Статистические оценки  будут линейными комбинациями случайных величин Статистические оценки то Статистические оценки тоже имеют нормальный закон распределения с числовыми характеристиками: 

Статистические оценки

Статистические оценки

Следует, случайные величины Статистические оценки имеют закон распределения Статистические оценки

Построим матрицу  Статистические оценки элементы которой будут коэффициенты при  Статистические оценки  в линейных зависимостях для Статистические оценки

Статистические оценки

Транспортируем матрицу Статистические оценки получим:

Статистические оценки

Если перемножить матрицы Статистические оценки и Статистические оценки то получим: 

Статистические оценки

где Статистические оценки  будет единичная матрица. 

Следует, случайные величины Статистические оценки обозначены ортогональными преобразованиями случайных величин Статистические оценки  В векторной – матричной форме это можно записать так: 

Из курса алгебры известно, что во время ортогональных преобразований вектора сохраняется его длина, то есть 

Статистические оценки

Тогда из формулы для Статистические оценки  получим: 

Статистические оценки

Поскольку Статистические оценки  далее вычислим: 

Статистические оценки

Следует, получим Статистические оценки

Когда поделим левую и правую часть  Статистические оценки  на Статистические оценки то получим, 

Статистические оценки

Поскольку Статистические оценки имеет закон распределения Статистические оценки  то Статистические оценки получим закон распределения Статистические оценки то есть нормированный нормальный закон. 

То случайная величина 

Статистические оценки

получим распределение Статистические оценки  из Статистические оценки  ступенями свободы. 

Отсюда получается, что случайная величина Статистические оценки  получим распределение Статистические оценки из  Статистические оценки ступенями свободы. 

Таким образом, приведена: случайная величина Статистические оценки тут символ Статистические оценки нужно читать “распределена как”; 

случайная величина Статистические оценки

случайная величина Статистические оценки

Интервальные статистические оценки для параметров генеральной совокупности 

Точечные статистические оценки Статистические оценки  являются случайными величинами, а потому приближенная замена Статистические оценки  на Статистические оценки часто приводит к существенным погрешностям, особенно когда объем выборки не большой. В этом случае используют интервальные статистические оценки.

Статистическая оценка, что обозначается двумя числами, концами интервалов, называется интервальной

Разница между статистической оценкой Статистические оценки и ее оценкой параметром Статистические оценки  взята с абсолютным значением, называется точностью оценки, а именно: 

Статистические оценки

где Статистические оценки  является точностью оценки. 

Поскольку Статистические оценки является случайной величиной, то и Статистические оценки будет случайной, потому неравенство Статистические оценки  справедливо с определенной вероятностью. 

Вероятность, с которой берется неравенство Статистические оценки, то есть 

Статистические оценки

называется надежностью

Равенство Статистические оценки можно записать так:

Статистические оценки

Интервал Статистические оценки что покрывает оценочный параметр Статистические оценки генеральной совокупности с заданной надежностью Статистические оценки называют доверчивым

Построение доверчивого интервала для Статистические оценки при известном значении Статистические оценки с заданной надежностью Статистические оценки 

Пусть признак Статистические оценки генеральной совокупностью имеет нормальный закон распределению. Построим доверительный интервал для Статистические оценки зная числовое значение среднего квадратичному отклонению генеральной совокупности  Статистические оценки   с заданной надежностью Статистические оценки Поскольку Статистические оценки как точечная несмещенная статистическая оценка для Статистические оценки  имеет нормальный закон распределения с числовыми характеристиками Статистические оценки  Статистические оценки то воспользовавшись Статистические оценки получим 

Статистические оценки

Случайная величина Статистические оценки имеет нормальный закон распределения с числовыми характеристиками 

Статистические оценки

Потому Статистические оценки  будет нормированный нормальный закон распределения Статистические оценки

Отсюда равенство Статистические оценки  можно записать, обозначив Статистические оценки так; 

Статистические оценки

или 

Статистические оценки

Согласно с формулой нормированного нормального закона 

Статистические оценки

для Статистические оценки она получает такой вид: 

Статистические оценки

Из равенства Статистические оценки  находим аргументы  Статистические оценки а именно: 

Статистические оценки

Аргумент  Статистические оценки находим значение функции Лапласа, которая равна Статистические оценки  по таблице (дополнение 2). 

Следует, доверительный интервал равен: 

Статистические оценки

что можно изобразить условно на рисунке 118. 

Статистические оценки

Величина  Статистические оценки  называется точностью оценки, или погрешностью выборки

Пример. Измеряя 40 случайно отобранных после изготовления деталей, нашли выборку средней, что равна 15 см. Из надежности  Статистические оценки построить доверительный интервал для средней величины всей партии деталей, если генеральная дисперсия равна Статистические оценки

 Решение. Для построенного доверчивого интервала необходимо найти: Статистические оценки

Из условия задачи имеем: Статистические оценки Статистические оценки Величина Статистические оценки вычисляется из уравнения

Статистические оценки

Статистические оценки {с таблицей значения функции Лапласа}. 

Найдем числовые значения концов доверчивого интервала: 

Статистические оценки

Таким образом, получим: Статистические оценки

Следует, с надежностью Статистические оценки  (99%  гарантии) оценочный параметр Статистические оценки  пребывает в середина интервала Статистические оценки

Пример. Имеем такие данные про размеры основных фондов (в млн руб.) на 30-ти случайно выбранных предприятий: 

Статистические оценки

построить интервальное статистическое распределение с длиной шага Статистические оценки млн рублей. 

С надежностью Статистические оценки найти доверительный интеграл для Статистические оценки если Статистические оценки млн рублей. 

Решение. Интервальное статистическое распределение будет таким: 

Статистические оценки

Для обозначение Статистические оценки необходимо построить дискретное статистическое распределение, что имеет такой вид: 

Статистические оценки

Тогда 

Статистические оценки

Статистические оценки  млн рублей. 

