Как найти точки внутри круга

Уравнение для тестирования, если точка находится внутри круга

Если у вас есть круг с центром (center_x, center_y) и радиусом radius , как вы можете проверить, находится ли данная точка с координатами (x, y) внутри круга?

ОТВЕТЫ

Ответ 1

В общем случае x и y должны удовлетворять (x – center_x)^2 + (y – center_y)^2 .

Обратите внимание, что точки, которые удовлетворяют приведенному выше уравнению с заменой на == , считаются точками на окружности, а точки, которые удовлетворяют уравнению с заменой на > , считаются внешними круг.

Ответ 2

Математически, Pythagoras, вероятно, простой метод, о котором многие уже упоминали.

Вычислительно, есть более быстрые пути. Определение:

Если точка с большей вероятностью окажется вне этого круга, тогда представьте квадрат, нарисованный вокруг него так, чтобы стороны были касательными к этому кругу:

Теперь представьте себе квадратный алмаз, нарисованный внутри этого круга таким образом, чтобы вершины касались этого круга:

Теперь мы покрыли большую часть нашего пространства, и только небольшая область этого круга остается между нашим квадратом и алмазом для тестирования. Здесь мы возвращаемся к Пифагору, как указано выше.

Если точка с большей вероятностью находится внутри этого круга, то обратный порядок первых трех шагов:

Альтернативные методы представляют собой квадрат внутри этого круга вместо алмаза, но для этого требуется немного больше тестов и вычислений без каких-либо вычислительных преимуществ (внутренний квадрат и алмазы имеют одинаковые области):

Для тех, кто заинтересован в производительности, я реализовал этот метод в c и скомпилирован с -O3.

Я получил время выполнения time ./a.out

Я реализовал этот метод, обычный метод и фиктивный метод для определения временных затрат времени.

Normal: 21.3s This: 19.1s Overhead: 16.5s

Итак, кажется, что этот метод более эффективен в этой реализации.

Ответ 3

Вы можете использовать Pythagoras для измерения расстояния между вашей точкой и центром и посмотреть, меньше ли это радиуса:

РЕДАКТИРОВАТЬ (подсказка для Пауля)

На практике квадратирование часто намного дешевле, чем использование квадратного корня, и поскольку нас интересует только упорядочение, мы можем, конечно, отказаться от квадратного корня:

Кроме того, Джейсон отметил, что следует заменить на , и в зависимости от использования это может иметь смысл , хотя я считаю, что это не верно в строгом математическом смысле . Я исправляюсь.

Ответ 4

Это более эффективный и читаемый. Это позволяет избежать дорогостоящей работы с квадратным корнем. Я также добавил проверку, чтобы определить, находится ли точка в пределах ограничивающего прямоугольника круга.

Проверка прямоугольника не нужна, за исключением множества точек или многих кругов. Если большинство точек находятся внутри кругов, проверка ограничивающего прямоугольника будет делать вещи медленнее!

Как всегда, обязательно рассмотрите свой вариант использования.

Ответ 5

что в С#. конвертировать для использования в python.

Ответ 6

Вы должны проверить, меньше ли расстояние от центра круга до точки, чем радиус, т.е.

Ответ 7

Как сказано выше – используйте евклидову дистанцию.

Ответ 8

Найдите расстояние между центром круга и указанными точками. Если расстояние между ними меньше радиуса, то точка находится внутри круга. если расстояние между ними равно радиусу круга, то точка находится на окружности круга. если расстояние больше радиуса, то точка находится вне круга.

Ответ 9

Это то же самое решение, что и упомянутое Джейсоном Пеньоном, но оно содержит пример псевдокода и некоторые подробности. Я видел его ответ, написав это, но я не хотел удалять мои.

Я думаю, что наиболее понятным способом является сначала рассчитать расстояние между центром окружности и точкой. Я бы использовал эту формулу:

Затем просто сравните результат этой формулы, расстояние ( d ), с radius . Если расстояние ( d ) меньше или равно радиусу ( r ), точка находится внутри круга (на краю круга, если d и r равны).

Вот пример псевдокода, который можно легко преобразовать в любой язык программирования:

Где circle_x и circle_y – центральные координаты круга, r – радиус круга, а x и y – координаты точки.

Ответ 10

Мой ответ на С# как полное решение для вырезания и вставки (не оптимизированное):

Ответ 11

Как указывалось ранее, чтобы показать, находится ли точка в круге, мы можем использовать следующие

Чтобы представить его графически, мы можем использовать:

Ответ 12

Уравнение ниже представляет собой выражение, которое проверяет, находится ли точка в данном круге, где xP & yP – координаты точки, xC & yC – координаты центра круга, а R – радиус этого заданного круга.

