Алгебра и начала математического анализа, 11 класс
Урок № 16. Экстремумы функции.
Перечень вопросов, рассматриваемых в теме
1) Определение точек максимума и минимума функции
2) Определение точки экстремума функции
3) Условия достаточные для нахождения точек экстремума функции
Глоссарий по теме
Возрастание функции. Функция y=f(x) возрастает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.
Максимум функции. Значение функции в точке максимума называют максимумом функции
Минимум функции. Значение функции в точке минимума называют минимумом функции
Производная (функции в точке) — основное понятие дифференциального исчисления, которое характеризует скорость изменения функции (в конкретной точке).
Точка максимума функции. Точку х0 называют точкой максимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство .
Точка минимума функции. Точку х0 называют точкой минимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство .
Точки экстремума функции. Точки минимума и максимума называют точками экстремума.
Убывание функции. Функция y = f(x) убывает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.
Алгоритм исследования функции на монотонность и экстремумы:
1) Найти область определения функции D(f)
2) Найти f’ (x).
3) Найти стационарные (f'(x) = 0) и критические (f'(x) не
существует) точки функции y = f(x).
4) Отметить стационарные и критические точки на числовой
прямой и определить знаки производной на получившихся
промежутках.
5) Сделать выводы о монотонности функции и точках ее
экстремума.
Основная литература:
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Дополнительная литература:
Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.
Теоретический материал для самостоятельного изучения
Точки, в которых происходит изменение характера монотонности функции – это ТОЧКИ ЭКСТРЕМУМА.
- Точку х = х0 называют точкой минимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой выполняется неравенство f(x) ≥ f(x0).
- Точку х = х0 называют точкой максимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой выполняется неравенство f(x) ≤ f(x0).
Точки максимума и минимума – точки экстремума.
Функция может иметь неограниченное количество экстремумов.
Критическая точка – это точка, производная в которой равна 0 или не существует.
Важно помнить, что любая точка экстремума является критической точкой, но не всякая критическая является экстремальной.
Алгоритм нахождения максимума/минимума функции на отрезке:
- найти экстремальные точки функции, принадлежащие отрезку,
- найти значение функции в экстремальных точках из пункта 1 и в концах отрезка,
- выбрать из полученных значений максимальное и минимальное.
Примеры и разбор решения заданий тренировочного модуля
№1. Определите промежуток монотонности функции у=х2 -8х +5
Решение: Найдем производную заданной функции: у’=2x-8
2x-8=0
х=4
Определяем знак производной функции и изобразим на рисунке, следовательно, функция возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)
Ответ: возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)
№2. Найдите точку минимума функции у= 2х-ln(х+3)+9
Решение: Найдем производную заданной функции:
Найдем нули производной:
х=-2,5
Определим знаки производной функции и изобразим на рисунке поведение функции:
Ответ: -2,5 точка min
№3. Материальная точка движется прямолинейно по закону x(t) = 10t2 − 48t + 15, где x – расстояние от точки отсчета в метрах, t – время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 3с.
Решение: Если нас интересует движение автомобиля, то, принимая в качестве функции зависимость пройденного расстояния от времени, с помощью производной мы получим зависимость скорости от времени.
V=х'(t)= 20t – 48. Подставляем вместо t 3c и получаем ответ. V=12 мc
Ответ: V=12 мc
№4. На рисунке изображен график функции. На оси абсцисс отмечены семь точек: x1, x2, x3, x4, x5, x6, x7. Определите количество целых точек, в которых производная функции отрицательна.
Решение: Производная функции отрицательна на тех интервалах, на которых функция убывает. В данном случае это точки х3,х5,х7. Следовательно, таких точек 3
Ответ: 3
Алгоритм нахождения экстремумов функции и интервалов ее монотонности с помощью первой производной
1. Найти область определения функции и интервалы, на которых функция непрерывна.
2. Найти производную функции f ‘(x).
3. Найти критические точки функции y = f (x), т.е. точки, принадлежащие области определения функции, в которых производная f ‘(x) обращается в нуль или не существует.
4. Исследовать характер изменения функции f (x) и знак производной f ‘(x) в промежутках, на которые найденные критические точки делят область определения функции y = f (x).
