Как найти точки пересечения двух парабол

Расположение графика квадратного трёхчлена относительно осей координат

В §28 данного справочника мы показали, что квадратный трёхчлен можно представить в виде:

$$ ax^2+bx+c = a(x+ frac{b}{2a})^2-frac{D}{4a}, D = b^2-4ac $$

Мы получаем:

  • ось симметрии $x = -frac{b}{2a}$
  • вершину параболы на оси симметрии $(–frac{b}{2a}; -frac{D}{4a})$
  • точку пересечения (0;c) с осью OY

Любая парабола $y = ax^2+bx+c, a ≠ 0$ пересекается с осью OY в единственной точке (0;c).

Количество точек пересечения параболы $y = ax^2+bx+c$ с осью OX зависит от знака дискриминанта.

Если $D gt 0$, парабола имеет две точки пересечения с $x_1,2 = frac{-b pm sqrt{D}}{2a}$ на оси OX.

Если D = 0, парабола имеет одну точку пересечения $x_0 = -frac{b}{2a}$, которая лежит на оси OX и является вершиной параболы.

Если $D lt 0$ у параболы нет ни одной точки пересечения с осью OX.

Точки пересечения параболы с осью OX

$a gt 0$

$a lt 0$

$D gt 0$

Расположение графика квадратного трёхчлена относительно осей координат рис.1 Расположение графика квадратного трёхчлена относительно осей координат рис.2

$x_(1,2) = frac{-b pm sqrt{D}}{2a}$

D = 0

Расположение графика квадратного трёхчлена относительно осей координат рис.3 Расположение графика квадратного трёхчлена относительно осей координат рис.4

$x_0 = -frac{b}{2a}$

$ D lt 0 $

Расположение графика квадратного трёхчлена относительно осей координат рис.5 Расположение графика квадратного трёхчлена относительно осей координат рис.6

${ varnothing }$-нет пересечений

Точки пересечения двух парабол

На практике часто возникает задача «перехвата» одного тела другим, т.е. поиска точек пересечения двух траекторий; а тела в поле тяготения Земли нередко движутся по параболе.

Точки пересечения двух парабол

Поэтому исследовать возможные точки пересечения двух парабол – важная прикладная задача. Пусть уравнения парабол:

$$ y = a_1 x^2+b_1 x+c_1, quad y = a_2 x^2+b_2 x+c_2 $$

В точках пересечения выполняется равенство:

$$ a_1 x^2+b_1 x+c_1 = a_2 x^2+b_2 x+c_2 $$

$$ (a_1-a_2 ) x^2+(b_1-b_2 )x+(c_1-c_2 ) = 0 $$

Если ввести обозначения $A = a_1-a_2, B = b_1-b_2, C = c_1-c_2$, получаем уравнение:

$$ Ax^2+Bx+C = 0 $$

Количество решений этого уравнения в зависимости от нулевых и ненулевых значений параметров равно 11 и описывается схемой общего алгоритма решений квадратного уравнения (см.§25 данного справочника).

A = B = C = 0

$ a_1 = a_2, b_1 = b_2, $

$ c_1 = c_2 $

Две параболы совпадают

Бесконечное множество общих точек, $x in Bbb R$

Бесконечное множество общих точек

$A = B = 0, C neq 0$

$ a_1 = a_2, b_1 = b_2, $

$ c_1 neq c_2 $

Параболы имеют вид

$y = ax^2+bx+c_1$

$ y = ax^2+bx+c_2 $

У них общая ось симметрии

$ x = -frac{b}{2a}$, одна парабола находится над другой.

Ветки сходятся только на бесконечности.

Точек пересечения нет

Точек пересечения нет

$A = 0, B neq 0, C = 0$

$ a_1 = a_2, b_1 neq b_2 $

$ c_1 = c_2 $

Параболы имеют вид

$y = ax^2+b_1 x+c$

$ y = ax^2+b_2 x+c $

Обе проходят через точку (0;c).

Это – единственная точка пересечения.