Если приведенное выше выражение истинно, то точка находится внутри круга.

Ниже приведен пример реализации в С#:

Ответ 13

Я использовал код ниже для новичков вроде меня:).

public class incirkel <

Ответ 14

Перейдя в мир 3D, если вы хотите проверить, находится ли 3D-точка в единице измерения, вы делаете что-то подобное. Все, что необходимо для работы в 2D, – использовать двумерные векторные операции.

Ответ 15

Я знаю, что через несколько лет я получил ответ, получивший наибольшее количество голосов, но мне удалось сократить время расчета на 4.

Вам нужно только рассчитать пиксели от 1/4 круга, а затем умножить на 4.

Это решение, которое я достиг:

Ответ 16

Вот простой Java-код для решения этой проблемы:

Найти, если точка лежит внутри круга

По заданной окружности (координаты центра и радиуса) и точке (координате) определите, находится ли точка внутри или на окружности или нет.

Примеры :

Мы настоятельно рекомендуем вам свернуть браузер и попробовать это в первую очередь.
Идея состоит в том, чтобы вычислить расстояние точки от центра. Если расстояние меньше или равно радиусу. Дело в том, что внутри, а снаружи.

Ниже приведена реализация вышеуказанной идеи.

// C ++ программа для проверки, если точка
// лежит внутри круга или нет
#include

using namespace std;

bool isInside( int circle_x, int circle_y,

int rad, int x, int y)

// Сравнить радиус круга с расстоянием

// его центра от заданной точки

if ((x – circle_x) * (x – circle_x) +

(y – circle_y) * (y – circle_y)

int circle_x = 0, circle_y = 1, rad = 2;

isInside(circle_x, circle_y, rad, x, y) ?

cout “Inside” : cout “Outside” ;

// Java-программа для проверки, лежит ли точка
// внутри круга или нет

static boolean isInside( int circle_x, int circle_y,

int rad, int x, int y)

// Сравнить радиус окружности с

// расстояние его центра от

if ((x – circle_x) * (x – circle_x) +

(y – circle_y) * (y – circle_y)

// Программа драйвера для проверки вышеуказанной функции

public static void main(String arg[])

int circle_x = 0 , circle_y = 1 , rad = 2 ;

if (isInside(circle_x, circle_y, rad, x, y))

// Этот код предоставлен Anant Agarwal.

# Python3 программа для проверки
# точка лежит внутри круга
# или не

def isInside(circle_x, circle_y, rad, x, y):

# Сравнить радиус круга

# с расстоянием от его центра

# от заданной точки

if ((x – circle_x) * (x – circle_x) +

(y – circle_y) * (y – circle_y) = rad * rad):

if (isInside(circle_x, circle_y, rad, x, y)):

# Этот код добавлен
# Митс.

// C # программа для проверки, лежит ли точка
// внутри круга или нет

static bool isInside( int circle_x, int circle_y,

int rad, int x, int y)

// Сравнить радиус окружности с

// расстояние его центра от

if ((x – circle_x) * (x – circle_x) +

(y – circle_y) * (y – circle_y)

// Программа драйвера для проверки вышеуказанной функции

public static void Main()

int circle_x = 0, circle_y = 1, rad = 2;

if (isInside(circle_x, circle_y, rad, x, y))

// Этот код предоставлен нитин митталь.

// PHP программа для проверки, если точка
// лежит внутри круга или нет

function isInside( $circle_x , $circle_y ,

// Сравнить радиус круга

// с расстоянием от центра

// из заданной точки

if (( $x – $circle_x ) * ( $x – $circle_x ) +

( $y – $circle_y ) * ( $y – $circle_y )

$circle_x = 0; $circle_y = 1; $rad = 2;

if (isInside( $circle_x , $circle_y ,

// Этот код добавлен
// нитин митталь.
?>

Выход :

Спасибо Уткаршу Триведи за предложенное решение

Пожалуйста, пишите комментарии, если вы обнаружите что-то неправильное или вы хотите поделиться дополнительной информацией по обсуждаемой выше теме.

Уравнение окружности.

Аналитическая геометрия дает единообразные приемы решения геометрических задач. Для этого все заданные и искомые точки и линии относят к одной системе координат.

В системе координат можно каждую точку охарактеризовать ее координатами, а каждую линию – уравнением с двумя неизвестными, графиком которого эта линия является. Таким образом геометрическая задача сводится к алгебраической, где хорошо отработаны все приемы вычислений.

Окружность есть геометрическое место точек с одним определенным свойством (каждая точка окружности равноудалена от одной точки, называется центром). Уравнение окружности должно отражать это свойство, удовлетворять этому условию.

