Как найти точки в графике физика

Как написать уравнение по графику физика

Задачи по физике – это просто!

Не забываем, что решать задачи надо всегда в системе СИ!

А теперь к задачам!

Элементарные задачи из курса школьной физики по кинематике.


Задача на составление описания движения и составление уравнения движения по заданному графику движения

Дано: график движения тела

Найти:
1. составить описание движения
2. составить уравнение движения тела.

Проекцию вектора скорости определяем по графику, выбрав любой удобный для рассмотрения отрезок времени.
Здесь удобно взять t=4c

Составляем уравнение движения тела:

Записываем формулу уравнения прямолинейного равномерного движения.

Подставляем в нее найденный коэффициент Vx (не забываем о минусе!).
Начальная координата тела (Xо) соответствует началу графика, тогда Xо=3

Составляем описание движения тела:

Желательно сделать чертеж, это поможет не ошибиться!
Не забываем, что все физические величины имеют единицы измерения, их необходимо указывать!

Тело движется прямолинейно и равномерно из начальной точки Xо=3м со скоростью 0,75 м/с противоположно направлению оси X.

Задача на определение места и времени встречи двух движущихся тел (при прямолинейном равномерном движении)

Движение тел задано уравнениями движения для каждого тела.

Дано:
1. уравнение движения первого тела
2. уравнение движения второго тела

Найти:
1. координату места встречи
2. момент время (после начала движения), когда произойдет встреча тел

По заданным уравнениям движения строим графики движения для каждого тела в одной системе координат.

Точка пересечения двух графиков движения определяет:

1. на оси t – время встречи ( через сколько времени после начала движения произойдет встреча)
2. на оси X – координату места встречи (относительно начала координат)

В результате:

Два тела встретятся в точке с координатой -1,75 м через 1,25 секунд после начала движения.

Для проверки полученных графическим способом ответов можно решить систему уравнений из двух заданных
уравнений движения:

Для тех, кто почему-то забыл, как построить график прямолинейного равномерного движения:

График движения – это линейная зависимость ( прямая), строится по двум точкам.
Выбираем два любых удобных для простоты расчета значения t1 и t2.
Для этих значений t подсчитываем соответствующие значения координат X1 и X2.
Откладываем 2 точки с координатами (t1, X1) и (t2, X2) и соединяем их прямой – график готов!

Задачи на составление описания движения тела и построение графиков движения по заданному уравнению прямолинейного равномерного движения

Задача 1

Дано: уравнение движения тела

Найти:

1. составить описание движения
2. построить график движения

Заданное уравнение сравниваем с формулой и определяем коэффициенты.
Не забываем делать чертеж, чтобы еще раз обратить внимание на направление вектора скорости.

Задача 2

Дано: уравнение движения тела

Найти:
1. составить описание движения
2. построить график движения

Задача 3

Дано: уравнение движения тела

Найти:
1. составить описание движения
2. построить график движения

Задача 4

Дано: уравнение движения тела

Найти:
1. составить описание движения
2. построить график движения

Тело находится в состоянии покоя в точке с координатой X=4м (состояние покоя – это частный случай движения, когда скорость тела равна нулю).

Задача 5

Дано:
начальная координата движущейся точки xo=-3 м
проекция вектора скорости Vx=-2 м/с

Найти:
1. записать уравнение движения
2. построить график движения
3. показать на чертеже векторы скорости и перемещения
4. найти координату точки через 10 секунд после начала движения

Как написать уравнение по графику физика

1 мин = 60 с; 1 ч = 3600 с; 1 км = 1000 м; 1 м/с = 3,6 км/ч.

ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ

Типовая задача «Уравнение координаты (нахождение неизвестной величины)»

Задача № 1. В начальный момент времени тело находилось в точке с координатой 5 м, а через 2 мин от начала движения — в точке с координатой 95 м. Определите скорость тела и его перемещение.

Типовая задача «Уравнение координаты. Движение двух тел»

Задача № 2. Движение двух тел задано уравнениями x1 = 20 – 8t и х2 = –16 + 10t (время измеряется в секундах, координата — в метрах). Определите для каждого тела начальную координату, проекцию скорости, направление скорости. Вычислите время и место встречи тел.

Типовая задача «График координаты»

Задача № 3. Движение тела задано графиком координаты (зависимости координаты от времени). По графику определите: а) начальную координату тела; б) проекцию скорости тела; в) направление движения тела (по оси х или против оси х); г) запишите уравнение координаты.

Типовая задача «График координаты. Движение нескольких тел»

Задача № 4. На рисунке изображены графики движения трех тел. Изучив рисунок, для каждого тела определите: а) начальную координату; б) скорость; в) направление движения; г) запишите уравнение координаты.

ЗАДАЧИ ПОСЛОЖНЕЕ

Задача № 5. На рисунке представлены графики зависимости координаты х от времени t для пяти тел. Определите скорости этих тел. Проанализируйте точки пересечения графиков. Постройте графики зависимости скорости от времени.

РЕШЕНИЕ:

Задача № 6. По графикам на рисунке напишите уравнения движения x = x(t) . Из уравнений и графиков найдите координаты тел через 5 с , скорости движения тел, время и место встречи второго и третьего тел.

РЕШЕНИЕ:

Задача № 7. ОГЭ Расстояние ( S ) между городами М и К = 250 км . Одновременно из обоих городов навстречу друг другу выезжают автомашины. Машина из города М движется со скоростью = 60 км/ч , из города К — со скоростью ν2 = 40 км/ч . Построить график зависимости пути от времени для каждой из машин и по ним определить место встречи и время их движения до встречи.

Задача № 8. ЕГЭ Скорость течения реки vp = 1 м/с , скорость лодки относительно воды v0 = 2 м/с . Под каким углом к берегу следует держать курс, чтобы лодка двигалась перпендикулярно берегу? За какое время t она переправится через реку, ширина которой d = 200 м ?

Алгоритм решения ЗАДАЧИ на Прямолинейное равномерное движение.

Задачи, описывающие движение, содержат два типа величин: векторные (имеющие направление) и скалярные (выражающиеся только числом). К векторным величинам при описании равномерного прямолинейного движения относятся скорость и перемещение.

Для перехода от векторов к скалярам выбирают координатную ось и находят проекции векторов на эту ось, руководствуясь следующим правилом: если вектор сонаправлен с осью, то его проекция положительна, если противоположно направлен — отрицательна. (Могут быть и более сложные случаи, когда вектор не параллелен координатной оси, а направлен к ней под некоторым углом.) Поэтому при решении задачи обязательно нужно сделать чертеж, на котором изобразить направления всех векторов и координатную ось. При записи «дано» следует учитывать знаки проекций.