Для построения доверительного интервала с заданной надежностью Статистические оценки необходимо найти Статистические оценки

Статистические оценки

Вычислим концы интервала: 

Статистические оценки млн руб.

Статистические оценкимлн руб.

Следует, доверительный интервал для Статистические оценки будет Статистические оценки

Пример. Какое значение может получит надежность оценки Статистические оценки чтобы за объем выборки Статистические оценки погрешность ее не превышала Статистические оценки при Статистические оценки

Решение. Обозначим погрешность выборки 

Статистические оценки

Далее получим: 

Статистические оценки

как видим, надежность мала. 

Пример. Обозначить объем выборки Статистические оценки по которому погрешность Статистические оценки гарантируется с вероятностью Статистические оценки  если Статистические оценки

 Решение. По условию задачи Статистические оценки Поскольку Статистические оценки  то получим: Статистические оценки Величину Статистические оценки  находим из равенства Статистические оценки Тогда Статистические оценки

Построение доверительного интервала для Статистические оценки при неизвестном значении Статистические оценки из заданной надежности Статистические оценки

Для малых выборок, с какими сталкиваемся, исследуя разные признаки в техники или сельском хозяйстве, для оценки Статистические оценки  при неизвестном значении Статистические оценки невозможно воспользоваться нормальным законом распределения. Потому для построения доверительного интервала используется случайная величина. 

Статистические оценки

что имеет распределение Стьюдента с Статистические оценки ступенями свободы. 

Тогда Статистические оценки получает вид: 

Статистические оценки

поскольку Статистические оценки для распределения Стьюдента является функцией четной. 

Вычислив по данному статистическому распределению Статистические оценки Статистические оценки и обозначив по таблице распределения Стьюдента значения Статистические оценки построим доверительный интервал 

Статистические оценки

Тут Статистические оценки вычислим по заданной надежностью  Статистические оценки и числом степеней свободы Статистические оценки  по таблице (дополнение 3).

Пример. Случайно выбранная партия из двадцати примеров была испытана относительно срока безотказной работы каждого из них Статистические оценки Результаты испытаний приведено в виде дискретного статистического распределения: 

Статистические оценки

С надежностью Статистические оценки построить доверительный интервал для Статистические оценки (среднего времени безотказной работы прибора.)

Решение. Для построения доверительного интеграла необходимо найти среднее выборочное и исправленное среднее квадратичное отклонение. 

Вычислим Статистические оценки

Статистические оценки

следует, получили Статистические оценки часов. 

Обозначим Статистические оценки

Статистические оценки

следует, Статистические оценки

Исправленное среднее квадратичное отклонение равно: 

Статистические оценки часов.

По таблице значений Статистические оценки (дополнение 3) распределение Стьюдента по заданной надежностью Статистические оценки  и числом ступеней свободы Статистические оценки находим значение Статистические оценки

Вычислим концы доверительного интервала: 

Статистические оценки час.

Статистические оценки час. 

Следует, с надежностью Статистические оценки можно утверждать, что Статистические оценки  будет содержится в интервале 

Статистические оценки

При больших объемах выборки, а именно: Статистические оценки на основании центральной граничной теоремы теории вероятностей (теоремы Ляпунова) распределение Стьюдента приближается к нормальному закону. В этом случае Статистические оценки находиться по таблице значений функции Лапласа. 

Пример. В таблице приведены отклонения диаметров валиков, изготовленных на станке, от номинального размера: 

Статистические оценки

с надежностью Статистические оценки построить доверительный интервал для Статистические оценки

Решение. Для постройки доверительного интервала необходимо найти Статистические оценки

Для этого от интегрального статистического распределения, приведенного в условии задачи, необходимо перейти к дискретному, а именно: 

Статистические оценки

Вычислим Статистические оценки

Статистические оценки поскольку Статистические оценки

Статистические оценки

Следует, Статистические оценки

Обозначим Статистические оценки

Статистические оценки

Вычислим исправленное среднее квадратичное отклонение Статистические оценки

Статистические оценки

Учитывая  на большой Статистические оценки объем выборки можно считать, что распределение Стьюдента близкий к нормальному закону. Тогда по таблице значения функции Лапласа

Статистические оценки

Вычислим концы интервалов: 

Статистические оценки

Статистические оценки

Итак, доверчивый интервал для среднего значения отклонений будет таким: Статистические оценки

Отсюда с  надежностью Статистические оценки можно утверждать, чтоСтатистические оценки

Построение доверительных интервалов с заданной надежностью Статистические оценки для Статистические оценки

В случае, если признак Статистические оценки имеем нормальный закон распределения, для построения доверительного интервала с заданной надежностью Статистические оценки для Статистические оценки  используем случайную величину 

Статистические оценки

что имеет распределение Статистические оценки из Статистические оценки ступенями свободы. 

Поскольку случайные действия 

Статистические оценки и Статистические оценки

являются равновероятными, то есть их вероятности равны Статистические оценки получим: 

Статистические оценки

Подставляя в Статистические оценки Статистические оценки получим 

Статистические оценки

Следует, доверительный интервал для Статистические оценки получит вид: 

Статистические оценки

Тогда доверительный интервал для Статистические оценки получается из Статистические оценки и будет таким: 

Статистические оценки

Значения Статистические оценки находятся по таблице (дополнение 4) согласно с равенствами: 

Статистические оценки

где Статистические оценки

Пример. Проверена  партия однотипных телевизоров Статистические оценки на чувствительность к видео-программ  Статистические оценки данные проверки приведены как дискретное статистическое распределение: 

Статистические оценки

С надежностью Статистические оценки построить доверительные интервалы для Статистические оценки

Решение. Для построении доверительных интервалов  необходимо найти значения Статистические оценки