Геометрическая интерпретация уравнения окружности – это линия окружности.

Если поместить окружность в систему координат, то все точки окружности удовлетворяют одному условию – расстояние от них до центра окружности должно быть одинаковым и равным окружности.

Окружность с центром в точке А и радиусом R поместим в координатную плоскость.

Если координаты центра (а;b), а координаты любой точки окружности (х; у), то уравнение окружности имеет вид:

Если квадрат радиуса окружности равен сумме квадратов разностей соответствующих координат любой точки окружности и ее центра, то это уравнение является уравнением окружности в плоской системе координат.

Если центр окружности совпадает с точкой начала координат, то квадрат радиуса окружности равен сумме квадратов координат любой точки окружности. В этом случае уравнение окружности принимает вид:

Следовательно, любая геометрическая фигура как геометрическое место точек определяется уравнением, связывающим координаты ее точек. И наоборот, уравнение, связывающее координаты х и у, определяют линию как геометрическое место точек плоскости, координаты которых удовлетворяют данному уравнению.

Примеры решения задач про уравнение окружности

Задача. Составить уравнение заданной окружности

Составьте уравнение окружности с центром в точке O (2;-3) и радиусом 4.

Решение.
Обратимся к формуле уравнения окружности:
R 2 = (x- a ) 2 + (y- b ) 2

Подставим значения в формулу.
Радиус окружности R = 4
Координаты центра окружности (в соответствии с условием)
a = 2
b = -3

Получаем:
(x – 2 ) 2 + (y – ( -3 )) 2 = 4 2
или
(x – 2 ) 2 + (y + 3 ) 2 = 16 .

Задача. Принадлежит ли точка уравнению окружности

Проверить, принадлежит ли точка A(2;3) уравнению окружности (x – 2) 2 + (y + 3) 2 = 16.

Решение.
Если точка принадлежит окружности, то ее координаты удовлетворяют уравнению окружности.
Чтобы проверить, принадлежит ли окружности точка с заданными координатами, подставим координаты точки в уравнение заданной окружности.

В уравнение ( x – 2) 2 + ( y + 3) 2 = 16
подставим, согласно условию, координаты точки А(2;3), то есть
x = 2
y = 3

Проверим истинность полученного равенства
( x – 2) 2 + ( y + 3) 2 = 16
( 2 – 2) 2 + ( 3 + 3) 2 = 16
0 + 36 = 16 равенство неверно

Таким образом, заданная точка не принадлежит заданному уравнению окружности.

[spoiler title=”источники:”]

http://www.profmeter.com.ua/communication/learning/course/course7/chapter0552/?LESSON_PATH=456.552

[/spoiler]

Mathematically, Pythagoras is probably a simple method as many have already mentioned.

(x-center_x)^2 + (y - center_y)^2 < radius^2

Computationally, there are quicker ways. Define:

dx = abs(x-center_x)
dy = abs(y-center_y)
R = radius

If a point is more likely to be outside this circle then imagine a square drawn around it such that it’s sides are tangents to this circle:

if dx>R then 
    return false.
if dy>R then 
    return false.

Now imagine a square diamond drawn inside this circle such that it’s vertices touch this circle:

if dx + dy <= R then 
    return true.

Now we have covered most of our space and only a small area of this circle remains in between our square and diamond to be tested. Here we revert to Pythagoras as above.

if dx^2 + dy^2 <= R^2 then 
    return true
else 
    return false.

If a point is more likely to be inside this circle then reverse order of first 3 steps:

if dx + dy <= R then 
    return true.
if dx > R then 
    return false.
if dy > R 
    then return false.
if dx^2 + dy^2 <= R^2 then 
    return true
else
    return false.

Alternate methods imagine a square inside this circle instead of a diamond but this requires slightly more tests and calculations with no computational advantage (inner square and diamonds have identical areas):

k = R/sqrt(2)
if dx <= k and dy <= k then 
    return true.

Update:

For those interested in performance I implemented this method in c, and compiled with -O3.

I obtained execution times by time ./a.out

I implemented this method, a normal method and a dummy method to determine timing overhead.

Normal: 21.3s
This: 19.1s
Overhead: 16.5s

So, it seems this method is more efficient in this implementation.