Одна точка пересечения

(0;c)

Одна точка пересечения

$A = 0, B neq 0, C neq 0$

$ a_1 = a_2, b_1 neq b_2 $

$ c_1 neq c_2 $

Параболы имеют вид

$y = ax^2+b_1 x+c_1$

$ y = ax^2+b_2 x+c_2 $

Абсцисса точки пересечения

$ x = – frac{C}{B} = -frac{c_1-c_2}{b_1-b_2}$

Одна точка пересечения (касание)

Одна точка пересечения (касание)

$A neq 0, B = 0, C = 0$

$ a_1 neq a_2, b_1 = b_2 $

$ c_1 = c_2 $

Параболы имеют вид

$ y = a_1 x^2+bx+c$

$ y = a_2 x^2+bx+c $

Пересекаются при x=0 (точка касания)

Одна точка пересечения (касание) (0;c)

Точек пересечения нет

$A neq 0, B = 0, C neq 0$

$ a_1 neq a_2, b_1 = b_2 $

$ c_1 neq c_2 $

Параболы имеют вид

$ y = a_1 x^2+bx+c_1$

$ y = a_2 x^2+bx+c_2 $

Не пересекаются, если

$- frac{c_1-c_2}{a_1-a_2} lt 0 $

Две точки пересечения

Две точки пересечения

Если

$- frac{c_1-c_2}{a_1-a_2} gt 0 $

Пересекаются в двух точках

$$ x_{1,2} = pm sqrt{-frac{c_1-c_2}{a_1-a_2}} $$

Две точки пересечения

Две точки пересечения, одна из которых (0;c)

$A neq 0, B neq 0, C = 0$

$ a_1 neq a_2, b_1 neq b_2 $

$ c_1 = c_2 $

Параболы имеют вид

$$ y = a_1 x^2+b_1 x+c $$

$$ y = a_2 x^2+b_2 x+c $$

Две точки пересечения

$ x_1 = 0 $

$$x_2 = -frac{b_1-b_2}{a_1-a_2}$$

Две точки пересечения,

одна из которых (0;c)

Две точки пересечения, одна из которых (0;c)

$A neq 0, B neq 0, C neq 0$

$ a_1 neq a_2, b_1 neq b_2 $

$ c_1 neq c_2 $

Все параметры парабол разные

Ищем дискриминант:

$$ D = B^2-4AC $$

Если $D gt 0$

Две точки пересечения

$$ x_1,2 = frac{-B pm sqrt{D}}{2A} $$

Две точки пересечения

Две точки пересечения

Если D = 0

Одна точка пересечения (касание)

$$ x_0 = -frac{B}{2A} $$

Одна точка пересечения

(касание)

Одна точка пересечения

Если $D lt 0$

Точек пересечения нет

Точек пересечения нет

Точек пересечения нет

Внимание!

Если две параболы не совпадают, то они могут иметь 1) две точки пересечения; 2) одну точку пересечения; 3) ни одной точки пересечения.

Иметь ровно 3, 4, 5 и т.д. точек пересечения две параболы не могут!

Примеры

Пример 1. Найдите точки пересечения параболы с осями координат:

$а) y = 3x^2+2x-1$

Пример 1. а)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = -1end{array} right.}$

Пересечение с осью OX:

$$ 3x^2+2x-1 = 0 Rightarrow (3x-1)(x+1) = 0 Rightarrow $$

$ Rightarrow left[ begin{array}{cc} {left{ begin{array}{c} x = frac{1}{3} \ y = 0 end{array} right.} \ {left{ begin{array}{c} x = -1 \ y = 0 end{array} right.} end{array} right.$ – две точки пересечения

$б) y = -4x^2-3x+1$

Пример 1. б)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = 1end{array} right.}$

Пересечение с осью OX:

$$ -4x^2-3x+1 = 0 Rightarrow 4x^2+3x-1 = 0 $$

$$ (4x-1)(x+1) = 0 Rightarrow$$

$ Rightarrow left[ begin{array}{cc} {left{ begin{array}{c} x = frac{1}{4} \ y = 0 end{array} right.} \ {left{ begin{array}{c} x = -1 \ y = 0 end{array} right.} end{array} right.$ – две точки пересечения