5. Относительно каждой критической точки определить, является ли она точкой максимума, минимума или не является точкой экстремума.
Помни: критическая точка x0 есть точка минимума, если она отделяет промежуток, в котором f ‘(x)f ‘(x)0, и точка максимума – в противном случае. Если же в соседних промежутках, разделенных критической точкой x0, знак производной не меняется, то в точке x0 функция экстремума не имеет.
6. Вычислить значения функции в точках экстремума.
7. Записать результат исследования функции: промежутки монотонности и экстремумы.
____________________________________________________________________________
Пример 1. Исследовать на экстремум функцию f(x) = x3–3x2 и найти ее промежутки монотонности.
Решение:
1) Функция определена для всех R. Найдем производную: f ‘(x)=3x2–6x.
2) Из уравнения 3x2–6x = 3x(x–2) = 0 получим критические точки функции x1=0 и x2=2.
3) Так как при переходе через точку x1=0 производная меняет знак с плюса на минус, то в этой точке функция имеет максимум.
4) При переходе через точку x2 =2 производная меняет знак с минуса на плюс, поэтому в точке x2 = 2 у функции минимум.
5) Составим таблицу:
x |
(;0] |
0 |
[0; 2] |
2 |
[2; +) |
f ‘(x) |
+ |
0 |
– |
0 |
+ |
f (x) |
↑ |
fmax(0) = 0 |
↓ |
fmin(2) = – 4 |
↑ |
6) Таким образом, данная функция в промежутке отx 0 возрастает, в промежутке от 0 x 2 убывает, а в промежутке от 2 x опять возрастает.
Ответ: (0; 0) – точка максимума, (2; -4) – точка минимума;
функция возрастает (;0] и [2; +), функция убывает [0; 2].
Пример 2. Исследовать на экстремум функцию f(x) = и найти ее промежутки монотонности.
Решение:
1) Функция определена для всех R, кроме
2) Найдем производную: f ‘(x)= .
3) Заметим, что производная не обращается в ноль и отрицательна для всех R, кроме . Значит, точек экстремума нет, и функция является убывающей на всей области определения.
4) Таким образом, данная функция убывает на промежутках:
x x2 и 2x + .
Ответ: точек экстремума нет; функция убывает (;-2) , (-2; 2) и (2; +).
Пример 3. Исследовать на экстремум функцию f(x) = и найти ее промежутки монотонности.
Решение:
1) Функция определена если , т.е. на интервалах (-; -3) и (3; +).
2) На каждом из этих интервалов функция имеет производную .
3) Заметим, что производная не обращается в ноль на интервалах (-; -3) и (3; +), значит, точек экстремума нет.
4) Так как для любых x 3 и для x ; -3) и возрастает на промежутке (3; +). Функция не определена на отрезке [-3; 3].
Ответ: точек экстремума нет; функция убывает (-; -3), возрастает (3; +).
Пример 4. Исследовать на экстремум функцию f(x) = и найти ее промежутки монотонности.
1) Функция определена, если , т.е. на промежутке [-5; 5].
2) Найдем производную функции .
3) при х = 0, значит 0 – критическая точка.
4) Так как при переходе через точку x =0 производная меняет знак с плюса на минус, то в этой точке функция имеет максимум.
5) Таким образом, данная функция в промежутке от -5 x 0 возрастает, в промежутке от 0 x 5 убывает.
Ответ: (0; 5) – точка максимума; функция возрастает [-5;0] и функция убывает [0; 5].
Приложение
Схематическое изображение графиков функций, рассмотренных в примерах 1-4.
Пример 1. Пример 2.
Пример 3.
Пример 4.
Как найти точки минимума и максимума функции
Содержание:
-
Минимум и максимум функции
- Точка минимума, минимум функции
- Точка максимума, максимум функции
- Исследование функций на экстремумы
- Примеры задач
Минимум и максимум функции
Минимумом и максимумом функции, другими словами экстремумами, называют точки, в которых функция меняет характер монотонности (с возрастания на убывание и наоборот). Важно понимать, что экстремумы это не максимальные и минимальные значения функции. Обозначаются следующим образом:
- (y_{min}, y_{max}) — минимум, максимум функции или экстремумы;
- (x_{min}, x_{max}) — точки минимума, максимума функции;
- (y_{наиб}, y_{наим}) — наибольшее (максимальное), наименьшее (минимальное) значение функции.