// compile gcc -O3 <filename>.c
// run: time ./a.out

#include <stdio.h>
#include <stdlib.h>

#define TRUE  (0==0)
#define FALSE (0==1)

#define ABS(x) (((x)<0)?(0-(x)):(x))

int xo, yo, R;

int inline inCircle( int x, int y ){  // 19.1, 19.1, 19.1
  int dx = ABS(x-xo);
  if (    dx >  R ) return FALSE;
  int dy = ABS(y-yo);
  if (    dy >  R ) return FALSE;
  if ( dx+dy <= R ) return TRUE;
  return ( dx*dx + dy*dy <= R*R );
}

int inline inCircleN( int x, int y ){  // 21.3, 21.1, 21.5
  int dx = ABS(x-xo);
  int dy = ABS(y-yo);
  return ( dx*dx + dy*dy <= R*R );
}

int inline dummy( int x, int y ){  // 16.6, 16.5, 16.4
  int dx = ABS(x-xo);
  int dy = ABS(y-yo);
  return FALSE;
}

#define N 1000000000

int main(){
  int x, y;
  xo = rand()%1000; yo = rand()%1000; R = 1;
  int n = 0;
  int c;
  for (c=0; c<N; c++){
    x = rand()%1000; y = rand()%1000;
//    if ( inCircle(x,y)  ){
    if ( inCircleN(x,y) ){
//    if ( dummy(x,y) ){
      n++;
    }
  }
  printf( "%d of %d inside circlen", n, N);
}

Определение принадлежности точки кругу с центром в начале координат

Будем считать, что точка принадлежит кругу, если находится внутри его или на его окружности.

Из любой точки координатной плоскости можно провести отрезок к началу координат. Если длина этого отрезка больше радиуса круга, то точка лежит за пределами круга и, следовательно, не принадлежит ему. Если же отрезок, соединяющий точку и начало координат, меньше радиуса круга с центром в начале координат или равен ему, то точка будет принадлежать кругу.

Отрезок между любой точкой и нулевой точкой (началом координат) является гипотенузой прямоугольного треугольника, катеты которого равны значениям x и y координаты данной точки.

Таким образом задача сводится по-сути к двум действия:

  1. Нахождение длины отрезка между точкой и началом координат по теореме Пифагора (квадрат длины гипотенузы равен сумме квадратов длин катетов).
  2. Сравнению полученного значения с радиусом круга.

Pascal

Определение принадлежности точки кругу с центром в начале координат паскаль

Язык Си

Для gcc компилировать с ключом -lm.

Python

Определение принадлежности точки кругу с центром в начале координат Python

Уравнение окружности.

Аналитическая геометрия дает единообразные приемы решения геометрических задач. Для этого все заданные и искомые точки и линии относят к одной системе координат.

В системе координат можно каждую точку охарактеризовать ее координатами, а каждую линию – уравнением с двумя неизвестными, графиком которого эта линия является. Таким образом геометрическая задача сводится к алгебраической, где хорошо отработаны все приемы вычислений.

Окружность есть геометрическое место точек с одним определенным свойством (каждая точка окружности равноудалена от одной точки, называется центром). Уравнение окружности должно отражать это свойство, удовлетворять этому условию.

Геометрическая интерпретация уравнения окружности – это линия окружности.

Если поместить окружность в систему координат, то все точки окружности удовлетворяют одному условию – расстояние от них до центра окружности должно быть одинаковым и равным окружности.

Окружность с центром в точке А и радиусом R поместим в координатную плоскость.

Если координаты центра (а;b), а координаты любой точки окружности (х; у), то уравнение окружности имеет вид:

Если квадрат радиуса окружности равен сумме квадратов разностей соответствующих координат любой точки окружности и ее центра, то это уравнение является уравнением окружности в плоской системе координат.

Если центр окружности совпадает с точкой начала координат, то квадрат радиуса окружности равен сумме квадратов координат любой точки окружности. В этом случае уравнение окружности принимает вид:

Следовательно, любая геометрическая фигура как геометрическое место точек определяется уравнением, связывающим координаты ее точек. И наоборот, уравнение, связывающее координаты х и у, определяют линию как геометрическое место точек плоскости, координаты которых удовлетворяют данному уравнению.

Примеры решения задач про уравнение окружности

Задача. Составить уравнение заданной окружности

Составьте уравнение окружности с центром в точке O (2;-3) и радиусом 4.

Решение.
Обратимся к формуле уравнения окружности:
R 2 = (x- a ) 2 + (y- b ) 2

Подставим значения в формулу.
Радиус окружности R = 4
Координаты центра окружности (в соответствии с условием)
a = 2
b = -3

Получаем:
(x — 2 ) 2 + (y — ( -3 )) 2 = 4 2
или
(x — 2 ) 2 + (y + 3 ) 2 = 16 .

Задача. Принадлежит ли точка уравнению окружности

Проверить, принадлежит ли точка A(2;3) уравнению окружности (x — 2) 2 + (y + 3) 2 = 16.