При решении задач все величины должны выражаться в международной системе единиц (СИ), если нет специальных оговорок.

В решении задачи единицы величин не пишутся, а записываются только после найденного значения величины.

Это конспект по теме «ЗАДАЧИ на Прямолинейное равномерное движение с решениями». Выберите дальнейшие действия:

Уравнение движения, графики равномерного прямолинейного движения

п.1. Прямолинейное равномерное движение на координатной прямой

Система отсчета, с помощью которой можно описать прямолинейное движение состоит из:
1) тела отсчета; 2) координатной прямой; 3) часов для отсчета времени.
Пусть телом отсчета будет дом.
В начальный момент времени машина стоит в 20 м справа от дома.

Рассмотрим движение машины со скоростью 10 м/с вправо.
Направим координатную прямую параллельно вектору скорости, вправо.

Составим таблицу перемещений за первые 4 секунды:

t, c 0 1 2 3 4
x, м 20 30 40 50 60

Стартуя с точки x0=20, машина каждую секунду удаляется от дома еще на 10 м.
Пройденный путь за 2 секунды – 10·2=20 м, за 3 секунды – 10·3=30 м, за t секунд s=vt метров. Значит, для произвольного времени t можем записать координату x в виде: begin x=x_0+s=x_0+vt\ x=20+10t end

Если при тех же начальных условиях и направлении координатной прямой машина будет двигаться влево, получим таблицу:

t, c 0 1 2 3 4
x, м 20 10 0 -10 -20

В этом случае координата x в любой момент времени t имеет вид: begin x=x_0-st=x_0-vt\ x=20-10t end Если же машина никуда не едет, её скорость v=0, и координата x=x0 в любой момент времени t.

п.2. Уравнение прямолинейного равномерного движения

Зависимость координаты тела от времени в механике называют уравнением движения.
Если уравнение движения известно, то мы можем решить основную задачу механики.

п.3. Удобная система отсчета для решения задачи о прямолинейном движении

При решении задачи можно выбрать различные тела отсчета и связать с ними различные системы координат. Как правило, некоторая система отсчета является наиболее удобной для решения данной задачи в том смысле, что в ней уравнение движения выглядит и решается проще, чем в других системах.

При решении задач на прямолинейное движение телом отсчета может быть неподвижная поверхность (земля, пол, стол и т.п.), само движущееся тело или другое тело.
При этом системой координат является координатная прямая, параллельная направлению движения (вектору перемещения) тела, уравнение движения которого мы хотим получить.

Проекции скорости и перемещения на координатную прямую могут быть положительными, равными нулю или отрицательными. Величины скорости и перемещения будут равны длинам соответствующих проекций.

п.4. График движения x=x(t)

Сравним полученное уравнение движения (x(t)=x_0+v_x t) с уравнением прямой (y(x)=kx+b) (см. §38 справочника по алгебре для 7 класса).

В уравнении движения роль углового коэффициента (k) играет проекция скорости (v_x), а роль свободного члена (b) – начальная координата (x_0).

Построим графики зависимости координаты от времени для нашего примера:

x=20+10t – машина движется вправо (в направлении оси OX)
x=20-10t – машина движется влево (в направлении, противоположном оси OX)
x=20 – машина стоит

п.5. Как найти уравнение движения по графику движения?

п.6. График скорости vx=vx(t)

Для рассмотренного примера:

п.7. Как найти путь и перемещение по графику скорости?

Пусть тело движется прямолинейно равномерно, зависимость его координаты от времени описывается уравнением: $$ x(t)=x_0+v_x t $$ Тогда в некоторый момент времени (t_1) координата равна (x_1=x_0+v_x t_1).
Несколько позже, в момент времени (t_2gt t_1) координата равна (x_2=x_0+v_x t_2).
Если (v_xgt 0), то пройденный за промежуток времени (triangle t=t_2-t_1) путь равен разности координат: $$ s=x_2-x_1=(x_0+v_x t_2)-(x_0+v_x t_1)=x_0-x_0+v_x (t_2-t_1)=v_x triangle t $$ В общем случае, т.к. (v_x) может быть и отрицательным, а путь всегда положительный, в формуле нужно поставить модуль: $$ s=|v_x|triangle t $$
Изобразим полученное соотношение на графике скорости:

Проекция скорости (v_x) может быть не только положительной, но и отрицательной.
Если учитывать знак, то произведение: $$ triangle x=v_x triangle t $$ дает проекцию перемещения на ось OX. Знак этого произведения указывает на направление перемещения.

Проекция перемещения может быть как положительной, так и отрицательной или равной 0.

п.8. Задачи

Задача 1. Спортсмен бежит по прямолинейному участку дистанции с постоянной скоростью 8 м/с. Примите (x_0=0) и запишите уравнение движения.
а) Постройте график движения (x=x(t)) и найдите с его помощью, сколько пробежит спортсмен за (t_1=5 с), за (t_2=10 с);
б) постройте график скорости (v=v(t)) и найдите с его помощью, какой путь преодолеет спортсмен за промежуток времени (triangle t=t_2-t_1)?

По условию (x_0=0, v_x=8).
Уравнение движения: (x=x_0+v_x t=0+8t=8t)
а) Строим график прямой (x=8t) по двум точкам:


По графику находим: begin x_1=x(5)=8cdot 5=40 text<(м)>\ x_2=x(10)=8cdot 10=80 text <(м)>end
б) Скорость (v_x=8) м/с – постоянная величина, её график:

$$ t_1=5 с, t_2=10 с $$ Пройденный путь за промежуток времени (triangle t=t_2-t_1) равен площади заштрихованного прямоугольника: $$ s=v_x triangle t=8cdot (10-5)=40 text <(м)>$$ Ответ: а) 40 м и 80 м; б) 40 м

Задача 2. Космический корабль движется прямолинейно с постоянной скоростью.
Известно, что через 1 час после старта корабль находился на расстоянии 38 тыс.км от астероида Веста, а через 2 часа после старта – на расстоянии 56 тыс.км.
а) постройте график движения корабля, найдите по графику уравнение движения.
б) на каком расстоянии от астероида находился корабль в начальный момент времени?
в) на каком расстоянии от астероида будет находиться корабль через 4 часа после старта?
г) чему равна скорость корабля в километрах в секунду?

а) Будем откладывать время в часах, а расстояние в тыс.км
Отмечаем точки A(1;38) и B(2;56), проводим через них прямую.
Полученная прямая и есть график движения (x=x(t)).