Точка минимума, минимум функции
Точка минимума — такая точка (x_0), если у неё существует окрестность, для всех точек которой выполняется неравенство (f(x)geq f(x_0))
Минимум функции — значение функции в точке минимума (x_0)
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Простыми словами, точка минимума — это та, где убывание функции меняется на возрастание.
Точка максимума, максимум функции
Точка максимума — такая точка (x_0), если у неё существует окрестность, для всех точек которой выполняется неравенство (f(x)leq f(x_0))
Максимум функции — значение функции в точке максимума (x_0)
Простыми словами, точка максимума — это та, где возрастание функции меняется на убывание.
Точки максимума и минимума на графике:
Исследование функций на экстремумы
Теорема. Если функция f(x) имеет экстремум в точке (x=x_0,) то в ней производная либо равна 0, либо не существует.
Алгоритм нахождения экстремумов с помощью производной:
-
Найти область определения функции — D(y).
-
Определить производную — f ‘(x).
-
Определить стационарные точки y = f(x), т.е. те, которые принадлежат D(y), f ‘(x) в них обращается в ноль, отыскать критические точки, в которых производной не существует (пример: (f^,(x)=frac1{2sqrt x}), производной не существует при x = 0).
-
Исследовать характер изменения функции f (x) и знак f ‘(x) в промежутках, на которые найденные критические точки делят область определения (при отрицательном знаке производной функция убывает, при положительном — возрастает).
-
Относительно каждой критической точки определить, является ли она точкой максимума, минимума (возрастание меняется на убывание — точка максимума, убывание на возрастание — минимума) или не является точкой экстремума (то есть, меняется ли знак производной при переходе через исследуемую точку).
-
Вычислить значения функции в точках экстремума.
Примеры задач
Задача 1
Исследовать на экстремумы функцию (f(x)=x^3-3x^2.)
Решение задачи по алгоритму:
1) (D(y): xin(-infty;+infty)), т.е. x — любое число.
2) Производная: (f'(x)=3x^2-6x) .
3) Из пункта 1 следует, что критических точек нет. Найдем стационарные:
Приравниваем f ‘(x) к 0, решаем квадратное уравнение (3x^2-6x=0), получаем (x_1=0),(;x_2=2.)
4) Отметим на горизонтальной оси координат точки 0 и 2. Подставим любое x из интервала ((-infty;0)) в f'(x), например, пусть x = -1, тогда (f'(x)=3{(-1)}^2-6(-1)=3+6=9). Получаем f ‘(x)>0, значит на исследуемом интервале f(x) возрастает. Аналогично рассмотрим оставшиеся интервалы. Итого, на отрезке (0;2) производная отрицательна, функция убывает, а на интервале ((2;+infty)) производная положительна, возрастает. Из этого следует, что x=0 – точка максимума, а x=2 – минимума.
5) Найдем значение экстремумов функции.
(f(0)=0-3times0=0)
(f(2)=2^3-3times2^2=8-12=-4)
Ответ: (x_{min}=2,;y_{min}=-4;;x_{max}=0,;y_{max}=0) или (0;0) – минимум функции, (2;-4) – максимум.
Задача 2
Найти промежутки монотонности функции (f(x)=frac x{x^2-4}).
1) (D(y): xinmathbb{R},;)кроме(;pm2)
2) (f'(x)=frac{1(x^2-4)-xtimes2x}{{(x^2-4)}^2}=-frac{x^2+4}{{(x^2-4)}^2})
3) Итак, как выяснилось в пункте 1, критические точки 2 и -2. Если мы приравняем f ‘(x) к 0, чтобы найти стационарные точки, то увидим, что уравнение не будет иметь корней. Значит, стационарных точек нет. Из этого следует, что функция монотонна на всей области определения. Проверим, возрастает она или убывает. Для этого решаем неравенство (-frac{x^2+4}{{(x^2-4)}^2}leq0) и получим, что неравенство верно при любом x, значит функция убывает.
Не забываем, что в ответе, указывая промежуток, обязательно нужно исключить критические точки -2 и 2 т.к. в них функция не определена.