$в) y = 5x^2-2x+1$

Пример 1. в)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = 1end{array} right.}$

Пересечение с осью OX:

$$ 5x^2-2x+1 = 0 $$

$$ D = 2^2-4 cdot 5 cdot 1 = 4-20 = -16 lt 0 $$

Парабола не пересекает ось OX

$ г) y = -x^2+4x-4 $

Пример 1. г)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = -4end{array} right.}$

Пересечение с осью OX:

$$ -x^2+4x-4 = 0 Rightarrow x^2-4x+4 = 0 Rightarrow $$

$$ Rightarrow (x-2)^2 = 0 Rightarrow {left{ begin{array}{c} x = 2 \ y = 0 end{array} right.}$$ – одна точка пересечения

Пример 2*. Даны две параболы

$$ y = 2x^2+5x+1 и y = x^2+3x+k $$

Найдите такое значение параметра k, чтобы параболы

1) имели две точки пересечения; 2) имели одну точку пересечения; 3) не пересекались.

По условию

$$ a_1 = 2, b_1 = 5, c_1 = 1, a_2 = 1, b_2 = 3, c_2 = k $$

$$ a_1 neq a_2, b_1 neq b_2 $$

A = 2-1 = 1, B = 5-3 = 2, C = 1-k

Нам необходимо рассмотреть 4 последних случая из представленных выше, в таблице §29.

1) Параболы имеют две точки пересечения в двух случаях:

1 случай: $c_2 = c_1$, k = 1

Пример 2* 1 случай

$$x_1 = 0, x_2 = -frac{B}{A} = -2$$

$${left{ begin{array}{c} y = 2x^2+5x+1 \ y = x^2+3x+1 end{array} right.} Rightarrow left[ begin{array}{cc} {left{ begin{array}{c} x_1 = 0 \ y_1 = 1end{array} right.} \ {left{ begin{array}{c} x_2 = -2 \ y_2 = -1 end{array} right.} end{array} right.$$

2 случай: $c_2 ≠ c_1, D gt 0$

$$ D = B^2-4AC = 2^2-4 cdot 1 cdot (1-k) = 4k gt 0 Rightarrow k gt 0 $$

Пример 2* 2 случай

Например, k = 4

$$ D = 4k = 16 = 4^2 $$

$$ x_1,2 = frac{-B pm sqrt{D}}{2A} = frac{-2 pm 4}{2} = left[ begin{array}{cc} x_1 = -3\ x_2 = 1 end{array} right. $$

Оба случая можем объединить требованием $k gt 0$.

2) Параболы имеют одну точку пересечения, если:

$$ D = 4k = 0 Rightarrow k = 0 $$

Пример 2 случай 2)

$${left{ begin{array}{c} y = 2x^2+5x+1 \ y = x^2+3x end{array} right.} $$

$$ x_0 = frac{-B}{2A} = -1 $$

3) Параболы не имеют общих точек, если:

$$ D = 4k lt 0 Rightarrow k lt 0 $$

Пример 2* 3)

Например, k = -1

Ответ: 1) $k gt 0$; 2) k = 0; 3) $k lt 0$

Пример 3. Две параболы с общей вершиной

Найдите соотношение параметров двух парабол, при котором они будут пересекаться в одной точке – вершине парабол.

Пусть уравнения парабол:

$$ y = a_1 x^2+b_1 x+c_1, y = a_2 x^2+b_2 x+c_2 $$

Координаты вершин:

$$ left( -frac{b_1}{2a_1}, – frac{D_1}{4a_1} right), left(- frac{b_2}{2a_2},- frac{D_2}{4a_2} right) $$

По условию:

$$ {left{ begin{array}{c} -frac{b_1}{2a_1} = -frac{b_2}{2a_2} \ -frac{D_1}{4a_1} = -frac{D_2}{4a_2} end{array} right.} Rightarrow {left{ begin{array}{c} frac{b_1}{a_1} = frac{b_2}{2a_2} \ frac{D_1}{a_1} = frac{D_2}{a_2} end{array} right.} $$

Получаем две пропорции, которым параметры уравнений должны удовлетворять одновременно.