Вычислим значения Статистические оценки

Статистические оценки так как Статистические оценки

Статистические оценки

Вычислим Статистические оценки

Статистические оценки

Статистические оценки

Следует Статистические оценки

Исправленная дисперсия и исправленное среднее квадратичное отклонение равны:  

Статистические оценки

Поскольку Статистические оценки то согласно с Статистические оценки находим значения Статистические оценки а именно: 

Статистические оценки

По таблице (дополнение 4) находим: 

Статистические оценки

вычислим концы доверительного интервала для Статистические оценки

Статистические оценки

Статистические оценки

Следует, доверительный интеграл для Статистические оценки будет таким: 

Статистические оценки

Доверительный интервал для Статистические оценки станет

Статистические оценки

Доверительный интервал для Статистические оценки можно построить с заданной надежностью Статистические оценки взяв распределение Статистические оценки

Поскольку 

Статистические оценки

то равенство Статистические оценки можно записать так: 

Статистические оценки

или 

Статистические оценки

Обозначив Статистические оценки получим

Статистические оценки

чтобы найти Статистические оценки возьмем случайную величину 

Статистические оценки

что имеет распределение Статистические оценки

Учитывая то, что события

Статистические оценки и Статистические оценки

при Статистические оценки является равновероятными, получим: 

Статистические оценки

Если умножить все члены двойного неравенства Статистические оценкиСтатистические оценки на Статистические оценки то получим: 

Статистические оценки

Отсюда получим: 

Статистические оценки

Из уравнения Статистические оценки по заданной надежностью Статистические оценки и объемом выборки Статистические оценки находим по таблице (дополнение 5) значение величины Статистические оценки

Доверительный интервал будет таким: 

Статистические оценки

Пример. С надежностью Статистические оценки построить доверительный интервал вычислим значения Статистические оценки по таблице (дополнение 5). Статистические оценки

Обозначим концы интервала: 

Статистические оценки

Следует, доверительный интервал для Статистические оценки с надежностью Статистические оценки будет такой 

Статистические оценки

Построение доверительного интервала для Статистические оценки генеральной совокупности с заданной надежностью Статистические оценки

Как величина, полученная по результатам выборки, Статистические оценки является случайной и представляет собой точечную несмещенную статистическую оценку для Статистические оценки

Исправленное среднее квадратичное отклонение для  Статистические оценки

Статистические оценки

Для построения доверительного интервала для Статистические оценки используется случайная величина

Статистические оценки

что имеет нормированный нормальный закон распределения Статистические оценки 

Воспользовавшись Статистические оценки получим 

Статистические оценки

Следует. доверительный интервал для Статистические оценкибудет таким: 

Статистические оценки

где Статистические оценки находим из равенства 

Статистические оценки

по таблице значений функции Лапласа. 

Пример. Случайно выбранных студентов из потока университета были подвергнуты тестированию по математике и химии. Результаты этих тестирования преподнесено статистическим распределением, где Статистические оценки – оценки по математике, Статистические оценки – по химии. Ответы оценивались по десятибалльной системе: 

Статистические оценки

Необходимо: 

1) с надежностью Статистические оценки построить доверительный интервал для Статистические оценки  если Статистические оценки

2) с надежностью Статистические оценки построить доверительный интервал для Статистические оценки

Решение. Вычислим основные числовые характеристики признак Статистические оценки и Статистические оценки а также Статистические оценки Поскольку Статистические оценки получим: 

Статистические оценки

Статистические оценки

1. Построим доверительный интервал с надежностью Статистические оценки для Статистические оценки если Статистические оценки

Статистические оценки

нам известные значения Статистические оценки Значения  Статистические оценки вычисляем из уравнения  

Статистические оценки

где Статистические оценки находим по таблице значений функции Лапласа. 

Обозначим концы интервала: 

Статистические оценки

Следует, доверительный интервал для Статистические оценки будет таким: 

Статистические оценки

2. Построим доверительный интервал с надежностью Статистические оценки для Статистические оценки

Поскольку  Статистические оценки  нам не известно, то доверительный интервал в этом случае обозначается так: 

Статистические оценки

На известное значение Статистические оценки находим по таблице распределения Стьюдента (дополнение 3),

Статистические оценки

Вычислим концы доверительного интервала: 

Статистические оценки

Таким образом, доверительный интервал для Статистические оценки будет в таких границах: 

Статистические оценки

Доверительный интеграл с надежностью Статистические оценки для Статистические оценки будет таким: 

Статистические оценки

Нам известно значение Статистические оценки Учитывая, что Статистические оценки найдем по таблице (дополнение 5) значения Статистические оценки

Обозначим концы доверительного интервала: 

Статистические оценки

Следует, доверительный интервал для Статистические оценки подается таким неравенством: 

Статистические оценки

Доверительный интервал для Статистические оценки с заданной надежностью Статистические оценки будет таким: 

Статистические оценки

Нам известны значения Статистические оценки обозначаем по таблице значений функции Лапласа Статистические оценки где Статистические оценки

Обозначим концы доверительного интервала: 

Статистические оценки

таким образом, доверительный интервал для Статистические оценки будет в таких границах: 

Статистические оценки

Построение доверительного интервала для Статистические оценки с помощью неравенства Чебишова с заданной надежностью 

В случае, если отсутствует информация про закон распределения признака генеральной совокупности Статистические оценки  оценка вероятностей события Статистические оценки где Статистические оценки и построение доверительного интервала для Статистические оценки с заданной надежностью Статистические оценки выполняется с использованием неравенства Чебишова по условию, что известно значение Статистические оценки  а именно: 

Статистические оценки

Из Статистические оценки обозначаем величину Статистические оценки

Статистические оценки

Доверительный интервал дается таким неравенством: 

Статистические оценки

Когда Статистические оценки неизвестно, используем исправленную дисперсию Статистические оценки и доверительный интервал приобретает такой вид: 