Ответ: f(x) убывает на промежутке ((-infty;-2)cup(-2;2)cup(2;+infty)).
Задача 3
Докажите, что функция (f(x)=x^5+2x^3-4) возрастает на всех числовой прямой.
1) (D(y): xinmathbb{R}), значит критических точек нет.
2) (f'(x)=5x^4+6x)
3) Приравняем f'(x) к 0 и найдем корень: x = 0. Отметим 0 на числовой прямой и определим знак производной на промежутках ((-infty;0)) и ((0;+infty)). Получим, что производная положительна на обоих промежутках, следовательно функция возрастает на всей числовой прямой.
Утверждение доказано
п.1. Алгоритм решения задач на поиск экстремума
Шаг 1. Проанализировать условие задачи, обозначить одно из неизвестных буквой (переменной). Если это удобно, обозначить все неизвестные разными буквами и выбрать «основную» переменную.
Шаг 2. Выразить другие неизвестные через основную переменную.
Шаг 3. Записать функцию от основной переменной.
Шаг 4. Найти производную от полученной функции. Исследовать функцию на экстремум.
Шаг 5. Истолковать результат в соответствии с условием задачи.
Например:
Как разбить число 10 на два слагаемых так, чтобы их произведение было наибольшим?
Пусть (x) – первое слагаемое. Тогда ((10-x)) – второе слагаемое.
Их произведение (f(x)=x(10-x)rightarrow max)
Исследуем полученную функцию на экстремум:
(f'(x)=(10x-x^2)’=10-2x)
(f'(x)=0) при (x=5)
По условию значение (xin [0;10]).
(x) | [0;5) | 5 | (5;10] |
(f'(x)) | >0 | 0 | <0 |
(f(x)) | (nearrow) | max | (searrow) |
Точка максимума (x=5, f_{max}=5cdot (10-5)=25)
Т.е., 10 нужно разбить на две пятерки, которые дадут максимальное возможное произведение 25.
Ответ: 5 и 5, максимальное произведение 25
п.2. Примеры
Пример 1. Какое число в сумме со своим квадратом дает наименьшее значение?
Пусть (x) – данное число.
По условию: (f(x)=x+x^2rightarrow min)
Исследуем полученную функцию на экстремум:
(f'(x)=(x+x^2)’=1+2x)
(f'(x)=0) при (x=-frac12)
По условию значение (xin mathbb{R}).
(x) | (left(-infty;-frac12right)) | (-frac12) | (left(-frac12;+inftyright)) |
(f'(x)) | <0 | 0 | >0 |
(f(x)) | (searrow) | min | (nearrow) |
Точка минимума (x=-frac12, f_{min}=-frac12+left(-frac12right)^2=-frac12+frac14=-frac14)
Ответ: число (left(-frac12right)), минимальная сумма (left(-frac14right))
Пример 2. Какой из прямоугольников, вписанных в круг радиусом R, имеет наибольшую площадь?
Диагонали вписанного прямоугольника являются диаметрами круга: AC=BD=2R Обозначим угол между диагоналями (alpha=angle AOB, 0ltalphalt pi). Используем формулу площади четырехугольника через диагонали: $$ S=frac{d_1d_2}{2}sinalpha=frac{(2R)^2}{2}sinalpha=2R^2sinalpha $$ |
Мы получили площадь как функцию от угла: (S(alpha)=2R^2 sinalpha)
Исследуем полученную функцию на экстремум:
(S'(alpha)=2R^2 cosalpha)
(S'(alpha)=0) при (cosalpha=0Rightarrow alpha=fracpi 2) – прямой угол.
(alpha) | (left(0;fracpi 2right)) | (fracpi 2) | (left(fracpi 2;piright)) |
(S'(alpha)) | >0 | 0 | <0 |
(S(alpha)) | (nearrow) | max | (searrow) |
Точка максимума (alpha=fracpi 2, S_{max}=2R^2sinfracpi 2=2R^2cdot 1=2R^2)
Вписанный прямоугольник с прямым углом между диагоналями – это квадрат (т.к. диагонали перпендикулярны и равны).