Найдем скорость корабля (v_x): $$ v_x=frac=frac<56-38><2-1>=18 (text<тыс.км/ч>) $$ Найдем начальную координату (x_0): $$ x_0=x_1-v_x t_1=38-18cdot v_1=20 (text<тыс.км/ч>) $$ Получаем уравнение движения: $$ x(t)=x_0+v_x t, x(t)=20+18t $$ где (x) – в тыс.км, а (t) – в часах.

б) В начальный момент времени корабль находился на расстоянии (x_0=20) тыс.км от астероида.

в) Через 4 часа после старта корабль будет находиться на расстоянии $$ x(4)=20+18cdot 4=92 (text<тыс.км>) $$
г) Переведем скорость в км/с: $$ 18000frac<text<км>><text<ч>>=frac<18000 text<км>><1 text<ч>>=frac<18000 text<км>><3600 text>=5 text <км/c>$$ Ответ:
а) (x(t)=20+18t) ((x) в тыс.км, (t) в часах); б) 20 тыс.км; в) 92 тыс.км; г) 5 км/с

[spoiler title=”источники:”]

http://reshator.com/sprav/fizika/7-klass/uravnenie-dvizheniya-grafiki-ravnomernogo-pryamolinejnogo-dvizheniya/

[/spoiler]

Если траектория движения точки известна, то зависимость пути

, пройденного точкой, от истекшего промежутка времени

 дает полное описание этого движения. Мы видели, что для равномерного движения такую зависимость можно дать в виде формулы (9.2). Связь между

 и

 для отдельных моментов времени можно задавать также в виде таблицы, содержащей соответственные значения промежутка времени и пройденного пути. Пусть нам дано, что скорость некоторого равномерного движения равна 2 м/с. Формула (9.2) имеет в этом случае вид

. Составим таблицу пути и времени такого движения:

t, с 1 2 3 4 5 6
s, м 2 4 6 8 10 12

Зависимость одной величины от другой часто бывает удобно изображать не формулами или таблицами, а графиками, которые более наглядно показывают картину изменения переменных величин и могут облегчать расчеты. Построим график зависимости пройденного пути от времени для рассматриваемого движения. Для этого возьмем две взаимно перпендикулярные прямые — оси координат; одну из них (ось абсцисс) назовем осью времени, а другую (ось ординат) — осью пути. Выберем масштабы для изображения промежутков времени и пути и примем точку пересечения осей за начальный момент и за начальную точку на траектории. Нанесем на осях значения времени и пройденного пути для рассматриваемого движения (рис. 18). Для «привязки» значений пройденного пути к моментам времени проведем из соответственных точек на осях (например, точек 3 с и 6 м) перпендикуляры к осям. Точка пересечения перпендикуляров соответствует одновременно обеим величинам: пути

 и моменту

, — этим способом и достигается «привязка». Такое же построение можно выполнить и для любых других моментов времени и соответственных путей, получая для каждой такой пары значений время — путь одну точку на графике. На рис. 18 выполнено такое построение, заменяющее обе строки таблицы одним рядом точек. Если бы такое построение было выполнено для всех моментов времени, то вместо отдельных точек получилась бы сплошная линия (также показанная на рисунке). Эта линия и называется графиком зависимости пути от времени или, короче, графиком пути.


Рис. 18. График пути равномерного движения со скоростью 2 м/с


Рис. 19. К упражнению 12.1

В нашем случае график пути оказался прямой линией. Можно показать, что график пути равномерного движения всегда есть прямая линия; и обратно: если график зависимости пути от времени есть прямая линия, то движение равномерно.

Повторяя построение для другой скорости движения, найдем, что точки графика для большей скорости лежат выше, чем соответственные точки графика для меньшей скорости (рис. 20). Таким образом, чем больше скорость равномерного движения, тем круче прямолинейный график пути, т. е. тем больший угол он составляет с осью времени.


Рис. 20. Графики пути равномерных движений со скоростями 2 и 3 м/с


Рис. 21. График того же движения, что на рис. 18, вычерченный в другом масштабе

Наклон графика зависит, конечно, не только от числового значения скорости, но и от выбора масштабов времени и длины. Например, график, изображенный на рис. 21, дает зависимость пути от времени для того же движения, что и график рис. 18, хотя и имеет другой наклон. Отсюда ясно, что сравнивать движения по наклону графиков можно только в том случае, если они вычерчены в одном и том же масштабе.

С помощью графиков пути можно легко решать разные задачи о движении. Для примера на рис. 18 штриховыми линиями показаны построения, необходимые для того, чтобы решить следующие задачи для данного движения: а) найти путь, пройденный за время 3,5 с; б) найти время, за которое пройден путь 9 м. На рисунке графическим путем (штриховые линии) найдены ответы: а) 7 м; б) 4,5 с.

На графиках, описывающих равномерное прямолинейное движение, можно откладывать по оси ординат вместо пути

 координату

 движущейся точки. Такое описание открывает большие возможности. В частности, оно позволяет различать направление движения по отношению к оси

. Кроме того, приняв начало отсчета времени за нуль, можно показать движение точки в более ранние моменты времени, которые следует считать отрицательными.


Рис. 22. Графики движений с одной и той же скоростью, но при различных начальных положениях движущейся точки


Рис. 23. Графики нескольких движений с отрицательными скоростями

Например, на рис. 22 прямая I есть график движения, происходящего с положительной скоростью 4 м/с (т. е. в направлении оси

), причем в начальный момент движущаяся точка находилась в точке с координатой

 м. Для сравнения на том же рисунке дан график движения, которое происходит с той же скоростью, но при котором в начальный момент движущаяся точка находится в точке с координатой

 (прямая II). Прямая. III соответствует случаю, когда в момент

 движущаяся точка находилась в точке с координатой

 м. Наконец, прямая IV описывает движение в случае, когда движущаяся точка имела координату

 в момент

 с.

Мы видим, что наклоны всех четырех графиков одинаковы: наклон зависит только от скорости движущейся точки, а не от ее начального положения. При изменении начального положения весь график просто переносится параллельно самому себе вдоль оси

 вверх или вниз на соответственное расстояние.

Графики движений, происходящих с отрицательными скоростями (т. е. в направлении, противоположном направлению оси

), показаны на рис. 23. Они представляют собой прямые, наклоненные вниз. Для таких движений координата

 точки с течением времени уменьшается.

12.3.
График пути для точки, движущейся со скоростью

, отсекает на оси ординат отрезок

. Как зависит от времени расстояние

 от начальной точки? Напишите формулу этой зависимости.

12.4.
Точка, движущаяся со скоростью

, в момент

 находится на расстоянии

 от начальной. Как зависит от времени расстояние

?