Статистические оценки

Пример. Полученные данные с 100 наугад выбранных предприятий относительно возрастания выработки на одного работника Статистические оценки которые имеют такой интервальное статистическое распределение: 

Статистические оценки

Воспользовавшись неравенством Чебишова, построить доверительный интервал для Статистические оценки если известно значение Статистические оценки с надежностью Статистические оценки

Решение. Для построения доверительного интервала с помощью неравенства Чебишова необходимо вычислить Статистические оценки Чтобы обозначить Статистические оценки перейдем от интервального к дискретному статистическому распределению, а именно: 

Статистические оценки

Тогда получим: 

Статистические оценки

Воспользовавшись Статистические оценки вычислим Статистические оценки

Статистические оценки

таким образом, доверительный интервал для Статистические оценки преподноситься такими неравенствами: 

Статистические оценки

или 

Статистические оценки

Пример. Заданы размеры основных фондов Статистические оценки на 30- ти предприятий дискретным статистическим распределением: 

Статистические оценки

Воспользовавшись неравенством Чебишова с надежностью Статистические оценки построить доверительный интервал для Статистические оценки

Решение. Для постройки доверительного интервала для  Статистические оценки  с помощью неравенства Чебишова необходимо вычислить Статистические оценки

Статистические оценки

Статистические оценки млн руб. 

Следует, Статистические оценки млн рублей. 

Статистические оценки

Статистические оценки  млн рублей.

Обозначить концы доверительного интервала: 

Статистические оценки млн рублей

Статистические оценкин рублей

Итак, доверительный интервал для Статистические оценки подается неравенствами

Статистические оценки

Лекции:

  • Статистические гипотезы
  • Корреляционный и регрессионный анализ
  • Комбинаторика основные понятия и формулы с примерами
  • Число перестановок
  • Количество сочетаний
  • Действия над событиями. Теоремы сложения и умножения вероятностей примеры с решением
  • Примеры решения задач на тему: Случайные величины
  • Примеры решения задач на тему: основные законы распределения
  • Примеры решения задач на тему: совместный закон распределения двух случайных величин
  • Статистические распределения выборок и их числовые характеристики

Статистические оценки параметров генеральной совокупности

Определение статистической оценки. Точечные статистические оценки: смещенные и несмещенные, эффективные и состоятельные. Интервальные статистические оценки. Точность и надежность оценки; определение доверительного интервала; построение доверительных интервалов для средней при известном и неизвестном среднеквадратическом отклонении.

Определение статистической оценки

Пусть требуется изучить количественный признак генеральной совокупности. Допустим, что из теоретических соображений удалось установить, какое именно распределение имеет признак. Возникает задача оценки параметров, которыми определяется это распределение. Например, если известно, что изучаемый признак распределен в генеральной совокупности по нормальному закону, то необходимо оценить математическое ожидание и среднеквадратическое отклонение, так как эти два параметра полностью определяют нормальное распределение. Если имеются основания считать, что признак имеет распределение Пуассона, то необходимо оценить параметр lambda, которым это распределение определяется. Обычно имеются лишь данные выборки, полученные в результате n наблюдений: x_1,x_2,ldots,x_n. Через эти данные и выражают оцениваемый параметр. Рассматривая x_1,x_2,ldots,x_n как значения независимых случайных величин X_1,X_2,ldots,X_n можно сказать, что найти статистическую оценку неизвестного параметра теоретического распределения означает найти функцию от наблюдаемых случайных величин, которая и дает приближенное значение оцениваемого параметра.


Точечные статистические оценки

Статистической оценкой неизвестного параметра теоретического распределения называют функцию от наблюдаемых случайных величин. Статистическая оценка неизвестного параметра генеральной совокупности одним числом называется точечной. Рассмотрим следующие точечные оценки: смещенные и несмещенные, эффективные и состоятельные.

Для того чтобы статистические оценки давали хорошие приближения оцениваемых параметров, они должны удовлетворять определенным требованиям. Укажем эти требования. Пусть Theta^* есть статистическая оценка неизвестного параметра Theta теоретического распределения. Допустим, что по выборке объема n найдена оценка Theta_1^*. Повторим опыт, т. е. извлечем из генеральной совокупности другую выборку того же объема и по ее данным найдем оценку Theta_2^* и т. д. Получим числа Theta_1^*,Theta_2^*,ldots,Theta_k^*, которые будут различаться. Таким образом, оценку Theta^* можно рассматривать как случайную величину, а числа Theta_1^*,Theta_2^*,ldots,Theta_k^* — как возможные ее значения.

Если оценка Theta^* дает приближенное значение Theta с избытком, то найденное по данным выборок число Theta~(k=1,2,ldots,n) будет больше истинного значения Theta. Следовательно, и математическое ожидание (среднее значение) случайной величины Theta^* будет превышать Theta, то есть M(Theta^*)&gt;Theta. Если Theta дает приближенное значение Theta с недостатком, то M(Theta^*)&lt;Theta.

Использование статистической оценки, математическое ожидание которой не равно оцениваемому параметру, приводит к систематическим ошибкам. Поэтому нужно потребовать, чтобы математическое ожидание оценки Theta было равно оцениваемому параметру. Соблюдение требования M(Theta^*)=Theta устраняет систематические ошибки.

Несмещенной называют статистическую оценку Theta^*, математическое ожидание которой равно оцениваемому параметру Theta, то есть M(Theta^*)=Theta.

Смещенной называют статистическую оценку Theta^*, математическое ожидание которой не равно оцениваемому параметру.