Сторона квадрата по теореме Пифагора: (AB^2=OA^2+OB^2=2R^2Rightarrow AB=Rsqrt{2})
Ответ: квадрат со стороной (Rsqrt{2}), максимальная площадь (2R^2)
Пример 3. Какой из прямоугольников, вписанных в круг радиусом R, имеет наибольший периметр?
Диагонали вписанного прямоугольника являются диаметрами круга: AC=BD=2R Обозначим угол между диагоналями (alpha=angle AOB, 0ltalphalt pi). По теореме косинусов сторона AB: begin{gather*} AB^2=OA^2+OB^2-2OAcdot OBcdot cosalpha=\ =R^2+R^2-2R^2cosalpha=2R^2(1-cosalpha)=\ =2R^2cdot 2sin^2fracalpha 2=4R^2sin^2fracalpha 2\ AB=2Rsinfracalpha 2 end{gather*} |
Сторона BC: begin{gather*} BC^2=OB^2+OC^2-2OBcdot OCcdot cos(180^{circ}-alpha)=\ =R^2+R^2+2R^2cosalpha=2R^2(1+cosalpha)=2R^2cdot 2cos^2fracalpha 2=4R^2cos^2fracalpha 2\ BC=2Rcosfracalpha 2 end{gather*} Периметр: begin{gather*} P(alpha)=2(AB+BC)=2left(2Rsinfracalpha 2+2Rcosfracalpha 2right)=4Rleft(sinfracalpha 2+cosfracalpha 2right), 0ltfracalpha 2ltfracpi 2 end{gather*} Исследуем полученную функцию на экстремум: begin{gather*} P'(alpha)=4Rleft(frac12 cosfracalpha 2-frac12 sinfracalpha 2right)=2Rleft(cosfracalpha 2-sinfracalpha 2right)\ P'(alpha)=0Rightarrow cosfracalpha 2-sinfracalpha 2=0Rightarrow sinfracalpha 2=cosfracalpha 2 |: cosfracalpha 2\ tgfracalpha 2=1Rightarrow fracalpha 2=fracpi 4=Rightarrow alpha = fracpi 2 – text{прямой угол} end{gather*}
(fracalpha 2) | (left(0;fracpi 4right)) | (fracpi 4) | (left(fracpi 4;fracpi 2right)) |
(P'(alpha)) | >0 | 0 | <0 |
(P(alpha)) | (nearrow) | max | (searrow) |
Точка максимума (alpha=fracpi 2, P_{max}=4Rleft(sinfracpi 4+cosfracpi 4right)=4Rcdot 2cdot frac{sqrt{2}}{2}=4sqrt{2}R)
Вписанный прямоугольник с прямым углом между диагоналями – это квадрат (т.к. диагонали перпендикулярны и равны).
Сторона квадрата по теореме Пифагора: (AB^2=OA^2+OB^2=2R^2Rightarrow AB=Rsqrt{2})
Ответ: квадрат со стороной (Rsqrt{2}), максимальный периметр (4sqrt{2}R)
Пример 4. Определите размеры открытого бассейна с квадратным дном объемом 32 м3 так, чтобы на облицовку его стен и дна ушло как можно меньше материала.
Пусть сторона бассейна a, высота h. Тогда объем: (V=a^2h=32). Откуда (h=frac{32}{a^2}).
Площадь дна: (S_0=a^2).
Площадь каждой стены: (S_1=ah=acdot frac{32}{a^2}=frac{32}{a}).
Общая площадь для облицовки: begin{gather*} S(a)=S_0+4S_1=a^2+4cdot frac{32}{a}=a^2+frac{128}{a} end{gather*} Исследуем полученную функцию на экстремум: begin{gather*} S'(a)=2a-frac{128}{a^2}=frac{2a^3-128}{a^2}=frac{2(a^3-64)}{a^2}=frac{2(a-4)(a^2+4a+16)}{a^2}\ S'(a)=0 text{при} a=4 end{gather*} По условию (agt 4)
(a) | (0;4) | 4 | (left(4;+inftyright)) |
(S'(a)) | <0 | 0 | >0 |
(S(a)) | (searrow) | min | (nearrow) |
Точка минимума (a=4) $$ S_{min}=4^2+frac{128}{4}=16+32=48 (м^2) $$ Оптимальные размеры бассейна: сторона (a=4) м, высота (h=frac{32}{16}=2) м
Ответ: бассейн со стороной 4 м и высотой 2 м,
минимальная площадь облицовки 48 м2.