Пример 4. Используя результаты примера 3, найдите две параболы, у которых такая же вершина, как у $y = frac{x^2}{2}-3x+1$.

Координаты вершины:

$$ x_0 = – frac{b}{2a} = – frac{-3}{2 cdot frac{1}{2}} = 3, D = b^2-4ac = 3^2-4 cdot frac{1}{2} cdot 1 = 7 $$

$$ y_0 = – frac{D}{4a} = – frac{7}{4 cdot frac{1}{2}} = -3,5 $$

Уравнение искомой параболы: $y = ax^2+bx+c$

Пропорции для параметров (см. пример 3):

$$ {left{ begin{array}{c} frac{b}{a} = frac{-3}{1/2} = -6 \ frac{D}{a} = frac{7}{1/2} = 14 end{array} right.} Rightarrow {left{ begin{array}{c} b = -6a \ D = 14a end{array} right.} $$

Пусть для искомых двух парабол a=1 и a=-0,2 (можно взять любые другие значения). Получаем:

$$ {left{ begin{array}{c} a = 1 \ b = -6a = -6 \ D = 14a = 14 end{array} right.} Rightarrow {left{ begin{array}{c} a = 1 \ b = -6 \ b^2-4ac = 14 end{array} right.} Rightarrow {left{ begin{array}{c} a = 1 \ b = -6 \ 36-4c = 14 end{array} right.} Rightarrow {left{ begin{array}{c} a = 1 \ b = -6 \ c = frac{36-14}{4} = 5,5 end{array} right.}$$

$$ y = x^2-6x+5,5 $$

$$ {left{ begin{array}{c} a = -0,2 \ b = -6a = 1,2 \ D = 14a = -2,8 end{array} right.} Rightarrow {left{ begin{array}{c} a = -0,2 \ b = 1,2 \ 1,2^2-4 cdot (-0,2)c = -2,8 end{array} right.} Rightarrow {left{ begin{array}{c} a = -0,2 \ b = 1,2 \ c = – frac{1,44+2,8}{0,8} = -5,3 end{array} right.} $$

$$ y = -0,2x^2+1,2x-5,3 $$

Параболы

$$ y = frac{x^2}{2}-3x+1, y = x^2-6x+5,5, y = -0,2x^2+1,2x-5,3 $$

имеют общую вершину (3;-3,5)

Пример 4.

Пример 5. Комета движется по параболической траектории, которая в выбранной системе координат описывается уравнением $y = frac{x^2}{3}-2x+5$.

Космический аппарат запускается из начала координат и также движется по параболической траектории. Рассчитайте уравнение этой траектории так, чтобы её вершина совпала с вершиной траектории кометы.

Координаты вершины траектории кометы:

$$ x_0 = -frac{b}{2a} = -frac{-2}{2 cdot frac{1}{3}} = 3, D = b^2-4ac = 2^2-4 cdot frac{1}{3} cdot 5 = – frac{8}{3} $$

$$ y_0 = – frac{D}{4a} = – frac{-8/3}{4 cdot 1/3} = 2 $$

Уравнение траектории космического аппарата: $y = ax^2+bx+c$.

Аппарат запускается из начала координат, т.е. его траектория пересекается с осью OY в точке (0;0). Значит, в уравнении параболы c = 0.

Пропорции для параметров (см. пример 3) с учетом c = 0:

$$ {left{ begin{array}{c} frac{b}{a} = frac{-2}{1/3} = -6 \ frac{D}{a} = frac{-frac{8}{3}}{frac{1}{3}} = -8 end{array} right.} Rightarrow {left{ begin{array}{c} b = -6a \ D = b^2-4a underbrace{c}_{text{= 0 }} = b^2 = -8a end{array} right.} Rightarrow {left{ begin{array}{c} b = -6a \ b^2 = -8a end{array} right.} Rightarrow $$

$$ {left{ begin{array}{c} b = frac{-8a}{-6a} = frac{4}{3} \ a = -frac{b}{6} = -frac{2}{9} end{array} right.} $$

Уравнение траектории космического аппарата с «перехватом» кометы в вершине:

$$ y = -frac{2}{9} x^2+ frac{4}{3} x $$

Пример 5.