Однако ошибочно считать, что несмещенная оценка всегда дает хорошее приближение оцениваемого параметра. Действительно, возможные значения Theta^* могут быть сильно рассеяны вокруг своего среднего значения, т. е. дисперсия величины Theta^* может быть значительной. В этом случае найденная по данным одной выборки оценка, например Theta^*, может оказаться удаленной от своего среднего значения overline{Theta^*}, а значит, и от самого оцениваемого параметра Theta. Приняв Theta_1^* в качестве приближенного значения Theta, мы допустили бы ошибку. Если потребовать, чтобы дисперсия величины Theta^* была малой, то возможность допустить ошибку будет исключена. Поэтому к статистической оценке предъявляются требования эффективности.

Эффективной называют статистическую оценку, которая (при заданном объеме выборки n) имеет наименьшую возможную дисперсию. При рассмотрении выборок большого объема к статистическим оценкам предъявляется требование состоятельности.

Состоятельной называют статистическую оценку, которая при ntoinfty стремится по вероятности к оцениваемому параметру. Например, если дисперсия несмещенной оценки при ntoinfty стремится к нулю, то такая оценка оказывается также состоятельной.

Рассмотрим вопрос о том, какие выборочные характеристики лучше всего в смысле несмещённости, эффективности и состоятельности оценивают генеральную среднюю и дисперсию.

Пусть изучается дискретная генеральная совокупность относительно количественного признака. Генеральной средней называется среднее арифметическое значений признака генеральной совокупности. Она вычисляется по формуле

overline{x}_text{g}=frac{1}{N}sumlimits_{i=1}^{N}x_i или overline{x}_text{g}=frac{1}{N}sumlimits_{i=1}^{k}x_im_i

где x_i — значения признака генеральной совокупности объема N; m_i — соответствующие частоты, причем

sumlimits_{i=1}^{k}m_i=N.

Пусть из генеральной совокупности в результате независимых наблюдений над количественным признаком извлечена выборка объема n со значениями признака x_1,x_2,ldots,x_n. Выборочной средней называется среднее арифметическое значений признака выборочной совокупности и вычисляется по формуле

overline{x}_text{v}=frac{1}{n}sumlimits_{i=1}^{n}x_i или overline{x}_text{v}=frac{1}{n}sumlimits_{i=1}^{k}x_im_i

где x_i — значения, признака в выборочной совокупности объема n; m_i — соответствующие частоты, причем

sumlimits_{i=1}^{k}m_i=n.

Если генеральная средняя неизвестна и требуется оценить ее по данным выборки, то в качестве оценки генеральной средней принимают выборочную среднюю, которая является несмещенной и состоятельной оценкой. Отсюда следует, что если по нескольким выборкам достаточно большого объема из одной и той же генеральной совокупности будут найдены выборочные средние, то они будут приближенно равны между собой. В этом состоит свойство устойчивости выборочных средних.

Если дисперсии двух совокупностей одинаковы, то близость выборочных средних к генеральным не зависит от отношения объема выборки к объему генеральной совокупности. Она зависит- от объема выборки: чем больше объем выборки, тем меньше выборочная средняя отличается от генеральной.

Для того чтобы охарактеризовать рассеяние значений количественного признака X генеральной совокупности вокруг своего среднего значения, вводят сводную характеристику — генеральную дисперсию. Генеральной дисперсией D_text{g} называется среднее арифметическое квадратов отклонений значений признака генеральной совокупности от их среднего значения overline{x}_text{g}, которое вычисляется по формуле

D_text{g}=frac{1}{N}sumlimits_{i=1}^{N}(x_i-overline{x}_text{g})^2 или D_text{g}=frac{1}{N}sumlimits_{i=1}^{k}(x_i-overline{x}_text{g})^2m_i

Для того чтобы охарактеризовать рассеяние наблюденных значений количественного признака выборки вокруг своего среднего значения хв, вводят сводную характеристику — выборочную дисперсию. Выборочной дисперсией D_text{v} называется среднее арифметическое квадратов отклонений наблюденных значений признака от их среднего значения overline{x}_text{v}, которое вычисляется по формуле

D_text{v}=frac{1}{n}sumlimits_{i=1}^{n}(x_i-overline{x}_text{v})^2 или D_text{v}=frac{1}{n}sumlimits_{i=1}^{k}(x_i-overline{x}_text{v})^2m_i

Кроме дисперсии для характеристики рассеяния значений признака генеральной (выборочной) совокупности вокруг своего среднего значения используют сводную характеристику — среднее квадратическое отклонение. Генеральным средним квадратическим отклонением называют квадратный корень из генеральной дисперсии: sigma_text{g}=sqrt{D_text{g}}. Выборочным средним квадратическим отклонением называют квадратный корень из выборочной дисперсии: sigma_text{v}=sqrt{D_text{v}}.

Пусть из генеральной совокупности в результате n независимых наблюдений над количественным признаком X извлечена выборка объема n. Требуется по данным выборки оценить неизвестную генеральную дисперсию D_text{g}. Если в качестве оценки генеральной дисперсии принять выборочную дисперсию, то эта оценка приведет к систематическим ошибкам, давая заниженное значение генеральной дисперсии. Объясняется это тем, что выборочная дисперсия является смещенной оценкой D_text{g}. Другими словами, математическое ожидание выборочной дисперсии не равно оцениваемой генеральной дисперсии, а равно M(D_text{v})=frac{n-1}{n}D_text{g}.

Легко исправить выборочную дисперсию так, чтобы ее математическое ожидание было равно генеральной дисперсии. Для этого нужно умножить D_text{v} на дробь frac{n}{n-1}. В результате получим исправленную дисперсию s^2, которая будет несмещенной оценкой генеральной дисперсии:

s^2=frac{1}{n-1}sumlimits_{i=1}^{k}(x_i-overline{x}_text{v})^2m_i


Интервальные оценки

Наряду с точечным оцениванием, статистическая теория оценивания параметров занимается вопросами интервального оценивания. Задачу интервального оценивания можно сформулировать так: по данным выборки построить числовой интервал, относительно которого с заранее выбранной вероятностью можно сказать, что внутри него находится оцениваемый параметр. Интервальное оценивание особенно необходимо при малом количестве наблюдений, когда точечная оценка малонадежна.