Пример 5*. Найдите наибольшей объем конуса с образующей a.
По условию AB=a Обозначим угол при основании (alpha=angle BAO, 0ltalphalt fracpi 2). Тогда: (r=OA=ABcdot cosalpha=acosalpha) (h=OB=ABcdot sinalpha=asinalpha) Объем конуса: begin{gather*} V=frac13 Sh=frac13cdotpi r^2h=fracpi 3cdot a^2cos^2alphacdot asinalpha=\ =frac{pi a^3}{3}cos^2alpha sinalpha end{gather*} |
Объем как функция угла при основании: (V(alpha)=frac{pi a^3}{3}cos^2alpha sinalpha)
Исследуем полученную функцию на экстремум: begin{gather*} V'(alpha)=frac{pi a^3}{3}((cos^2alpha)’sinalpha+cos^2alpha sin’alpha)=frac{pi a^3}{3}(-2cosalphacdot sin^2alpha+cos^3alpha)=\ =frac{pi a^3}{3}cosalpha(cos^2alpha-2sin^2alpha)=frac{pi a^3}{3}cosalpha(cos^2alpha-2(1-cos^2alpha))=\ =frac{pi a^3}{3}cosalpha(3cos^2alpha-2) end{gather*} Решаем уравнение (V'(alpha)=0Rightarrow cosalpha(3cos^2alpha-2)=0Rightarrow left[ begin{array}{l} cosalpha=0\ 3cos^2alpha-2=0 end{array} right. )
(cosalpha=0) дает (alpha=fracpi 2) – это корень не подходит.
Решаем второе уравнение: (3cos^2alpha-2=0Rightarrow cos^2alpha=frac23Rightarrow cosalpha=pmsqrt{frac23})
Для (0ltalphaltfracpi 2) выбираем положительное значение (cosalpha=sqrt{frac23})
Тогда (sinalpha=sqrt{1-cos^2alpha}=sqrt{1-frac23}=frac{1}{sqrt{3}})
(alpha) | (left(0;arccossqrt{frac23}right)) | (arccossqrt{frac23}) | (left(arccossqrt{frac23};fracpi 2right)) |
(V'(alpha)) | >0 | 0 | <0 |
(V(alpha)) | (nearrow) | max | (searrow) |
Точка максимума (alpha=arccossqrt{frac23}, V_{max}=frac{pi a^3}{3}cdotfrac23cdotfrac{1}{sqrt{3}}=frac{2pi a^3}{9sqrt{3}})
Ответ: максимальный объем (V_{max}=frac{2pi a^3}{9sqrt{3}})
Пример 6. В данный конус вписан цилиндр наибольшего объема. Найдите отношение высоты конуса к высоте этого цилиндра.
Пусть R – радиус конуса, H – высота конуса, r – радиус цилиндра, h – высота цилиндра. R и H – постоянные, r и h – переменные. Исходя из симметрии, задача сводится к вписыванию в равнобедренный треугольник ΔABC, AB=BC прямоугольника DEFG наибольшей площади. |
|
По двум углам (triangle ABOsimtriangle ADG) $$ frac{BO}{DG}=frac{AO}{AG}Rightarrow frac Hh=frac{R}{R-r}Rightarrow h=Hfrac{R-r}{R} $$ Площадь прямоугольника: begin{gather*} S=GFcdot DG=2rcdot h=2rcdot Hfrac{R-r}{R}\ S(r)=frac{2Hr(R-r)}{R} end{gather*} |
Исследуем полученную функцию на экстремум: begin{gather*} S'(r)=frac{2H}{R}(Rr-r^2)’=frac{2H}{R}(R-2r)\ S'(r)=0 text{при} r=frac R2 end{gather*} По условию (0lt rlt R)
(r) | (left(0;frac R2right)) | (frac R2) | (left(frac R2; Rright)) |
(S'(r)) | >0 | 0 | <0 |
(S(r)) | (nearrow) | max | (searrow) |
Точка максимума (r=frac R2)
Искомое отношение в точке максимума: $$ frac Hh=frac{R}{R-r}=frac{R}{R-frac R2}=2 $$
Ответ: 2
Пример 7*. Из трех досок одинаковой ширины сколачивается желоб. При каком угле наклона стенок площадь поперечного сечения желоба будет наибольшей?