Решение.
Если точка принадлежит окружности, то ее координаты удовлетворяют уравнению окружности.
Чтобы проверить, принадлежит ли окружности точка с заданными координатами, подставим координаты точки в уравнение заданной окружности.

В уравнение ( x — 2) 2 + ( y + 3) 2 = 16
подставим, согласно условию, координаты точки А(2;3), то есть
x = 2
y = 3

Проверим истинность полученного равенства
( x — 2) 2 + ( y + 3) 2 = 16
( 2 — 2) 2 + ( 3 + 3) 2 = 16
0 + 36 = 16 равенство неверно

Таким образом, заданная точка не принадлежит заданному уравнению окружности.

Теория и практика окружности

Свойство касательных.

Свойства касательных и секущих.

Площадь, сектор, длина окружности.

Задачи на окружности.

По статистике окружности никто не любит, но при этом леденец любим, солнце любим, давай и окружность полюбим!

Окружность − геометрическое место точек плоскости, равноудаленных от одной ее точки (центра). На рисунке центр − точка О.

В окружности может быть проведено 3 типа отрезка:

Отрезок, проходящий через две точки окружности, но не через центр, называют хордой (AB).

Хорда, проходящая через центр окружности, называется диаметром (самая большая хорда в окружности − диаметр (D)).

Радиус − отрезок, соединяющий центр окружности с точкой на окружности. Диаметр в два раза больше радиуса (R).

А также две прямые снаружи от окружности:

Касательная имеет одну общую точку с окружностью. Сразу стоит сказать о том, что радиус, проведенный в точку касания, будет иметь с касательной угол 90°.

Секущая пересекает окружность в двух точках, внутри окружности получается хорда или, в частном случае, диаметр.

Теперь чуть-чуть об углах и дугах:

Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее. Он в два раза меньше дуги, на которую опирается.

Центральный угол — это угол, вершина которого находится в центре окружности, равен дуге на которую опирается.

Вписанные углы, опирающиеся на одну дугу, равны между собой (β=β=α/2) и равны половине дуги, на которую опираются.

Градусная мера дуги – величина в °, соответствует центральному углу. Длина дуги равна α.

А вот такой угол НЕвписанный, такой угол «никто и звать никак».

Можно сделать вывод, что вписанный угол, который опирается на половину дуги окружности, будет прямым, а также будет опираться на диаметр:

Любая пара углов, опирающихся на одну и ту же хорду, вершина которых находится по разные стороны от хорды, составляет в сумме 180°.

Запишем основные свойства углов в окружности:

Нашел что-то общее?

Если угол находится вне окружности, без разницы, чем он получен (касательной или секущей), то найти его можно через половину разности дуг.

Если угол находится внутри окружности, то находим его через полусумму дуг.

Если есть одна дуга, которая находится на требуемом угле, то угол равен половине этой дуги.

Для любых двух хорд, проходящих через некоторую точку О, выполняет равенство:

Для любых двух секущих, проходящих через некоторую точку O, выполняется равенство:

Согласен, что они похожи, особенно если не смотреть на картинки.
Как не перепутать такие равенства? В каждом отрезке должна присутствовать точка, вне окружности (О).

Если из точки, лежащей вне окружности, проведены касательная и секущая:

Аналогично в каждом отрезке присутствует точка, вне окружности (О).

Если теперь провести две касательные из точки O, то получим такие равные отрезки:

Касательные равны, как, сообственно, и радиусы!

Площадь и длина окружности находятся по формуле:

По своему определению число π показывает, во сколько раз длина окружности больше диаметра, отсюда такая формула: L = πD

Если хочешь вывести площадь круга, можешь проинтегрировать длину окружности относительно R или вывести зависимость, как сделал Архимед!

Уравнение окружности.

Аналитическая геометрия дает единообразные приемы решения геометрических задач. Для этого все заданные и искомые точки и линии относят к одной системе координат.

В системе координат можно каждую точку охарактеризовать ее координатами, а каждую линию – уравнением с двумя неизвестными, графиком которого эта линия является. Таким образом геометрическая задача сводится к алгебраической, где хорошо отработаны все приемы вычислений.

Окружность есть геометрическое место точек с одним определенным свойством (каждая точка окружности равноудалена от одной точки, называется центром). Уравнение окружности должно отражать это свойство, удовлетворять этому условию.

Геометрическая интерпретация уравнения окружности – это линия окружности.

Если поместить окружность в систему координат, то все точки окружности удовлетворяют одному условию – расстояние от них до центра окружности должно быть одинаковым и равным окружности.

Окружность с центром в точке А и радиусом R поместим в координатную плоскость.