Доверительным интервалом Bigl(tilde{Theta}_n^{(1)};tilde{Theta}_n^{(2)}Bigl) для параметра Theta называется такой интервал, относительно которого с заранее выбранной вероятностью p=1-alpha, близкой к единице, можно утверждать, что он содержит неизвестное значение параметра Theta, то есть PBigl{tilde{Theta}_{n}^{(1)}&lt;Theta&lt;tilde{Theta}_{n}^{(2)}Bigl}=1-alpha. Чем меньше для выбранной вероятности число vline,tilde{Theta}_n^{(1)}-tilde{Theta}_n^{(2)}vline, тем точнее оценка неизвестного параметра Theta. И, наоборот, если это число велико, то оценка, проведенная с помощью данного интервала, малопригодна для практики. Так как концы доверительного интервала зависят от элементов выборки, то значения tilde{Theta}_n^{(1)} и tilde{Theta}_n^{(2)} могут изменяться от выборки к выборке. Вероятность p=1-alpha принято называть доверительной (надежностью). Обычно надежность оценки задается наперед, причем в качестве p берут число, близкое к единице. Выбор доверительной вероятности не является математической задачей, а определяется конкретной решаемой проблемой. Наиболее часто задают надежность, равную 0,95; 0,99; 0,999.

Доверительный интервал для генеральной средней при известном значении среднего квадратического отклонения и при условии, что случайная величина (количественный признак X) распределена нормально, задается выражением

P!left{overline{x}_text{v}-frac{tsigma}{sqrt{n}}&lt;overline{x}_text{g}&lt;overline{x}_text{v}+frac{tsigma}{sqrt{n}}right}=2Phi(t)=p,

где p — наперед заданное число, близкое к единице, а значения функции Phi(t) приведены в таблице прил. 2.

Смысл этого соотношения заключается в следующем: с надежностью p можно утверждать, что доверительный интервал left(overline{x}_text{v}-frac{tsigma}{sqrt{n}};overline{x}_text{v}+frac{tsigma}{sqrt{n}}right) покрывает неизвестный параметр overline{x}_text{g}, точность оценки delta=frac{tsigma}{sqrt{n}}. Число t определяется из равенства 2Phi(t)=p, или Phi=frac{p}{2}. По прил. 2 находят аргумент t, которому соответствует значение функции Лапласа, равное frac{p}{2}.


Пример 1. Случайная величина X имеет нормальное распределение с известным средним квадратическим отклонением sigma=3. Найти доверительные интервалы для оценки неизвестной генеральной средней по выборочным средним, если объем выборок n=36 и надежность оценки p=0,!95.

Решение. Найдем t. Из соотношения 2Phi(t)=0,!95 получим, что Phi=0,!475. По прил. 2 находим t=1,!96. Найдем точность оценки delta=frac{tsigma}{sqrt{n}}=frac{1,!96cdot3}{sqrt{36}}=0,!98. Доверительные интервалы будут таковы: (overline{x}_text{v}-0,!98;overline{x}_text{v}+0,!98). Например, если overline{x}_text{v}=4,!1, то доверительный интервал имеет следующие доверительные границы: overline{x}_text{v}-0,!98=4,!1-0,!98=3,!12; overline{x}_text{v}+0,!98=4,!1+0,!98=5,!08;. Таким образом, значения неизвестного параметра overline{x}_text{g}, согласующиеся с данными выборки, удовлетворяют неравенству 3,!12&lt;overline{x}_text{g}&lt;5,!08.


Доверительный интервал для генеральной средней нормального распределения признака при неизвестном значении среднего квадратического отклонения задается выражением

P!left{overline{x}_text{v}-frac{t_ps}{sqrt{n}}&lt;overline{x}_text{g}&lt;overline{x}_text{v}+frac{t_ps}{sqrt{n}}right}=p.

Отсюда следует, что с надежностью p можно утверждать, что доверительный интервал left(overline{x}_text{v}-frac{t_ps}{sqrt{n}};overline{x}_text{v}+frac{t_ps}{sqrt{n}}right) покрывает неизвестный параметр overline{x}_text{g}.

Существуют таблицы (прил. 4), пользуясь которыми, по заданным tp и n находят вероятность p и, наоборот, по заданным p и n находят tp.


Пример 2. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=16 найдены выборочная средняя overline{x}_text{v}=20,!2 и исправленное среднеквадратическое отклонение s=0,!8. Оценить неизвестную генеральную среднюю с помощью доверительного интервала с надежностью p=0,!95.

Решение. Найдем tp. Пользуясь прил. 4 по p=0,!95 и n=16 находим tp=2,!13. Найдем доверительные границы:

overline{x}_text{v}-frac{t_ps}{sqrt{n}}=20,!2-frac{2,!13cdot0,!8}{sqrt{16}}=20,!2-0,!426=19,!774;

overline{x}_text{v}+frac{t_ps}{sqrt{n}}=20,!2+frac{2,!13cdot0,!8}{sqrt{16}}=20,!2+0,!426=20,!626.

Итак, с надежностью p=0,!95 неизвестный параметр overline{x}_text{g} заключен в доверительном интервале 19,!774&lt;overline{x}_text{g}&lt;20,!626.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.



4. Статистические оценки параметров генеральной совокупности

Вспомним основной метод математической статистики. Он состоит в том, что для изучения генеральной совокупности объёма  из неё производится выборка объёма , которая хорошо характеризует всю совокупность (свойство представительности). И на основании исследования этой выборочной совокупности мы с некоторой достоверностью можем оценить генеральные  характеристики. Само собой, чем выше достоверность – тем лучше, тем качественнее исследование. Этому вопросу и посвящена данная глава.