Пусть AB=BC=CD=d Искомый угол (alpha=angle ABC). ABCD – равнобедренная трапеция (S_{ABCD}rightarrow max) |
Выразим площадь трапеции через угол.
Найдем диагональ AC по формуле косинусов: begin{gather*} AC^2=AB^2+BC^2-2ABcdot BCcdot cosalpha=d^2+d^2-2d^2cosalpha=2d^2(1-cosalpha)=\ =2d^2cdot 2sin^2fracalpha 2=4d^2sin^2fracalpha 2\ AC=sqrt{4d^2sin^2fracalpha 2}=2dsinfracalpha 2 end{gather*} Заметим, что (angle ACD=angle BCD-angle BCA=alpha-left(90^circ-fracalpha 2right)=frac{3alpha}{2}-90^circ)
Площадь трапеции: begin{gather*} S_{ABCD}=S_{ABC}+S_{ACD}=frac12 ABcdot BCcdot sinalpha+frac12 ACcdot CDcdot sinangle ACD=\ =frac12left(d^2sinalpha+2dsinfracalpha 2cdot 2cdot sinleft(frac{3alpha}{2}-90^circright)right)=frac{d^2}{2}left(sinalpha+2sinfracalpha 2 sinleft(frac{3alpha}{2}-90^circright)right)=\ =frac{d^2}{2}left(sinalpha-2sinfracalpha 2 cosfrac{3alpha}{2}right)=frac{d^2}{2}left(sinalpha-sinleft(fracalpha 2+frac{3alpha}{2}right)+sinleft(fracalpha 2-frac{3alpha}{2}right)right)=\ =frac{d^2}{2}(sinalpha-(sin2alpha-sinalpha))=frac{d^2}{4}(2sinalpha-sin2alpha)=\ =frac{d^2}{4}(2sinalpha-2sinalpha cosalpha)=frac{d^2}{2}sinalpha(1-cosalpha) end{gather*} Полученная функция: $$ S(alpha)=frac{d^2}{2}sinalpha(1-cosalpha) $$ Исследуем на экстремум: begin{gather*} S'(alpha)=frac{d^2}{2}(sin’aalpha(1-cosalpha)+sinalpha(1-cosalpha)’)=\ =frac{d^2}{2}(cosalpha(1-cosalpha)+sin^2alpha)=frac{d^2}{2}(cosalpha-cos^2alpha+1-cos^2alpha)=\ =frac{d^2}{2}(1+cosalpha-2cos^2alpha) end{gather*} Решаем уравнение begin{gather*} S'(alpha)=0Rightarrow 1+cosalpha-2cos^2alpha=0\ 2cos^2alpha-cosalpha-1=0 end{gather*} Замена: (t=cosalpha, |t|leq 1) begin{gather*} 2t^2-t-1=0Rightarrow (2t+1)(t-1)=0Rightarrow left[ begin{array}{l} t=-frac12\ t=1 end{array} right. end{gather*} Возвращаемся к исходной переменной. По условию (0lt alphaltpi). begin{gather*} left[ begin{array}{l} cosalpha=-frac12\ cosalpha=1 end{array} right. Rightarrow left[ begin{array}{l} a=frac{2pi}{3}\ a=0 – text{не подходит} end{array} right. end{gather*}
(alpha) | (left(0;frac{2pi}{3}right)) | (frac{2pi}{3}) | (left(frac{2pi}{3};piright)) |
(S'(alpha)) | >0 | 0 | <0 |
(S(alpha)) | (nearrow) | max | (searrow) |
Точка максимума (alpha=frac{2pi}{3})
Максимальная площадь поперечного сечения $$ S_{max}=frac{d^2}{2}sinfrac{2pi}{3}left(1-cosfrac{2pi}{3}right)=frac{d^2}{2}cdot frac{sqrt{3}}{2}cdotleft(1+frac12right)=frac{3sqrt{3}}{8}d^2 $$ Желоб нужно делать с углом (frac{2pi}{3} (120^circ))
Ответ: (frac{2pi}{3})