Как вычислять координаты точек пересечения парабол

Параболы на плоскости могут пересекаться в одной или двух точках, либо вообще не иметь точек пересечения. Поиск таковых точек — типичная задача алгебры, входящая в программу школьного курса.

Как вычислять координаты точек пересечения парабол

Инструкция

Убедитесь в том, что по условиям задачи вам известны уравнения обеих парабол. Парабола — это кривая на плоскости, задаваемая уравнением следующего вида y = ax² + bx + c (формула 1), где a, b и c – некоторые произвольные коэффициенты, причем коэффициент a ≠ 0. Таким образом, две параболы будут заданы посредством формул y = ax² + bx + c и y = dx² + ex + f. Пример — заданы параболы с формулами y = 2x² – x – 3 и y = x² -x + 1.

Теперь вычтите из одного из уравнений параболы другое. Произведите, таким образом, расчет следующего вида: ax² + bx + c – (dx² + ex + f) = (a-d)x² + (b-e)x + (c-f). Получился полином второй степени, коэффициенты которого вы легко можете вычислить. Чтобы найти координаты точек пересечения парабол, достаточно поставить знак равенства нулю и найти корни получившегося квадратного уравнения (a-d)x² + (b-e)x + (c-f) = 0 (формула 2). Для приведенного выше примера получим y = (2-1)x² -x + x + (-3 – 1) = x² – 4 = 0.

Корни квадратного уравнения (формула 2) ищем по соответствующей формуле, которая есть в любом учебнике алгебры. Для приведенного примера существует два корня x = 2 и x = -2. Кроме того, в формуле 2 значение коэффициента при квадратичном члене (a-d) может быть равным нулю. В этом случае уравнение окажется не квадратным, а линейным и всегда будет иметь один корень. Заметьте, в общем случае квадратное уравнение (формула 2) может иметь два корня, один корень, либо вовсе не иметь ни одного — в последнем случае параболы не пересекаются и задача не имеет решения.

Если, все же, найден один или два корня, их значения нужно подставить в формулу 1. В нашем примере подставляем вначале x = 2, получаем y = 3, затем подставляем x = -2, получаем y = 7. Две получившиеся точки на плоскости (2;3) и (-2;7) и являются координатами пересечения парабол. Других точек пересечения у этих парабол нет.

Обратите внимание

Особым случаем является поиск точек пересечения тождественно равных парабол, то есть двух парабол, задаваемых одинаковыми уравнениями. В этом случае можно сказать, что параболы совпадают, все точки у них общие.

Источники:

  • координаты точки параболы

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Как найти координаты точек пересечения графика функции: примеры решения

Автор статьи

Ирина Алексеевна Антоненко

Эксперт по предмету «Математика»

Задать вопрос автору статьи

В практике и в учебниках наиболее распространены нижеперечисленные способы нахождения точки пересечения различных графиков функций.

Первый способ

Первый и самый простой – это воспользоваться тем, что в этой точке координаты будут равны и приравнять графики, а из того что получится можно найти $x$. Затем найденный $x$ подставить в любое из двух уравнений и найти координату игрек.

Пример 1

Найдём точку пересечения двух прямых $y=5x + 3$ и $y=x-2$, приравняв функции:

$5x = x- 2$;

$4x = -2$;

$x=-frac{1}{2}$

Теперь подставим полученный нами икс в любой график, например, выберем тот, что попроще — $y=x-2$:

$y=-frac{1}{2} – 2 = – 2frac12$.

Точка пересечения будет $(-frac{1}{2};- 2frac12)$.