Чаще всего требуется выявить закон распределения генеральной совокупности (о чём пойдёт речь позже) и оценить его важнейшие числовые параметры, такие как генеральная средняя , генеральная дисперсия  и стандартное отклонение .

4.1. Точечные оценки

Очевидно, что для оценки этих параметров нужно вычислить соответствующие выборочные значения. Так, выборочная средняя  позволяет нам оценить генеральную среднюю , причём, оценить её точечно. Почему точечно? Потому что  – это отдельно взятое, конкретное значение. Если из той же генеральной совокупности мы будем проводить многократные выборки, то в общем случае у нас будут получаться различные выборочные средние, и каждая из них представляет собой точечную оценку генерального значения .

Аналогично, точечной оценкой генеральной дисперсии  является исправленная выборочная дисперсия , и соответственно, стандартного отклонения  – исправленное стандартное отклонение .

4.2. Интервальная оценка и доверительный интервал

Недостаток точечных оценок состоит в том, что при небольшом объёме выборки (как оно часто бывает), мы можем получать выборочные значения, которые далеки от истины. И в этих случаях логично потребовать, чтобы выборочная характеристика  (средняя, дисперсия или какая-то другая) отличалась от своего генерального значения  не более чем на некоторое положительное значение .

Справка:  – греческая буква «тета»,  – греческая буква «дельта», вместо «дельты» также используют  («эпсилон»).

Значение  называется точностью оценки, и озвученное выше требование можно записать с помощью модуля:

Но статистические методы не позволяют 100%-но утверждать, что рассчитанное значение  будет удовлетворять этому неравенству – ведь в статистике всегда есть место случайности, когда мы можем «выиграть в лотерею» в плохом смысле этого слова. Таким образом, можно говорить лишь о вероятности  («гамма»), с которой это неравенство осуществится: .
А теперь я раскрою модуль:

и сформулирую суть:

Интервал  называется доверительным интервалом и представляет собой интервальную оценку генерального значения  по найденному выборочному значению . Данный интервал с вероятностью  «накрывает» истинное значение . Эта вероятность называется доверительной вероятностью или надёжностью интервальной оценки. Надёжность «гамма» часто задаётся наперёд, популярные варианты:
.

Переходим к конкретике:

4.3. Оценка генеральной средней нормально распределенной совокупности

3.3. Статистические показатели (итоги по главе)

| Оглавление |



Задача 55. Из генеральной совокупности извлечена выборка объема N, заданная вариантами ХI и соответствующими им частотами. Найти несмещенную оценку генеральной средней.

Варианта ХI

2

5

7

10

Частота Ni

16

12

8

14

Решение. Множество всех объектов, подлежащих изучению, называется Генеральной совокупностью. Множество случайно отобранных объектов называется выборочной совокупностью или Выборкой.

Для оценки неизвестных параметров теоретического распределения служат статистические оценки. Статистическая оценка, определяемая одним числом, называется Точечной оценкой.

Точечная статистическая оценка, математическое ожидание которой равно оцениваемому параметру при любом объеме выборки, называется Несмещенной оценкой. Статистическая оценка, математическое ожидание которой не равно оцениваемому параметру является Смещенной.

Несмещенной оценкой генеральной средней (математического ожидания) служит выборочная средняя

(1),

Где ХI – варианта выборки (элемент выборки); Ni – частота варианты ХI (число наблюдений варианты ХI); – объем выборки (число элементов совокупности).

Объем данной выборки равен .

Далее по формуле (1) вычисляем несмещенную оценку генеральной средней:

Задача 56. По выборке объема N=41 найдена смещенная оценка генеральной дисперсии . Найти несмещенную оценку дисперсии генеральной совокупности.

Решение. Смещенной оценкой генеральной дисперсии служит выборочная дисперсия

Несмещенной оценкой генеральной дисперсии является «исправленная дисперсия»

или

Таким образом, мы получаем искомую несмещенную оценку дисперсии генеральной совокупности:

Задача 57. Найти доверительный интервал для оценки с надежностью P=0,95 неизвестного математического ожидания A нормально распределенного признака Х генеральной совокупности, если даны генеральное среднее квадратическое отклонение S=5, выборочная средняя , а объем выборки N=25.

Решение. Интервальной оценкой называется интервал, покрывающий оцениваемый параметр. Доверительным интервалом является интервал, который с данной надежностью покрывает оцениваемый параметр.

Для оценки математического ожидания A нормально распределенного количественного признака Х по выборочной средней при известном среднем квадратическом отклонении s генеральной совокупности служит доверительный интервал

,

Где – точность оценки, T – значение аргумента функции Лапласа (приложение, таблица 2).

В данной задаче T находим из условия . По таблице 2 определяем . Таким образом, T=1,96.

Далее получаем

Или

Задача 58. По данным N=9 независимых равноточных измерений некоторой физической величины найдены среднее арифметическое результатов измерений и исправленное среднее квадратическое отклонение S=6. Оценить истинное значение измеряемой величины при помощи доверительного интервала с надежностью =0,99.

Решение. Оценкой математического ожидания A нормально распределенного количественного признака Х в случае неизвестного среднего квадратического отклонения является доверительный интервал

.

По таблице 3 приложения, по заданным N и находим =3,36.

Таким образом

Окончательно получаем

Задача 59. Из генеральной совокупности извлечена выборка объема N. Оценить с надежностью =0,95 математическое ожидание A нормально распределенного признака Х генеральной совокупности по выборочной средней с помощью доверительного интервала.

Значение признака ХI

-2

1

1

3

4

5

Частота Ni

2

1

2

2

2

1

Решение. Объем данной выборки равен

По данным задачи находим выборочную среднюю:

Далее находим исправленное среднее квадратическое отклонение S:

Для оценки математического ожидания A нормально распределенного количественного признака Х в случае неизвестного среднего квадратического отклонения служит доверительный интервал

.

По таблице 3 приложения по заданным N и находим =2,26.