12.5.
Точка, двигаясь равномерно вдоль оси

, имела координаты

м и

м в моменты времени

с и

с соответственно. Найдите графически, в какой момент точка проходила через начало координат и какова была координата

 в начальный момент. Найдите проекцию скорости на ось

.

12.6.
Найдите при помощи графика пути, когда и на каком расстоянии от точки А автомашину, вышедшую из точки А, догонит вторая автомашина, вышедшая из той же точки через 20 мин после первой, если первая машина движется со скоростью 40 км/ч, а вторая — со скоростью 60 км/ч.

12.7.
Найдите при помощи графика пути, где и когда встретятся автомашины, вышедшие одновременно навстречу друг другу со скоростями 40 и 60 км/ч из пунктов А и В, лежащих на расстоянии 100 км друг от друга.

Графики пути можно строить и для случаев, в которых тело движется равномерно в течение определенного промежутка времени, затем движется равномерно, но с другой скоростью в течение другого промежутка времени, затем снова меняет скорость и т. д. Например, на рис. 26 показан график движения, в котором тело двигалось в течение первого часа со скоростью 20 км/ч, в течение второго часа — со скоростью 40 км/ч и в течение третьего часа — со скоростью 15 км/ч.

12.8.
Постройте график пути для движения, в котором за последовательные часовые промежутки тело имело скорости 10, -5, 0, 2, -7 км/ч. Чему равно суммарное перемещение тела?

Физическую задачу в кинематике можно решить несколькими способами:

  •  аналитический — решение задачи основано на формулах (физических законах), которые связывают искомую величину и данные в условии задачи;
  •  графический — решение задачи осуществляется с помощью графика.

Основные закономерности графического способа решения задач по кинематике

1.1. График зависимости модуля скорости (v(t)) равномерного движения от времени — прямая линия, параллельная оси (OX) (рис. (1)).

geogebra-export (15).png

Рис. (1). График модуля скорости равномерного движения

Если изображается зависимость проекции скорости от времени (v_x(t)), то возможны следующие варианты интерпретации:

а) график расположен над осью времени — тело движется в положительном направлении оси (OX);

б) график расположен под осью времени — тело движется в отрицательном направлении оси (OX).

1.2. Модуль перемещения (или пройденный путь при одномерном прямолинейном движении) на графике (v(t)) в момент времени (t_1) будет равен площади фигуры (прямоугольника) под графиком модуля скорости (рис. (2)).

график2.PNG

Рис. (2). Определение модуля перемещения по графику скорости

2.1. График модуля перемещения (s(t)) для равномерного движения (рис. (3)) — прямая под углом ({alpha}) к оси времени: 

график_перемещения.PNG

Рис. (3). График модуля перемещения

Если изображается зависимость проекции перемещения от времени (s_x(t)), то возможны следующие варианты интерпретации:

а) график расположен над осью времени — тело движется в положительном направлении оси (OX);

б) график расположен под осью времени — тело движется в отрицательном направлении оси (OX).

2.2. Модуль скорости равномерного движения на графике модуля перемещения (s(t)) равен тангенсу угла (tgalpha) наклона прямой на графике (рис. (4)).

График_перемещения2.PNG

Рис. (4). Определение модуля скорости по графику модуля перемещения

Решение задачи аналитическим и графическим способами

Два катера, между которыми расстояние (30) м, равномерно движутся навстречу друг другу со значениями модулей скоростей υ1 (=) (2) м/с и υ2 (=) (4) м/c. Определи время встречи катеров. Какой путь успеет пройти первый катер до встречи?

Дано:

начальная координата первого катера —

x01

 (=) (0) м, а второго —

x02

 (=) (30) м.  

Вектор скорости первого катера (vec{v_1}) сонаправлен оси (OX), его проекция будет положительна ({v_1}_x > 0), а вектор скорости второго катера (vec{v_2}) направлен противоположно оси (OX), поэтому его проекция будет отрицательна: ({v_2}_x < 0) (рис. (5)).

задание.PNG

Рис. (5). Задача

Аналитический способ решения

1. Запишем уравнения движения тел, исходя из формулы (x(t) = x_0 + v_x(t – t_0)).

2. В момент встречи (t_{встр}) тела будут иметь одинаковую координату (x_1 = x_2):

2tвстр=30−4tвстр;6tвстр=30;[tвстр]=мм/с=c;tвстр=306=5c.

 — расчёт времени встречи катеров.

3. Для ответа на второй вопрос воспользуемся следующей формулой:  

L=υ1⋅tвстр;[L]=мc⋅c=м;L=2⋅5=10м.

 — расчёт пути, пройденного первым катером до момента встречи (t_{встр}).

Графический способ решения

1. Запишем для первого катера уравнение движения:

x1=0+2t=2t

.

2. Заполним таблицу значений (x(t)) для построения графика движения первого катера.

(x), м (0) (2) (4)
(t), с (0) (1) (2)

3. Запишем для второго катера уравнение движения:

x2=30−4t

.

4. Заполним таблицу значений (x(t)) для построения графика движения второго катера.

(x), м (30) (26) (22)
(t), с (0) (1) (2)

5. Построим графики движений двух катеров.

анал играф.png

Рис. (6). График движения катеров

6. Находим по графику (рис. (6)):

а) время встречи (точка пересечения)

tвстр

 (=) (5) c;

б) путь, пройденный первым катером, равен изменению координаты (L) (=) (x(t_{встр})) 

x01

(=) (10) м.

Ответ: (5) с; (10) м.

Источники:

Рис. 1. График модуля скорости равномерного движения. © ЯКласс.

Рис. 2. Определение модуля перемещения по графику скорости. © ЯКласс.

Рис. 3. График модуля перемещения. © ЯКласс.

Рис. 4. Определение модуля скорости по графику модуля перемещения. © ЯКласс.

Рис. 5. Задача. © ЯКласс.

Рис. 6. График движения катеров. © ЯКласс.

2.2.1 Как перевести из км/ч в м/с и т. д?

В задачах часто необходимо переводить из одних единиц измерения в другие:

1 км/ч = (1000 м)/(3600 с) = 5/18 м/с,

1 м/с = 18/5 км/ч,

1 км/с = 1000 м/с,

1 см/с = 0,01 м/с,

1 м/мин = 1/60 м/с.

Например, если nu =36км/ч, то для того, чтобы перевести в м/с, нужно умножить на 5/18:

36 км/ч=36 умножить на дробь: числитель: 5, знаменатель: 18 конец дроби =10 м/с.

2.2.2 Как найти скорость тела, если известен закон движения?