Если координаты центра (а;b), а координаты любой точки окружности (х; у), то уравнение окружности имеет вид:

Если квадрат радиуса окружности равен сумме квадратов разностей соответствующих координат любой точки окружности и ее центра, то это уравнение является уравнением окружности в плоской системе координат.

Если центр окружности совпадает с точкой начала координат, то квадрат радиуса окружности равен сумме квадратов координат любой точки окружности. В этом случае уравнение окружности принимает вид:


Следовательно, любая геометрическая фигура как геометрическое место точек определяется уравнением, связывающим координаты ее точек. И наоборот, уравнение, связывающее координаты х и у, определяют линию как геометрическое место точек плоскости, координаты которых удовлетворяют данному уравнению.

Примеры решения задач про уравнение окружности

Задача. Составить уравнение заданной окружности

Составьте уравнение окружности с центром в точке O (2;-3) и радиусом 4.

Решение.
Обратимся к формуле уравнения окружности:
R 2 = (x- a ) 2 + (y- b ) 2

Подставим значения в формулу.
Радиус окружности R = 4
Координаты центра окружности (в соответствии с условием)
a = 2
b = -3

Получаем:
(x — 2 ) 2 + (y — ( -3 )) 2 = 4 2
или
(x — 2 ) 2 + (y + 3 ) 2 = 16 .

Задача. Принадлежит ли точка уравнению окружности

Проверить, принадлежит ли точка A(2;3) уравнению окружности (x — 2) 2 + (y + 3) 2 = 16.

Решение.
Если точка принадлежит окружности, то ее координаты удовлетворяют уравнению окружности.
Чтобы проверить, принадлежит ли окружности точка с заданными координатами, подставим координаты точки в уравнение заданной окружности.

В уравнение ( x — 2) 2 + ( y + 3) 2 = 16
подставим, согласно условию, координаты точки А(2;3), то есть
x = 2
y = 3

Проверим истинность полученного равенства
( x — 2) 2 + ( y + 3) 2 = 16
( 2 — 2) 2 + ( 3 + 3) 2 = 16
0 + 36 = 16 равенство неверно

Таким образом, заданная точка не принадлежит заданному уравнению окружности.

Декартовы координаты точек плоскости. Уравнение окружности

Числовая ось

Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Прямоугольная декартова система координат на плоскости

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).

Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Формула для расстояния между двумя точками координатной плоскости

Утверждение 1 . Расстояние между двумя точками координатной плоскости

вычисляется по формуле

Доказательство . Рассмотрим рисунок 6.

| A1A2| 2 =
= ( x2x1) 2 + ( y2y1) 2 .
(1)

что и требовалось доказать.

Уравнение окружности на координатной плоскости

Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .

Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид

Точки принадлежащие кругу и окружности

Вводятся координаты (x;y) точки и радиус круга ( r ). Определить принадлежит ли данная точка кругу, если его центр находится в начале координат.

Будем считать, что точка принадлежит кругу, если находится внутри его или на его окружности.

Из любой точки координатной плоскости можно провести отрезок к началу координат. Если длина этого отрезка больше радиуса круга, то точка лежит за пределами круга и, следовательно, не принадлежит ему. Если же отрезок, соединяющий точку и начало координат, меньше радиуса круга с центром в начале координат или равен ему, то точка будет принадлежать кругу.

Отрезок между любой точкой и нулевой точкой (началом координат) является гипотенузой прямоугольного треугольника, катеты которого равны значениям x и y координаты данной точки.

Таким образом задача сводится по-сути к двум действия:

  1. Нахождение длины отрезка между точкой и началом координат по теореме Пифагора (квадрат длины гипотенузы равен сумме квадратов длин катетов).
  2. Сравнению полученного значения с радиусом круга.

Окружность — это линия на плоскости, каждая точка которой расположена на одинаковом расстоянии от центра окружности. Это расстояние называется радиус и в записях обозначается буквой R .
Центр окружности обозначают буквой O.

Окружность разделяет плоскость на две части, внутреннюю и внешнюю. Внутренняя часть, включающая саму окружность, называется кругом. (Наведите курсор на рисунок.)

Точка O — это центр и круга и окружности.


Отрезки OA, OB, и OC — это радиусы, их длины равны. Отрезок BC, проходящий через центр окружности (круга) называется диаметром и обозначается буквой D. Диаметр разделяет круг на два полукруга, а окружность на две полуокружности.

Диаметр равен двум радиусам, это хорошо видно на рисунке.

BC = OC + OB , так как BC = D а OC = OB = R , то

Точки A и B делят окружность на две части, которые называются дугами, а точки A и B концами этих дуг.

Дуга окружности — это часть окружности ограниченная двумя точками.

На рисунке точки B и C разделили окружность на две дуги, голубую и зеленую.