Таким образом

Окончательно получаем

Задача 60. Построить полигон частот и эмпирическую функцию по данному распределению выборки:

Варианты ХI

-3

0

1

4

6

7

Частоты Ni

3

6

1

2

5

1

Решение. Полигоном частот называют ломаную, отрезки которой соединяют точки ; ;…;, где ХI – варианты выборки, Ni – соответствующие им частоты.

Полигон частот для данного распределения изображен на рисунке 15.

Рис. 15

Эмпирической функцией распределения (функцией распределения выборки) называют функцию , определяющую для каждого значения X относительную частоту события :

,

Где – число вариант, меньших Х; N – объем выборки.

Из определения следует, что .

Найдем эмпирическую функцию распределения.

Объем данной выборки равен =18.

Если , то =0 (так как -3 – наименьшая варианта). Если , то значение , а именно наблюдалось 3 раза, следовательно, . При значения , а именно и наблюдались 3+6=9 раз, следовательно, .

Аналогично получаем, что при функция распределения ; при функция распределения ; при функция распределения . Далее, если , то (так как 7 – наибольшая варианта).

Таким образом, эмпирическая функция распределения равна:

График полученной эмпирической функции распределения изображен на рисунке 16.

Задача 61. Найти методом сумм асимметрию и эксцесс по заданному распределению выборки объема N=100:

Варианта ХI

48

52

56

60

64

68

72

76

80

84

Частота Ni

2

4

6

8

12

30

18

8

7

5

Решение. Асимметрия эмпирического распределения определяется равенством:

,

Где – центральный эмпирический момент третьего порядка, вычисляемый по формуле:

Эксцесс эмпирического распределения определяется равенством:

,

Где – центральный эмпирический момент четвертого порядка, вычисляемый по формуле:

Асимметрия и эксцесс служат для оценки отклонения эмпирического распределения от нормального. Для нормального распределения эти характеристики равны нулю. Поэтому, если для изучаемого распределения асимметрия и эксцесс имеют небольшие значения, то можно предположить близость этого распределения к нормальному. Наоборот, большие значения асимметрии и эксцесса указывают на значительное отклонение от нормального. Кроме того, если эксцесс положительный, то распределение будет островершинным; если отрицательный, то распределение будет плосковершинным по сравнению с нормальным распределением.

Для практического расчета асимметрии и эксцесса непосредственно пользоваться вышеуказанными формулами довольно затруднительно, поэтому воспользуемся методом сумм. Составим расчетную таблицу 1, для этого:

1) Запишем варианты в первый столбец.

2) Запишем частоты во второй столбец; сумму частот (100) поместим в нижнюю клетку столбца.

3) В качестве ложного нуля С выберем варианту (68), которая имеет наибольшую частоту (в качестве С можно взять любую варианту, расположенную примерно в середине столбца); в клетках строки, содержащей ложный нуль, запишем нули; в четвертом столбце над и под уже помещенным нулем запишем еще по одному нулю.

4) В оставшихся незаполненными над нулем клетках третьего столбца (исключая самую верхнюю) запишем последовательно накопленные частоты:

2; 2+4=6; 6+6=12; 12+8=20; 20+12=32.

Сложив все накопленные частоты, получим число B1=72, которое поместим в верхнюю клетку третьего столбца. В оставшихся незаполненными под нулем клетках третьего столбца (исключая самую нижнюю) запишем последовательно накопленные частоты:

5; 5+7=12; 12+8=20; 20+18=38.

Сложив все накопленные частоты, получим число A1=75, которое поместим в нижнюю клетку третьего столбца.

5) Аналогично заполняется четвертый столбец, причем суммируют частоты третьего столбца. Сложив все накопленные частоты, расположенные над нулем, получим число B2=70, которое поместим в верхнюю клетку четвертого столбца. Сумма накопленных частот, расположенных под нулем, равна числу A2=59, которое поместим в нижнюю клетку четвертого столбца.

6) Для заполнения столбца 5 запишем нуль в клетке строки, содержащей ложный нуль (68); над этим нулем и под ним поставим еще по два нуля. В клетках над нулями запишем накопленные частоты, для чего просуммируем частоты столбца 4 сверху вниз; в итоге будем иметь следующие накопленные частоты:

2; 2+8=10; 10+20=30.

Сложив накопленные частоты, получим число B3=42, которое поместим в верхнюю клетку пятого столбца. В клетках под нулями запишем накопленные частоты, для чего просуммируем частоты столбца 4 снизу вниз; в итоге будем иметь следующие накопленные частоты:

5; 5+17=22.

Сложив накопленные частоты, получим число A3=27, которое поместим в нижнюю клетку пятого столбца.

7) Аналогично заполняется столбец 6, причем суммируют частоты столбца 5.

В итоге получим расчетную таблицу 1:

Расчетная таблица 1

1

2

3

4

5

6

ХI

Ni

B1=72

B2=70

B3=42

B4=14

48

2

2

2

2

2

52

4

6

8

10

12

56

6

12

20

30

0

60

8

20

40

0

0

64

12

32

0

0

0

68

30

0

0

0

0

72

18

38

0

0

0

76

8

20

37

0

0

80

7

12

17

22

0

84

5

5

5

5

5

 

N=100

A1=75

A2=59

A3=27

A4=5

Теперь найдем Di (I=1, 2, 3) и si (I=1, 2, 3, 4):

; ; ;

; ;

; .

Найдем условные моменты первого, второго, третьего и четвертого порядков:

; ;

;

.

Найдем далее центральные эмпирические моменты третьего и четвертого порядков, учитывая, что шаг (разность между двумя соседними вариантами):

;

Так как дисперсия , то выборочное среднее квадратическое отклонение .

Учитывая определения асимметрии и эксцесса, окончательно получаем:

; .

< Предыдущая   Следующая >

Добавить комментарий