Закон равномерного движения имеет вид:

x=x_0 плюс nu_x t.

Видим, что в этой формуле скорость стоит коэффициентом перед временем. Поэтому, если в условии задачи дан закон движения, необходимо посмотреть на коэффициент перед t — это и есть скорость.

Например, пусть закон движения имеет вид: x=3 плюс 5t. В данном случае коэффициент перед t равен 5, следовательно, nu_x=5 м/с.

2.2.3 Как определить скорость по графику координаты от времени?

Закон равномерного движения имеет вид:

x=x_0 плюс nu_x t.

Графиком этого закона является прямая линия. Так как nu_x — коэффициент перед t, то nu_x является угловым коэффициентом прямой.

Для графика 1:

nu_x_1= левая круглая скобка Delta x_1 правая круглая скобка / левая круглая скобка Delta t_1 правая круглая скобка .

То, что график 1 «поднимается вверх», означает — тело едет в положительном направлении оси Ox.

Для графика 2:

nu_x_2= левая круглая скобка Delta x_2 правая круглая скобка / левая круглая скобка Delta t_2 правая круглая скобка .

То, что график 2 «опускается вниз», означает — тело едет в отрицательном направлении оси Ox.

Для определения Delta x и Delta t выбираем такие точки на графике, в которых можно точно определить значения, как правило, это точки, находящиеся в вершинах клеток.

2.2.4 Как найти закон движения, если известны координаты тела в моменты времени t_1 и t_2?

Пусть в момент времени t_1 тело находилось в точке с координатой x_1, а в момент времени t_2 тело находилось в точке с координатой x_2.

Для времени t_1 имеем:

x_1=x_0 плюс nu_x t_1.

Для времени t_2 имеем:

x_2=x_0 плюс nu_x t_2.

Решая систему уравнений (2.19) и (2.20), получим

nu_x= дробь: числитель: x_1 минус x_2, знаменатель: t_1 минус t_2 конец дроби , x_0= дробь: числитель: x_2 t_1 минус x_1 t_2, знаменатель: t_1 минус t_2 конец дроби .

2.2.5 Как найти графически момент и координату встречи двух тел?

Пусть даны законы движения двух тел: x_1=x_01 плюс nu_x_1 t и x_2=x_02 плюс nu _x_2 t. Согласно пункту 2.5 графиками обоих законов являются прямые линии. Необходимо на одном графике построить оба закона.

Графики пересекаются в одной точке. Координаты этой точки и являются временем и местом встречи.

2.2.6 Как аналитически найти координату и время встречи двух тел?

Пусть даны законы движения двух тел: x_1=x_01 плюс nu_x_1 t и x_2=x_02 плюс nu_x_2 t. В момент встречи тела оказываются в одной координате, то есть x_1=x_2, и необходимо решить уравнение:

x_01 плюс nu_x_1 t=x_02 плюс nu_x_2 t.

Решение уравнения имеет вид:

t_встр= дробь: числитель: |x_01 минус x_02|, знаменатель: |nu_x_1 минус nu_x_2| конец дроби .

Для нахождения координаты достаточно подставить вместо t найденное значение  t_встр в любой из законов движения:

x_встр=x_01 плюс nu_x_1 t_встр,

или

x_встр=x_02 плюс nu_x_2 t_встр.

2.2.7 Как найти среднюю скорость, если тело половину пути проехало со скоростью nu_1, а вторую половину пути nu_2?

По определению (2.8):

nu_ср= дробь: числитель: L, знаменатель: t конец дроби .

В нашем случае, так как на каждой половине пути тело едет с постоянной скоростью, то

t=t_1 плюс t_2= дробь: числитель: дробь: числитель: L, знаменатель: 2 конец дроби , знаменатель: nu_1 конец дроби 	 плюс дробь: числитель: дробь: числитель: L, знаменатель: 2 конец дроби , знаменатель: nu_2 конец дроби = дробь: числитель: L, знаменатель: 2 конец дроби левая круглая скобка дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 правая круглая скобка конец дроби

Получаем

nu_ср= дробь: числитель: L, знаменатель: дробь: числитель: L, знаменатель: 2 конец дроби левая круглая скобка дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 правая круглая скобка конец дроби конец дроби = дробь: числитель: 2nu_1nu_2, знаменатель: nu_1 плюс nu_2 конец дроби .

В общем случае, если весь путь разбить на n равных участков, на каждом из которых тело едет с постоянной скоростью, то

nu_ср= дробь: числитель: n, знаменатель: дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 конец дроби плюс дробь: числитель: 1, знаменатель: nu_3 конец дроби плюс ... плюс дробь: числитель: 1, знаменатель: nu_n конец дроби конец дроби .

Формула справедлива только если весь путь разбит на равные участки. Если же разбиение будет иное, то, естественно, формула для нахождения средней скорости, будет иной.

2.2.8 Как найти среднюю скорость, если тело половину времени проехало со скоростью nu_1, а вторую половину времени nu_2?

По определению (2.8):

nu_ср= дробь: числитель: L, знаменатель: t конец дроби .

В нашем случае, так как каждую половину времени тело едет с постоянной скоростью, то

L=L_1 плюс L_2= дробь: числитель: t, знаменатель: 2 конец дроби nu_1 плюс дробь: числитель: t, знаменатель: 2 конец дроби nu_2.

Получаем

nu_ср= дробь: числитель: дробь: числитель: t, знаменатель: 2 конец дроби nu_1 плюс дробь: числитель: t, знаменатель: 2 конец дроби nu_2, знаменатель: t конец дроби = дробь: числитель: дробь: числитель: t, знаменатель: 2 конец дроби левая круглая скобка nu_1 плюс nu_2 правая круглая скобка , знаменатель: t конец дроби = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка nu_1 плюс nu_2 правая круглая скобка .

В общем случае, если все время разбито на n равных промежутков, на каждом из которых тело едет с постоянной скоростью, то

nu_ср= дробь: числитель: 1, знаменатель: n конец дроби левая круглая скобка nu_1 плюс nu_2 плюс nu _3 плюс ⋯ плюс nu _4 правая круглая скобка .

Формула справедлива только если все время разбито на равные промежутки. Если же разбиение будет иное, то, естественно, формула для нахождения средней скорости, будет иной.

2.2.9 Как найти скорость, с которой движется моторная лодка по течению реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecu.

При движении по течению вектора overrightarrownu_0 и vecu направлены в одну сторону, следовательно, получаем сложение двух векторов, направленных в одну сторону — используем формулу (1.15):

nu =nu_0 плюс u.