Второй способ

Второй способ заключается в том, что составляется система из имеющихся уравнений, путём преобразований одну из координат делают явной, то есть, выражают через другую. После это выражение в приведённой форме подставляется в другое.

Пример 2

Узнайте, в каких точках пересекаются графики параболы $y=2x^2-2x-1$ и пересекающей её прямой $y=x+1$.

Решение:

Составим систему:

$begin{cases} y=2x^2-2x-1 \ y= x + 1 \ end{cases}$

Второе уравнение проще первого, поэтому подставим его вместо $y$:

$x+1 = 2x^2 – 2x-1$;

$2x^2 – 3x – 2 = 0$.

Вычислим, чему равен x, для этого найдём корни, превращающие равенство в верное, и запишем полученные ответы:

$x_1=2; x_2 = -frac{1}{2}$

Подставим наши результаты по оси абсцисс по очереди во второе уравнение системы:

$y_1= 2 + 1 = 3; y_2=1 – frac{1}{2} = frac{1}{2}$.

Точки пересечения будут $(2;3)$ и $(-frac{1}{2}; frac{1}{2})$.

Третий способ

«Как найти координаты точек пересечения графика функции: примеры решения» 👇

Перейдём к третьему способу — графическому, но имейте в виду, что результат, который он даёт, не является достаточно точным.

Для применения метода оба графика функций строятся в одном масштабе на одном чертеже, и затем выполняется визуальный поиск точки пересечения.

Данный способ хорош лишь в том случае, когда достаточно приблизительного результата, а также если нет каких-либо данных о закономерностях рассматриваемых зависимостей.

Пример 3

Найдите точку пересечения графиков на общем рисунке.

Точка пересечения двух функций. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Точка пересечения двух функций. Автор24 — интернет-биржа студенческих работ

Решение:

Тут всё просто: ищем точки пересечения пунктиров, опущенных с графиков с осями абсцисс и ординат и записываем по порядку. Здесь точка пересечения равна $(2;3)$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 07.05.2023

Как вычислять координаты точек пересечения парабол

Параболы на плоскости могут пересекаться в одной или двух точках, либо вообще не иметь точек пересечения. Поиск таковых точек — типичная задача алгебры, входящая в программу школьного курса.Как вычислять координаты точек пересечения парабол

Убедитесь в том, что по условиям задачи вам известны уравнения обеих парабол. Парабола — это кривая на плоскости, задаваемая уравнением следующего вида y = ax² + bx + c (формула 1), где a, b и c – некоторые произвольные коэффициенты, причем коэффициент a ≠ 0. Таким образом, две параболы будут заданы посредством формул y = ax² + bx + c и y = dx² + ex + f. Пример — заданы параболы с формулами y = 2x² – x – 3 и y = x² -x + 1.

Теперь вычтите из одного из уравнений параболы другое. Произведите, таким образом, расчет следующего вида: ax² + bx + c – (dx² + ex + f) = (a-d)x² + (b-e)x + (c-f). Получился полином второй степени, коэффициенты которого вы легко можете вычислить. Чтобы найти координаты точек пересечения парабол, достаточно поставить знак равенства нулю и найти корни получившегося квадратного уравнения (a-d)x² + (b-e)x + (c-f) = 0 (формула 2). Для приведенного выше примера получим y = (2-1)x² -x + x + (-3 – 1) = x² – 4 = 0.

Корни квадратного уравнения (формула 2) ищем по соответствующей формуле, которая есть в любом учебнике алгебры. Для приведенного примера существует два корня x = 2 и x = -2. Кроме того, в формуле 2 значение коэффициента при квадратичном члене (a-d) может быть равным нулю. В этом случае уравнение окажется не квадратным, а линейным и всегда будет иметь один корень. Заметьте, в общем случае квадратное уравнение (формула 2) может иметь два корня, один корень, либо вовсе не иметь ни одного — в последнем случае параболы не пересекаются и задача не имеет решения.