Записать их названия мы можем так:

BC (дуга BC) — в данном случае речь может идти как о голубой так и о зеленой;

BAC (дуга BAC) — в данном случае речь идет именно о зеленой дуге.

Выберите верные утверждения, исходя из рисунка:

1) Точки C, B и E не принадлежат кругу.

2) Точки D, B и O принадлежат окружности.

3) Точки A, B и O принадлежат кругу. Неверно. Точка B принадлежат кругу, так как окружность часть круга. Неверно. Точка O центр окружности, но не лежит на ней. 1) Точка О является центром и окружности, и круга.

2) Точка О является центром окружности, но не центром круга.

3) Точки D и B не принадлежат окружности. 1) Точки B и D не принадлежат кругу.

2) Точки A, B, D и O принадлежат кругу.

3) Точки B, D и E принадлежат кругу. Неверно. Точка О является центром и окружности, и круга. Неверно. Точки D и B принадлежат окружности. Неверно. Точки B и D принадлежат кругу, так как лежат на окружности, а она часть круга. 1) Точки B и D разделяют окружность на 4 дуги.

2) Точки B и D разделяют окружность на 3 дуги.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На данном уроке дается определение окружности и круга, а также определение дуги, радиуса, хорды и диаметра окружности, рассматривается взаимное расположение точек и окружности, а также двух окружностей, решаются различные задачи по этой теме.

Окружность и круг

Окружность можно построить с помощью циркуля (рис. 1). Ножку с иголкой устанавливают в точку, а ножка с грифелем опишет замкнутую линию, которую называют окружностью.

Окружность – это множество точек, равноудаленных от заданной точки (точки О), которую называют центром окружности. Окружность разделит плоскость на 2 части. Ту часть плоскости, которая лежит внутри окружности вместе с самой окружностью, называют кругом. Точка О является как центром окружности, так и центром круга (рис. 2).

Рис. 2. Окружность и круг

Взаимное расположение окружности и точки

Точки могут лежать на окружности, т. е. принадлежать окружности. Точки А и В принадлежат окружности с центром в точке О (Рис. 3); точки О, Е и D не принадлежат окружности с центром в точке О; точки О, Е, А, В принадлежат кругу с центром в точке О, а точка D не принадлежит этому кругу.

Рис. 3. Окружность и круг с центром в точке О

Точки А и В делят окружность на две части (рис. 4), каждую из которых называют дугой окружности; точки А и В – концами дуг.

Рис. 4. Окружность

Дуга, радиус, хорда, диаметр окружности

Дуга окружности – это часть окружности, ограниченная двумя точками. Пример. На окружности с центром в точке О отмечены точки А, В и С. Назовите дуги, на которые эти дуги делят окружность. Дуги с концами в точках А и В: дуга АВ, дуга АСВ. Дуги с концами в точках В и С: дуга ВС, дуга ВАС. Дуги с концами в точках А и С: дуга АС, дуга АВС. Отрезки ОА, ОВ соединяют центр окружности с точками, лежащими на окружности. Их называют радиусами (рис. 5).

Рис. 5. Радиусы окружности

Радиус – это расстояние от центра окружности до любой точки окружности. Радиусы одной окружности равны. Обозначают радиусы R или r. Отрезок, соединяющий две точки окружности, называют хордой. Хорду, проходящую через центр окружности, называют диаметром. Обозначают: d или D. Свойства диаметра: 1. диаметр – самая большая хорда. 2. d = 2R. Диаметр делит круг на два полукруга, а окружность – на две полуокружности

Задача 1

Постройте окружность с центром в точке О и радиусом 4 см. Постройте прямую а так, чтобы она пересекла окружность в двух точках А и В (рис. 6). На каком расстоянии от центра окружности находятся точки А и В?

Рис. 6. Окружность с центром в точке О и радиусом 4 см

Так как расстояние между двумя точками – это длина отрезка с концами в этих точках, то нам необходимо найти длины отрезков ОА и ОВ. По определению отрезки ОА и ОВ – радиусы одной и той же окружности. Тогда ОА = ОВ = R= 4 см. Значит, на расстоянии 4 см находятся точки А и В от центра окружности.

Задача 2

Постройте отрезок АВ, равный 4 см. Постройте первую окружность с центром в точке А радиусом 3 см, и другую окружность с центром в точке В радиусом 2 см. Назовите точки пересечения окружностей точками Е и С (рис. 7). Чему равны длины отрезков АЕ, АС, ЕВ и ВС?

Рис. 7. Отрезок АВ

По определению, отрезок АЕ, АС – это радиусы первой окружности. АЕ = АС = = 2 см.