Таким образом, при движении любого тела по течению его скорость определяется формулой nu =nu_0 плюс u.

2.2.10 Как найти скорость, с которой движется моторная лодка против течения реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли) равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecnu

Перепишем формулу в виде:

vecnu=overrightarrownu_0 минус левая круглая скобка минус vecnu правая круглая скобка .

Вектора overrightarrownu_0 и  левая круглая скобка минус vecnu правая круглая скобка направлены в одну сторону, следовательно, получаем вычитание двух векторов, направленных в одну сторону — используем формулу c=|a минус b|:

nu =nu_0 минус u.

2.2.11 Как найти скорость, с которой движется моторная лодка, если ее скорость направлена перпендикулярно течению реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecnu

В данном случае вектора overrightarrownu_0 и vecnu направлены перпендикулярно, следовательно, получаем задачу о сложении взаимно перпендикулярных векторов — используем формулу c= корень из: начало аргумента: a в степени левая круглая скобка 2 конец аргумента плюс b в квадрате правая круглая скобка :

nu = корень из: начало аргумента: nu_0 конец аргумента в квадрате плюс u в квадрате .

2.2.12 Как найти расстояние, на которое снесет лодку, если ее скорость направлена перпендикулярно скорости реки?

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OD. В результате, когда тело окажется на противоположном берегу, оно попадет в точке D, и его снесет на длину CD=S.

Треугольник OAB подобен треугольнику OCD:

 дробь: числитель: CD, знаменатель: AB конец дроби = дробь: числитель: OC, знаменатель: OA конец дроби Rightarrow дробь: числитель: S, знаменатель: u конец дроби = дробь: числитель: h, знаменатель: nu_0 конец дроби Rightarrow S=h дробь: числитель: u, знаменатель: nu_0 конец дроби .

2.2.13 Как найти скорость, с которой движется моторная лодка, если ее скорость направлена под углом φ к скорости течения реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecu.

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OB. Как видим, получили треугольник, в котором известен один из углов — левая круглая скобка 180 градусов минус фи правая круглая скобка . Тогда по теореме косинусов:

nu = корень из: начало аргумента: nu_0 конец аргумента в квадрате плюс u в квадрате минус 2nu _0 u косинус ⁡ левая круглая скобка 180 градусов минус фи правая круглая скобка = корень из: начало аргумента: nu _0 конец аргумента в квадрате плюс u в квадрате плюс 2nu_0 u косинус ⁡ фи .

2.2.14 Как найти расстояние, на которое снесет лодку, если ее скорость направлена под углом  фи к скорости течения реки?

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OB. В результате, когда тело окажется на противоположном берегу, оно попадет в точке В, и его снесет на длину АВ=S.

В задачах, когда движение происходит в плоскости, то есть и вдоль оси Ox, и вдоль оси Oy, необходимо введение системы координат для того, чтобы упростить рассмотрение задачи.

Проекция nu_x:

nu_x=nu _0 косинус ⁡ фи плюс u.

Проекция nu_y:

nu _y=nu_0 синус ⁡ фи .

Формулы nu_x=nu _0 косинус ⁡ фи плюс u и nu _y=nu_0 синус ⁡ фи не просто результат математической операции нахождения проекции, nu_x и nu_y имеют физический смысл: со скоростью nu_x тело плывет вдоль оси Ox, то есть по течению; со скоростью nu_y тело переплывает реку. Например, время, за которое тело переплывет реку, можно найти просто поделив ширину реки на nu_y:

t_0= дробь: числитель: h, знаменатель: nu_y конец дроби = дробь: числитель: h, знаменатель: nu_0 синус фи конец дроби .

Тогда

S=nu_xt_0= дробь: числитель: h, знаменатель: nu_0 синус фи конец дроби левая круглая скобка nu_0 косинус фи плюс u правая круглая скобка .

2.2.15 Под каким углом α нужно направить собственную скорость лодки, чтобы за минимальное время переплыть реку?

Согласно формуле nu _y=nu_0 синус ⁡ фи скорость, с которой лодка переплывает реку, равна:

nu_y=nu_0 синус ⁡ фи .

Очевидно, что время будет минимальным, если nu_y будет максимальным, то есть  фи =90 градусов= дробь: числитель: Пи , знаменатель: 2 конец дроби .

2.2.16 С какой скоростью машина обгоняет вторую машину, если они движутся в одну сторону?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина также движется вправо со скоростью overrightarrownu_2. Скорость обгона — это скорость, с которой 1-ая машина движется относительно 2-ой, то есть — это относительная скорость, и она определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Так как overrightarrownu_1 и overrightarrownu_2 направлены в одну сторону, то получили задачу о вычитании векторов, направленных в одну сторону — формула c=|a минус b|:

nu_обгона=nu_1 минус nu_2.

Заметим, что при обгоне, естественно nu_1 больше nu_2, поэтому nu_обгона больше 0.

2.2.17 За какое время проедут мимо друг друга два поезда, двигающиеся в одном направлении?

Пусть длина 1-го поезда L_1, а скорость 2-го поезда L_2. Скорость обгона определяется формулой nu_обгона=nu_1 минус nu_2. Тогда

t= дробь: числитель: L_1 плюс L_2, знаменатель: nu_обгона конец дроби = дробь: числитель: L_1 плюс L_2, знаменатель: nu_1 минус nu_2 конец дроби .

2.2.18 С какой скоростью машина едет навстречу вторую машину, если они движутся в противоположных направлениях?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина движется влево со скоростью overrightarrownu_2. Скорость движения навстречу — это скорость, с которой 1-ая машина движется относительно 2-ой, то есть — это относительная скорость, и она определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Перепишем эту формулу в виде:

overrightarrownu_отн=overrightarrownu_1 минус левая круглая скобка минус overrightarrownu_2 правая круглая скобка .

Так как overrightarrownu_1 и  левая круглая скобка минус overrightarrownu_2 правая круглая скобка направлены в одну сторону, то получили задачу о вычитании векторов, направленных в одну сторону — формула c=|a минус b|:

nu_встр=nu_1 минус левая круглая скобка минус nu_2 правая круглая скобка =nu_1 плюс nu_2.

2.2.19 За какое время проедут мимо друг друга два поезда, двигающиеся в противоположных направлениях?

Пусть длина 1-го поезда L_1, а скорость 2-го поезда L_2. Скорость обгона определяется формулой nu_обгона=nu_1 минус nu_2. Тогда

t= дробь: числитель: L_1 плюс L_2, знаменатель: nu_встр конец дроби = дробь: числитель: L_1 плюс L_2, знаменатель: nu_1 плюс nu_2 конец дроби .

2.2.20 Как найти относительную скорость, если тела движутся по взаимно перпендикулярным направлениям?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина движется перпендикулярно первой со скоростью overrightarrownu_2. Относительная скорость определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Так как вектора overrightarrownu_1 и overrightarrownu_2 перпендикулярны, то воспользуемся формулой c= корень из: начало аргумента: a в степени левая круглая скобка 2 конец аргумента плюс b в квадрате правая круглая скобка :

nu_отн= корень из: начало аргумента: nu_1 конец аргумента в квадрате плюс nu_2 в квадрате .

Рассмотрим поступательное движение. Когда тело движется поступательно, его координаты изменяются.

Прямолинейное движение – это когда тело движется по прямой. Прямую, вдоль которой движется тело, назовем осью Ox.

Будем отдельно рассматривать:

  • движение без ускорения (равномерное), и
  • движение с ускорением (неравномерное).

1). Равномерное движение — скорость тела остается одной и той же (т. е. не изменяется). При таком движении ускорения нет: (vec{a} =0).

2). Неравномерное движение — скорость меняется и появляется ускорение.

Пусть ускорение есть и, оно не изменяется: (vec{a} =const). Такое неравномерное движение называют равнопеременным. Чтобы уточнить, увеличивается ли скорость, или уменьшается, вместо слова «равнопеременное» говорят:

  • Равноускоренное движение — скорость тела увеличивается.
  • Равнозамедленное движение — скорость уменьшается.

Примечание: Когда изменяется скорость, всегда появляется ускорение!

Движение будем изображать графически, используя две перпендикулярные оси.

На графиках будем откладывать:

  • по горизонтали — время в секундах.
  • по вертикали — координаты тела, или проекции скорости и ускорения.

Для каждого вида движения получим три графика. Графики будем называть так:

  1. x(t) – зависимость координаты от времени;
  2. v(t) – зависимость проекции скорости от времени;
  3. a(t) – зависимость проекции ускорения от времени.

Прочитайте вначале, что такое проекция вектора на ось, это поможет лучше усвоить материал.

Тело покоится, его координата не меняется, а скорость и ускорение отсутствуют

Пусть тело покоится на оси Ox – (рис 1а).
Точкой (x_{0}) обозначена координата этого тела. Когда тело неподвижно, его координата не меняется. На графике неизменную координату обозначают горизонтальной линией, расположенной параллельно оси времени (рис. 1б).
[x=x_{0}]

Случаю, когда тело покоится – рис. а), соответствует горизонтальный график координаты x(t) – рис. б), скорость «v» – рис. в) и ускорение «a» – рис. г) лежат на оси времени

Рис.1. Тело покоится, график координаты x(t) — горизонтальная прямая рис. б).
Скорость «v» и ускорение «a» — это прямые, лежащие на оси Ox. График скорости – рис. в). График ускорения – рис. г)

Скорость и ускорение неподвижного тела равны нулю:

[vec{v}=0]

[vec{a}=0]

Из-за этого, графики скорости (рис. 1в) и ускорения (рис. 1г) – это горизонтальные линии, лежащие на оси t времени.

Скорость не меняется — движение равномерное

Разберём равномерное движение в направлении оси (рис. 2а).

Начальная координата тела – это точка (x_{0}), а конечная координата — точка (x) на  оси Ox. В точку «x» тело переместится к конечному времени «t».

Красной стрелкой обозначено направление, в котором тело движется.

 Примечание: Тело движется туда, куда направлен вектор его скорости.

Движению с постоянной скоростью вдоль оси Ox соответствует возрастающая прямая x(t) – рис а). Скорость не изменяется, поэтому график v(t) – горизонтальная прямая, а ускорение нулевое, его график г) лежит на оси времени

Рис.2. Тело движется равномерно в направлении оси Ox – рис а). Зависимость координаты от времени – это возрастающая прямая x(t) – рис. б). График скорости в) – это горизонтальная прямая, а график ускорения г) лежит на оси времени, так как ускорение равно нулю

Координата возрастает со временем, так как тело движется туда же, куда указывает ось. Поэтому график координаты от времени — это возрастающая прямая x(t) – рис. б).

Уравнение, описывающее изменение координаты выглядят так:

[ x  = x_{0} + v cdot t ]

Скорость на графике рис. в) изображена горизонтальной прямой линией, потому, что скорость остается одной и той же (не изменяется). Уравнение скорости записывается так:

[ v  = v_{0} = const ]

Ускорение рис. г) изображается прямой, лежащей на оси времени, так как ускорения нет. Математики посмотрят на такой график и скажут: «Ускорение равно нулю и не изменяется». Эту фразу они запишут формулой:

[ a = 0 ]

Равномерное движение в направлении противоположном оси

Пусть теперь тело движется с одной и той же скоростью в направлении, противоположном оси (рис. 3а).

Случаю, когда тело движется равномерно против оси Ox – рис. а), соответствуют убывающая зависимость координаты от времени – рис б), отрицательная проекция скорости на ось – рис. в) и, нулевое ускорение – рис. г)

Рис.3. Тело движется равномерно противоположно направлению оси Ox – рис. а). Такому движению соответствуют: убывающая зависимость координаты от времени – рис б), отрицательная проекция скорости на ось – рис. в) и, нулевое ускорение – рис. г)

Так как тело теперь движется против направления оси, то координата тела будет уменьшаться. График (рис 3б) координаты x(t) выглядит, как убывающая прямая линия.

Так как скорость не изменяется, то график v(t) – это горизонтальная прямая.

Тело движется против оси, его вектор скорости направлен противоположно оси Ox. Поэтому проекция скорости будет отрицательной (рис 3в) и на графике v(t) скорость — это горизонтальная прямая, лежащая ниже оси времени.

А график ускорения (рис 3г) лежит на оси времени, так как ускорение нулевое.

Равноускоренное движение в направлении оси, скорость увеличивается

Следующий набор графиков – это случай, когда тело движется вдоль оси Ox с возрастающей скоростью (рис. 4). То есть, мы рассматриваем равноускоренное движение.

Когда тело движется равноускорено по направлению оси Ox – рис. а), его координата изменяется параболически – рис. б), график скорости изображается возрастающей наклонной прямой – рис. в), проекция ускорения на ось Ox – это горизонтальный график рис. г)

Рис.4. Тело движется равноускорено – рис. а) по направлению оси Ox. Изменение координаты от времени x(t) описывается правой ветвью параболы – рис. б), график v(t) скорости изображен наклонной возрастающей прямой – рис. в), а график неизменного ускорения a(t) – рис. г) изображается горизонтальной прямой, лежащей выше оси времени

Координата «x» теперь изменяется не по линейному, а по квадратичному закону. На графике квадратичное изменение выглядит, как ветвь параболы (рис. 4б). Тело движется по оси и скорость его растет. Такое движение описывается правой ветвью параболы, направленной вверх.

Уравнение, которое описывает квадратичное изменение координаты, выглядит так:

[ x = frac{a}{2}cdot t^{2} + v_{0} cdot t + x_{0} ]

Скорость, так же, растет (рис. 4в). Рост скорости описан наклонной прямой линией – то есть, линейной зависимостью:

[ v  = v_{0} + a cdot t ]

Ускорение есть (рис. 4г) и оно не меняется:

[ a = const ]

Скорость и ускорение сонаправлены с осью Ox, поэтому их проекции на ось положительны, а их графики лежат выше оси времени.

Примечания:

1). Координата «x» будет изменяться:

  • по линейному закону, когда скорость не меняется — остается одной и той же.
  • по квадратичному закону, когда скорость будет изменяться (расти, или убывать).

2). Линейный закон – это уравнение первой степени, на графике – наклонная прямая линия.

3). Квадратичный закон – это уравнение второй степени, на графике — парабола.

4). Когда скорость увеличивается, для графика координаты x(t) выбираем правую ветвь параболы, а когда скорость уменьшается – то левую ветвь.

Равноускоренное движение против оси

Если тело будет увеличивать свою скорость, двигаясь в направлении, противоположном оси (рис. 5а), то ветвь параболы, описывающая изменение координаты тела, будет направлена вниз (рис. 5б).

Скорость направлена против оси и увеличивается в отрицательную область. Такое изменение скорости изображаем прямой, направленной вниз (рис. 5в).

Когда тело движется равноускорено против оси Ox – рис. а), его координата изменяется по правой ветви параболы – рис. б), график скорости - возрастающая в отрицательную область наклонная прямая – рис. в), горизонтальный график ускорения - рис. г) лежит ниже оси Ox

Рис.5. Тело движется равноускорено противоположно оси Ox – рис. а). Координата меняется параболически – рис. б), ветвь правая, так как скорость растет. Скорость — рис. в), и ускорение — рис. г), направлены против оси Ox, их графики лежат ниже оси времени

Примечание: Чтобы скорость увеличивалась (по модулю), нужно, чтобы векторы скорости и ускорения были сонаправленными (ссылка).

Так как скорость увеличивается, то векторы скорости и ускорения сонаправлены. Но при этом, они направлены против оси, поэтому проекции векторов (vec{v}) и (vec{a}) на ось Ox будут отрицательными. Значит, графики скорости и ускорения будут лежать ниже горизонтальной оси времени.

Ускорение (рис. 5г) не изменяется, поэтому изображается горизонтальной прямой. Но эта прямая будет лежать ниже горизонтальной оси времени, так как ускорение имеет отрицательную проекцию на ось Ox.

Скорость уменьшается — движение равнозамедленное

Когда скорость тела уменьшается с постоянным ускорением, движение называют равнозамедленным. Координата в этом случае изменяется по квадратичному закону. График координаты – это ветвь параболы. Когда скорость уменьшается, координату описываем с помощью левой ветви параболы, с вершиной вверху (рис. 6б).

Равнозамедленное движение по оси Ox – рис. а), координата тела изменяется по левой ветви параболы – рис. б), график скорости - убывающая наклонная прямая – рис. в), ускорение направлено против оси Ox, горизонтальный график ускорения - рис. г) лежит ниже оси времени

Рис.6. Тело движется равнозамедленно по оси Ox – рис. а), его координата растет по левой ветви параболы – рис. б), график скорости — убывающая наклонная прямая – рис. в), ускорение направлено против оси Ox, горизонтальный график ускорения — рис. г) лежит ниже оси времени

Примечание: Чтобы скорость уменьшалась по модулю, нужно, чтобы векторы скорости и ускорения были направлены в противоположные стороны (ссылка).

Скорость уменьшается, при этом, скорость направлена по оси. Поэтому, график скорости – это убывающая прямая линия, лежащая выше оси времени (рис. 6в).

А ускорение есть, оно не изменяется и направлено против оси. Поэтому, ускорение отрицательное, его график – это горизонтальная прямая, лежащая ниже оси времени (рис. 6г).

Равнозамедленное движение против оси

Если тело будет двигаться против оси, замедляясь, то график координаты — это левая ветвь параболы, вершиной вниз (рис. 7б).

Скорость вначале была большой, но так как тело замедляется, она падает до нуля. Но тело двигается против оси Ox, поэтому график скорости лежит ниже оси времени (рис. 7в).

Равнозамедленное движение против оси. Координата убывает по левой ветви параболы – рис. б), отрицательная скорость падает к нулю, график скорости - наклонная прямая – рис. в), ускорение направлено по оси Ox, горизонтальный график ускорения - рис. г) лежит выше оси времени

Рис.7. Тело движется равнозамедлено против оси Ox – рис. а), его координата убывает по левой ветви параболы – рис. б), скорость отрицательная и уменьшается к нулю, график скорости — наклонная прямая – рис. в), ускорение направлено по оси Ox, горизонтальный график ускорения — рис. г) лежит выше оси времени

Скорость отрицательная. А чтобы она уменьшалась, нужно, чтобы ускорение было направлено противоположно скорости. Поэтому ускорение будет положительным. Значит, график ускорения будет лежать выше оси времени. Так как ускорение не меняется, то его график изображен горизонтальной прямой линией (рис. 7г).

Примечание: Можно вычислить перемещение тела по графику скорости v(t), не пользуясь для этого графиком функции x(t) для координат тела.

Выводы

1). Все, что лежит:

  • выше оси t – положительное;
  • ниже оси t – отрицательное;
  • на горизонтальной оси t – равно нулю.

2). Когда ускорение, или скорость направлены против оси, они будут отрицательными, т. е. будут лежать ниже горизонтальной оси t. Если график ускорения лежит на горизонтальной оси, то ускорение отсутствует (т. е. равно нулю, нулевое).

3). Если скорость не меняется, ускорения нет.

  • График x(t) координаты – это прямая линия.
  • График v(t) скорости – горизонтальная прямая.
  • График a(t) ускорения лежит на оси t.

4). Если скорость растет, ускорение и скорость направлены в одну и ту же сторону.

  • График x(t) координаты – это правая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

5). Если скорость уменьшается, ускорение и скорость направлены в противоположные стороны.

  • График x(t) координаты – это левая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

Добавить комментарий