Если, все же, найден один или два корня, их значения нужно подставить в формулу 1. В нашем примере подставляем вначале x = 2, получаем y = 3, затем подставляем x = -2, получаем y = 7. Две получившиеся точки на плоскости (2;3) и (-2;7) и являются координатами пересечения парабол. Других точек пересечения у этих парабол нет.

Координаты точки пересечения графиков функций

Как найти?

  1. Чтобы найти координаты точки пересечения графиков функций нужно приравнять обе функции друг к другу, перенести в левую часть все члена, содержащие $ x $, а в правую остальные и найти корни, полученного уравнения.
  2. Второй способ заключается в том, что нужно составить систему уравнений и решить её путём подстановки одной функции в другую
  3. Третий способ подразумевает графическое построение функций и визуальное определение точки пересечения.

Случай двух линейных функций

Рассмотрим две линейные функции $ f(x) = k_1 x+m_1 $ и $ g(x) = k_2 x + m_2 $. Эти функции называются прямыми. Построить их достаточно легко, нужно взять любые два значения $ x_1 $ и $ x_2 $ и найти $ f(x_1) $ и $ (x_2) $. Затем повторить тоже самое и с функцией $ g(x) $. Далее визуально найти координату точки пересечения графиков функций.

Следует знать, что линейные функции имеют только одну точку пересечения и только тогда, когда $ k_1 neq k_2 $. Иначе, в случае $ k_1=k_2 $ функции параллельны друг другу, так как $ k $ – это коэффициент угла наклона. Если $ k_1 neq k_2 $, но $ m_1=m_2 $, тогда точкой пересечения будет $ M(0;m) $. Это правило желательно запомнить для ускоренного решения задач.

Пример 1
Пусть даны $ f(x) = 2x-5 $ и $ g(x)=x+3 $. Найти координаты точки пересечения графиков функций.
Решение

Как это сделать? Так как представлены две линейные функции, то первым делом смотрим на коэффициент угла наклона обеих функций $ k_1 = 2 $ и $ k_2 = 1 $. Замечаем, что $ k_1 neq k_2 $, поэтому существует одна точка пересечения. Найдём её с помощью уравнения $ f(x)=g(x) $:

$$ 2x-5 = x+3 $$

Переносим слагаемые с $ x $ в левую часть, а остальные в правую:

$$ 2x – x = 3+5 $$

$$ x = 8 $$

Получили $ x=8 $ абциссу точки пересечения графиков, а теперь найдём ординату. Для этого подставим $ x = 8 $ в любое из уравнений хоть в $ f(x) $, либо в $ g(x) $:

$$ f(8) = 2cdot 8 – 5 = 16 – 5 = 11 $$

Итак, $ M (8;11) $ – является точкой пересечения графиков двух линейных функций.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ M (8;11) $$
Пример 2
Дано $ f(x)=2x-1 $ и $ g(x) = 2x-4 $. Найти точки пересечения графиков функций.
Решение
Как найти? Опять же обращаем внимание на то, что угловые коэффициенты равны $ k_1 = k_2 = 2 $. Это означает, что линейные функции параллельны между собой, поэтому у них нет точек пересечения!
Ответы
Графики функций параллельны, нет точек пересечения.

 Случай двух нелинейных функций 

Пример 3
Найти координаты точки пересечения графиков функций: $ f(x)=x^2-2x+1 $ и $ g(x)=x^2+1 $
Решение

Как быть с двумя нелинейными функциями? Алгоритм простой: приравниваем уравнения друг к другу и находим корни:

$$ x^2-2x+1=x^2+1 $$

Разносим по разным сторонам уравнения члены с $ x $ и без него:

$$ x^2-2x-x^2=1-1 $$

$$ -2x=0 $$

$$ x=0 $$

Найдена абцисса искомой точки, но её недостаточно. Ещё нехватает ординаты $ y $. Подставляем $ x = 0 $ в любое из двух уравнений условия задачи. Например:

$$ f(0)=0^2-2cdot 0 + 1 = 1 $$

$ M (0;1) $ – точка пересечения графиков функций

Ответ
$$ M (0;1) $$

Добавить комментарий