Задача 3

Начертите отрезок СМ, равный 5 см. Постройте точку, удаленную от концов отрезка на 3 см. Сколько таких точек можно построить? Таких точек можно построить 2. Они будут лежать на пересечении двух окружностей с центром в точке С и с центром в точке М радиусом 3 см (рис. 8).

Рис. 8. Точки, удаленные от концов отрезка на 3 см

Список литературы

  1. Н.Я. Виленкин. Учебник для 5 кл. общеобразовательных учреждений/ 17-е изд. – М.: Мнемозина, 2005.
  2. Шевкин А.В. Текстовые задачи по математике: 5–6. – М.: Илекса, 2011. – 106 с.
  3. Ершева А.П., Голобородько В.В. Вся школьная математика в самостоятельных и контрольных работах. Математика 5–6. – М.: Илекса, 2006. – 432 с.
  4. Н.Н. Хлевнюк, М.В. Иванова. Формирование вычислительных навыков на уроках математики. 5–9 классы. – М.: Илекса, 2011. – 248 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

Учебник математики. 5 класс. Н.Я. Виленкин. № 850–856.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

источники:

http://www.resolventa.ru/demo/him/diagege.htm

http://4apple.org/tochki-prinadlezhashhie-krugu-i-okruzhnosti/

2) Она лежит внутри окружности. При первом предположении и усло-

вии
A
> 90

стороны BC и DC пересекают окружность
вторично в своих внутренних точках
E и F. Тогда для вписанного четырехугольника
ABED по необходимому условию будет
A+BED=180.
По теореме о внешнем угле треугольника
BED
>
C
и потому
A+C
< 180
,
что противоречит условию. Второе
предположение аналогично приводит к
противоречию
A
+
C
> 180
.
Доказательство закончено.

Доказательство:

1)
Проведем окружность через три вершины
четырехугольника
A,
B,
D
и докажем, что она проходит также
через вершину С. Пусть это не так.
Тогда вершина С лежит либо вне круга,
либо внутри круга. Пусть точка С
лежит вне круга. Тогда

Это
противоречит условию теоремы.
Следовательно, точка С не может лежать
вне окружности.

Пусть
точка С лежит внутри круга.

Тогда

Это
противоречит условию теоремы.
Следовательно, точка С не может лежать
внутри окружности.

Вывод:
Чтобы выполнялось условие теоремы,
точка С должна лежать только на
окружности, а четырехугольник
ABCD
должен быть вписанным в окружность.

2. Гомотетия. Доказать, что гомотетия есть преобразование подобия. Подобие фигур.

Преобразование
фигуры
F
в фигуру
F
называется
преобразованием
подобия
,
если при этом преобразовании расстояния
между точками изменяются в одно м
то же число раз. Это значит, что если
произвольные точки
X
и
Y
фигуры
F
переходят в точки
X
и
Y
фигуры
F’,
то
XY
=
k
XY,
причем число
k
одинаково для любых точек
X
и
Y.
Число
k
называется
коэффициентом
подобия
.


Пусть
F
– данная фигура и О – фиксированная
точка. Проведем через произвольную
точку Х фигуры
F
луч ОХ и отложим на нем отрезок
OX’,
равный
k∙ОX,
где
k
– число, отличное от нуля. Преобразование
фигуры
F,
при котором каждая ее точка Х
переходит в точку
X’,
построенную указанным способом,
называется
гомотетией
относительно центра О. Число
k
называется
коэффициентом
гомотетии
,
а фигуры
F
и
F
гомотетичными.

При
k
> 0 точки О, М, М
1
лежат на одном луче с центром в
точке О, при этом


При
k
< 0 точки О, М, М
1
лежат на одной прямой, но точка О
лежит между точками М и М
1
и

Термин
«гомотетия» в переводе с греческого
означает «одинаково расположенный».

Отметим,
что при
k
= 1 преобразование является тождественным.
При
k
= -1 получается центральная симметрия
относительно точки О. Таким образом,
гомотетия является движением.

Теорема
1.

Гомотетия есть преобразование подобия.

Д
оказательство:

Пусть
О – центр гомотетии;
X
и
Y
– две произвольные точки фигуры.

При
гомотетии точки
X
и
Y
переходят в точки
X
и
Y
на лучах ОХ и О
Y
соответственно, причем

Вычитая
эти равенства почленно, получим:

Так
как

Значит,


Следовательно,
гомотетия есть преобразование подобия.

Преобразование
подобия широко применяется на практике
при выполнении чертежей деталей
машин, сооружений, планов местности.
Эти изображения представляют собой
подобные преобразования воображаемых
изображений в натуральную величину.
Коэффициент подобия при этом называется
масштабом.

Свойства
преобразования подобия.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий