Как найти точку абсциссу точки касания егэ

было в ЕГЭ

в условии
в решении
в тексте к заданию
в атрибутах

Категория

Атрибут

Всего: 87    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Прямая y=7x минус 5 параллельна касательной к графику функции y=x в квадрате плюс 6x минус 8. Найдите абсциссу точки касания.


Прямая y=6x плюс 6 параллельна касательной к графику функции y=x в квадрате плюс 7x минус 7. Найдите абсциссу точки касания.


Прямая y= минус 3x минус 6 параллельна касательной к графику функции y=x в квадрате плюс 5x минус 4. Найдите абсциссу точки касания.


Прямая y= минус 4x минус 11 является касательной к графику функции y=x в кубе плюс 7x в квадрате плюс 7x минус 6. Найдите абсциссу точки касания.


Прямая y= минус 6x минус 10 является касательной к графику функции y=x в кубе плюс 4x в квадрате минус 6x минус 10. Найдите абсциссу точки касания.







На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x_0.




На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


Прямая y=7x минус 5 параллельна касательной к графику функции y=x в квадрате плюс 6x минус 8. Найдите абсциссу точки касания.


Прямая y= минус 4x минус 11 является касательной к графику функции y=x в кубе плюс 7x в квадрате плюс 7x минус 6. Найдите абсциссу точки касания.


На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

Всего: 87    1–20 | 21–40 | 41–60 | 61–80 …

26
Дек 2011

06 Задание (2022)

Абсцисса точки касания. Задание В8 (2014)

Задание B9 (№ 27485) из Открытого банка заданий для подготовки к ЕГЭ по математике.

 Прямая y=7x-5 параллельна касательной  к графику функции y=x2+8x+6. Найдите абсциссу точки касания.

Чтобы выполнить это задание, нам нужно вспомнить теорию.

1. Прямая y=k1x+b1 параллельна       прямой y=k2x+b2, если k1=k2. k1 и k2 – коэффициенты наклона прямых. Коэффициент наклона прямой равен тангенсу угла между этой прямой и положительным направлением оси ОХ:  tg(a)=AB/OA

2. Геометрический смысл производной: значение производной функции у=f(x) в точке x0 равнo угловому коэффициенту касательной, проведенной к графику функции у=f(x) в точке x0, то есть         tg(a)=k=f'(x0), где k — угловой коэффициент касательной:            Решение.
Так как касательная параллельна прямой y=7x-5, следовательно коэффициент наклона касательной, а, значит, производная функции в точке касания равны 7.
Найдем производную функции y=x2+8x+6:

y'(x)=2x+8

Приравняем производную к 7:

y'(x0)=2x0+8=7

В этом уравнении x0 – абсцисса точки касания.
Решим уравнение:
2x0+8=7
x0=-0,5
Ответ: -0,5

Вероятно, Ваш браузер не поддерживается. Попробуйте скачать

Firefox

Для вас другие записи этой рубрики:

  • Производная. Физический смысл производной. Задание В8 (2015)
  • Определенный интеграл. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Задание 7
  • Задачи на производную и касательную
  • Видеолекция 11. “Производная. Касательная. Применение производной к исследованию функции. Задание В8”
  • Первообразная.
  • Касательная к графику функции. Задача с параметром.

Абсцисса точки касания. Задание В8 (2014)

Тема 7.

Взаимосвязь функции и ее производной

7

.

04

Расчет касания двух графиков

Вспоминай формулы по каждой теме

Решай новые задачи каждый день

Вдумчиво разбирай решения

ШКОЛКОВО.

Готовиться с нами – ЛЕГКО!

Подтемы раздела

взаимосвязь функции и ее производной

Решаем задачи

Прямая y = 6x + 7  параллельна касательной к графику функции
g = x2 − 5x +6  . Найдите абсциссу точки касания.

Показать ответ и решение

Поскольку касательная параллельна прямой y = 6x+ 7  , то уравнение
касательной имеет вид y = 6x + b  , где b ∈ ℝ  . Поскольку прямая является
касательной, то это может быть только, если функции совпадают, но при этом
решение может быть только одно, то есть должно получиться уравнение,
дискриминант которого равен 0:

pict

Однако если квадратное уравнение имеет D =  0  , то его корень равен
x = − b-= − −-11-= 5,5
      2a     2  , что и будет являться абсциссой точки касания.

Прямая y =− 3x+ 8  параллельна касательной к графику функции     2
y = x + 7x− 6.  Найдите абциссу точки
касания.

Показать ответ и решение

Пусть x0  — абцисса точки касания. Тогда угловой коэффициент касательной в точке x0  равен значению производной в этой
точке. Найдём производную функции f(x)  в точке x0 :

f′(x)= (x2+ 7x− 6)′ = 2x +7  ⇒   f′(x0)= 2x0 +7

Если прямые параллельны, то их угловые коэффициенты равны, значит,

−3 =2x0+ 7  ⇔   2x0 =− 10  ⇔   x0 = −5

Показать ответ и решение

Способ 1

Прямая и парабола касаются, если их функции совпадают только в одной
точке. Нужно приравнять функции, тогда получится квадратное уравнение,
которое будет иметь один корень при нулевом дискриминанте:

pict

Способ 2

В точке касания значения функций и их производных равны:

pict

Чтобы найти c  , подставим x = − 0,5  в квадратное уравнение:

pict

Прямая y = 8(2x− 1)  параллельна касательной к графику функции

        2
f(x) = 3x + 7x+ 5

Найдите абсциссу точки касания.

Показать ответ и решение

Так как параллельные прямые имеют равные угловые коэффициенты и прямая имеет вид y = 16x − 8  , то уравнение
касательной будет выглядеть как

yk = 16x+ b

где b  — некоторое число. Так как значение производной в точке x0  касания равно угловому коэффициенту
касательной, то

f ′(x ) = 16 ⇒    6x + 7 = 16  ⇔   x  = 3 = 1,5
    0              0               0   2

Показать ответ и решение

Графики функций y = f (x)  и y = g(x )  касаются в точке (x0;y0)  тогда и только тогда,
когда

{
    f(x0) = g(x0) = y0
    f′(x0) = g′(x0)

Тогда график функции y = x2 + c  и прямая y = x  касаются в точке (x0;y0)  тогда и только тогда,
когда

{                                 {
    x02 + c = x0 = y0                 0,25 + c = 0,5 =  y0
    2x  =  1               ⇔          x  = 0,5,
       0                               0

то есть ответ: 0, 5  .

Прямая y = 7x − 5  параллельна касательной к графику функции y = x2 + 6x − 8  . Найдите абсциссу
точки касания.

Найдите ординату точки касания графика функции y = sin2x  и прямой                π
y = x + 0, 5 − --
               4  .

Показать ответ и решение

Если указанные графики касаются в точке (x0;y0)  , то производные соответствующих функций равны в
точке x0   :

                                                           π-
2sinx0 ⋅ cos x0 = 1    ⇔      sin2x0 =  1     ⇔      x0 =  4 + πk, k ∈ ℤ

При этом необходимо, чтобы при x = x0   значения соответствующих функций совпадали:

  2                 π-
sin  x0 = x0 + 0,5 − 4 ,

но при       π
x0 =  --+ πk, k ∈ ℤ
      4  имеем: sin2x0 =  0,5  , тогда

0,5 = x0 + 0,5 −  π,
                  4

куда
подходит только       π-
x0 =  4  .

Таким образом, для касания указанных графиков в точке (x0;y0)  необходимо, чтобы было
выполнено      π-
x0 = 4  . Но этого и достаточно, ведь при      π-
x0 = 4  совпадают значения функций и их
производных.

В итоге,

y0 = sin2x0 = 0, 5

Прямая y = 12x + 13  является касательной к графику функции y =  x3 − 9x2 − 9x + 2  . Найдите
абсциссу точки касания.

16 января 2014

Существует целый класс задач 6 из профильного ЕГЭ, в которых вообще не дается график функции. Все, что известно — это уравнение функции и касательной. И сегодня мы будем учиться решать именно такие задачи.

В этой короткой серии уроков мы разберем непростые задачи, которые не так часто встречаются в настоящем ЕГЭ по математике. Однако если встречаются, то у многих учеников вызывают серьезные затруднения. Речь идет о касательных, заданных уравнением, функция которого также задана своим уравнением. Никаких графиков в этих задачах нет. Более того, отдельные два видеоурока будут посвящены примерам, содержащие параметры. И хотя, на первый взгляд, может показаться, что параметры — это очень сложно, на самом деле, такие задания решаются буквально в несколько строчек.

Решаем реальный пример

Итак, первая задача:

Прямая[y˜=16x-38]является касательной к графику функции:

[y={{x}^{3}}-3{{x}^{2}}+7x-11]

Найдите абсциссу точки касания.

Прежде всего, давайте вообще вспомним, что такое касательная к графику функции. Итак, у нас есть некий график, а также прямая, которая касается этого графика, т. е. пересекает график только в одной точке, причем угол ее пересечения с осью $Ox$, точнее, тангенс этого угла равен значению производной в этой точке:

[tglambda ={f}’left( {{x}_{0}} right)]

Теперь переведем формальное определение на понятный человеку язык. Во-первых, поскольку наша прямая, заданная уравнением, является касательной, то эти уравнения обязательно имеют общую точку, т. е. они имеют общее решение. Следовательно, мы можем приравнять их правые части, т. е.:

[16x-38={{x}^{3}}-3{{x}^{2}}+7x-11]

С другой стороны, поскольку речь идет о касательной к графику, а не о произвольной секущей, мы вправе потребовать, чтобы равны были не только сами функции, но еще и их производные, т. е.:

[{{left( 16x-38 right)}^{prime }}={{left( {{x}^{3}}-3{{x}^{2}}-11 right)}^{prime }}]

Давайте займемся первым выражением:

[16x-38={{x}^{3}}-3{{x}^{2}}+7x-11]

[{{x}^{3}}-3{{x}^{2}}+7x-11-16x+38=0]

[{{x}^{3}}-3{{x}^{2}}+9x+27=0]

Вот мы получили первую конструкцию. Это уравнение третьей степени. Для его решения можно попробовать разложить этот многочлен на множители, и, действительно, после определенных преобразований и нескольких строчек вычислений мы получим несколько кандидатов на ответ. Однако вспомним, что речь идет о простой задаче из ЕГЭ по математике, причем задача из части В. Следовательно, она должна решаться гораздо проще без всяких разложений. И именно для этого нам дано второе уравнение. Мы уже приравняли производные, а теперь давайте посчитаем их:

[{{left( 16x-38 right)}^{prime }}={{left( {{x}^{3}}-3{{x}^{2}}=7x-11 right)}^{prime }}]

[16=3{{x}^{2}}-6x+7]

[3{{x}^{2}}-6x+7-16=0]

[3{{x}^{2}}-6x-9=0]

[{{x}^{2}}-2x-3=0]

Мы получили уравнение второй степени. Данное тождество легко решается и через дискриминант, и по формулам Виета. Давайте решим его по формуле Виета:

[left( -3 right)left( +1 right)=0]

[{{}_{1}}=3]

[{{}_{2}}=-1]

Вот мы и получили два корня, это два кандидата на ответ, т. е. те абсциссы, в которых производная нашей касательной к графику функции равна производной. Теперь возвращаемся к нашей исходной конструкции и вспоминаем, что помимо производных сами функции тоже должны быть равны, т. е. из полученных нами иксов нужно выбрать те, которые удовлетворяют уравнению. Давайте подставим[=3]:

[27-27-27+27=0]

[0=0]

Очевидно, что[=3]является корней обоих выражений — и нашего исходного, и производной. На этом можно было бы закончить решение, но давайте для надежности мы подставим и[=-1]:

[-1-3cdot 1-9cdot left( -1 right)+27=0]

[-text{ }4+9+27=0]

[32ne 0]

Очевидно, что данное выражение не является равенством. Следовательно,[=-1]не является корнем нашего тождества. Отсюда заключаем, что единственным корнем, удовлетворяющим все требования, является[=3]. Это и является ответом к задаче. Мы нашли абсциссу точки касания к графику.

Ключевые моменты

В заключении давайте еще раз пробежимся по ключевым шагам решения.

В первую очередь, что значит, что прямая является касательной графику функции? Это значит, что данная прямая и $fleft( x right)$ имеют общее решение. Следовательно, мы можем приравнять $y$ из выражений. Мы получим первое тождество.

Однако после его преобразования, мы получим уравнение третьей степени, а поскольку такая конструкция вообще решается довольно сложно и к тому же имеет несколько корней, мы записываем вспомогательное равенство, вспоминая о том, что речь идет именно о касательных к графику функции, т. е. помимо самих $fleft( x right)$ равными должны быть еще и их производные. В нашем случае производные легко считаются. Итого у нас получилось простое квадратное равенство, которое затем легко решается, и получается два корня.

Возникает вопрос: какой из этих корней является правильным ответом? Чтобы найти правильный ответ, достаточно каждое из этих чисел подставить в наше уравнение, которое мы получили в самом начале. Здесь мы и получим, что один из корней нас полностью устраивает, а второй корень — нет, т. е. он точно не является решением.

С точки зрения геометрии происходит следующее. Допустим, что у нас есть вот такая функция:

У нее есть точка максимума и точка минимума. В обоих случаях производная равна нулю, и, следовательно, касательная, проведенная через каждую из этих точек, тоже имеет производную, равную 0, т. е. она горизонтальна. Однако, как мы видим, не существует такой касательной к графику функции. Если касательная проходит сверху, то она никак не сможет пересечь кривую в нижнем значении. И, наоборот, если мы рассматриваем касательную в нижней точке, то она никак не сможет пересечь нашу кривую в верхнем значении. Этим и объясняется, что хотя производная функции равна производной касательной в двух точках, в итоге в нашем уравнении нас удовлетворяет лишь одна из них.

Задачи B9 такого типа действительно встречаются на ЕГЭ. Как правило, в процессе решения таких задач возникают целые системы уравнений, которые надо уметь решать. В этом и следующих видеоуроках мы последовательно рассмотрим такие «нестандартные» задачи — от самых простых (как сегодня) до действительно серьезных — с параметром и квадратичной функцией.

Смотрите также:

  1. ЕГЭ 2022, задание 6. Касательная к графику функции
  2. Профильный ЕГЭ-2022, задание 6. Геометрический смысл производной
  3. Сложение и вычитание дробей
  4. Сводный тест по задачам B15 (1 вариант)
  5. Однородные тригонометрические уравнения: общая схема решения
  6. Задача B4: тарифы на сотовую связь

Абсцисса точки касания. Задание В8 (2014)

Задание B9 (№ 27485) из Открытого банка заданий для подготовки к ЕГЭ по математике.

Прямая y=7x-5 параллельна касательной к графику функции y=x 2 +8x+6. Найдите абсциссу точки касания.

Чтобы выполнить это задание, нам нужно вспомнить теорию.

1. Прямая y=k1x+b1 параллельна прямой y=k2x+b2, если k1=k2. k1 и k2 – коэффициенты наклона прямых. Коэффициент наклона прямой равен тангенсу угла между этой прямой и положительным направлением оси ОХ: tg(a)=AB/OA

2. Геометрический смысл производной: значение производной функции у=f(x) в точке x0 равнo угловому коэффициенту касательной, проведенной к графику функции у=f(x) в точке x0, то есть tg(a)=k=f'(x0), где k — угловой коэффициент касательной: Решение.
Так как касательная параллельна прямой y=7x-5, следовательно коэффициент наклона касательной, а, значит, производная функции в точке касания равны 7.
Найдем производную функции y=x 2 +8x+6:

Приравняем производную к 7:

В этом уравнении x0 – абсцисса точки касания.
Решим уравнение:
2x0+8=7
x0=-0,5
Ответ: -0,5

Касательная к графику функции в точке. Уравнение касательной. Геометрический смысл производной

Статья дает подробное разъяснение определений, геометрического смысла производной с графическими обозначениями. Будет рассмотрено уравнение касательной прямой с приведением примеров, найдено уравнения касательной к кривым 2 порядка.

Определения и понятия

Угол наклона прямой y = k x + b называется угол α , который отсчитывается от положительного направления оси о х к прямой y = k x + b в положительном направлении.

На рисунке направление о х обозначается при помощи зеленой стрелки и в виде зеленой дуги, а угол наклона при помощи красной дуги. Синяя линия относится к прямой.

Угловой коэффициент прямой y = k x + b называют числовым коэффициентом k .

Угловой коэффициент равняется тангенсу наклона прямой, иначе говоря k = t g α .

  • Угол наклона прямой равняется 0 только при параллельности о х и угловом коэффициенте, равному нулю, потому как тангенс нуля равен 0 . Значит, вид уравнения будет y = b .
  • Если угол наклона прямой y = k x + b острый, тогда выполняются условия 0 α π 2 или 0 ° α 90 ° . Отсюда имеем, что значение углового коэффициента k считается положительным числом, потому как значение тангенс удовлетворяет условию t g α > 0 , причем имеется возрастание графика.
  • Если α = π 2 , тогда расположение прямой перпендикулярно о х . Равенство задается при помощи равенства x = c со значением с , являющимся действительным числом.
  • Если угол наклона прямой y = k x + b тупой, то соответствует условиям π 2 α π или 90 ° α 180 ° , значение углового коэффициента k принимает отрицательное значение, а график убывает.

Определение 3

Секущей называют прямую, которая проходит через 2 точки функции f ( x ) . Иначе говоря, секущая – это прямая, которая проводится через любые две точки графика заданной функции.

По рисунку видно, что А В является секущей, а f ( x ) – черная кривая, α – красная дуга, означающая угол наклона секущей.

Когда угловой коэффициент прямой равняется тангенсу угла наклона, то видно, что тангенс из прямоугольного треугольника А В С можно найти по отношению противолежащего катета к прилежащему.

Получаем формулу для нахождения секущей вида:

k = t g α = B C A C = f ( x B ) – f x A x B – x A , где абсциссами точек А и В являются значения x A , x B , а f ( x A ) , f ( x B ) – это значения функции в этих точках.

Очевидно, что угловой коэффициент секущей определен при помощи равенства k = f ( x B ) – f ( x A ) x B – x A или k = f ( x A ) – f ( x B ) x A – x B , причем уравнение необходимо записать как y = f ( x B ) – f ( x A ) x B – x A · x – x A + f ( x A ) или
y = f ( x A ) – f ( x B ) x A – x B · x – x B + f ( x B ) .

Секущая делит график визуально на 3 части: слева от точки А , от А до В , справа от В . На располагаемом ниже рисунке видно, что имеются три секущие, которые считаются совпадающими, то есть задаются при помощи аналогичного уравнения.

По определению видно, что прямая и ее секущая в данном случае совпадают.

Секущая может множественно раз пересекать график заданной функции. Если имеется уравнение вида у = 0 для секущей, тогда количество точек пересечения с синусоидой бесконечно.

Касательная к графику функции f ( x ) в точке x 0 ; f ( x 0 ) называется прямая, проходящая через заданную точку x 0 ; f ( x 0 ) , с наличием отрезка, который имеет множество значений х , близких к x 0 .

Рассмотрим подробно на ниже приведенном примере. Тогда видно, что прямая, заданная функцией y = x + 1 , считается касательной к y = 2 x в точке с координатами ( 1 ; 2 ) . Для наглядности, необходимо рассмотреть графики с приближенными к ( 1 ; 2 ) значениями. Функция y = 2 x обозначена черным цветом, синяя линия – касательная, красная точка – точка пересечения.

Очевидно, что y = 2 x сливается с прямой у = х + 1 .

Для определения касательной следует рассмотреть поведение касательной А В при бесконечном приближении точки В к точке А . Для наглядности приведем рисунок.

Секущая А В , обозначенная при помощи синей линии, стремится к положению самой касательной, а угол наклона секущей α начнет стремиться к углу наклона самой касательной α x .

Касательной к графику функции y = f ( x ) в точке А считается предельное положение секущей А В при В стремящейся к А , то есть B → A .

Теперь перейдем к рассмотрению геометрического смысла производной функции в точке.

Геометрический смысл производной функции в точке

Перейдем к рассмотрению секущей А В для функции f ( x ) , где А и В с координатами x 0 , f ( x 0 ) и x 0 + ∆ x , f ( x 0 + ∆ x ) , а ∆ x обозначаем как приращение аргумента. Теперь функция примет вид ∆ y = ∆ f ( x ) = f ( x 0 + ∆ x ) – f ( ∆ x ) . Для наглядности приведем в пример рисунок.

Рассмотрим полученный прямоугольный треугольник А В С . Используем определение тангенса для решения, то есть получим отношение ∆ y ∆ x = t g α . Из определения касательной следует, что lim ∆ x → 0 ∆ y ∆ x = t g α x . По правилу производной в точке имеем, что производную f ( x ) в точке x 0 называют пределом отношений приращения функции к приращению аргумента, где ∆ x → 0 , тогда обозначим как f ( x 0 ) = lim ∆ x → 0 ∆ y ∆ x .

Отсюда следует, что f ‘ ( x 0 ) = lim ∆ x → 0 ∆ y ∆ x = t g α x = k x , где k x обозначают в качестве углового коэффициента касательной.

То есть получаем, что f ’ ( x ) может существовать в точке x 0 причем как и касательная к заданному графику функции в точке касания равной x 0 , f 0 ( x 0 ) , где значение углового коэффициента касательной в точке равняется производной в точке x 0 . Тогда получаем, что k x = f ‘ ( x 0 ) .

Геометрический смысл производной функции в точке в том, что дается понятие существования касательной к графику в этой же точке.

Уравнение касательной прямой

Чтобы записать уравнение любой прямой на плоскости, необходимо иметь угловой коэффициент с точкой, через которую она проходит. Его обозначение принимается как x 0 при пересечении.

Уравнение касательной к графику функции y = f ( x ) в точке x 0 , f 0 ( x 0 ) принимает вид y = f ‘ ( x 0 ) · x – x 0 + f ( x 0 ) .

Имеется в виду, что конечным значением производной f ‘ ( x 0 ) можно определить положение касательной, то есть вертикально при условии lim x → x 0 + 0 f ‘ ( x ) = ∞ и lim x → x 0 – 0 f ‘ ( x ) = ∞ или отсутствие вовсе при условии lim x → x 0 + 0 f ‘ ( x ) ≠ lim x → x 0 – 0 f ‘ ( x ) .

Расположение касательной зависит от значения ее углового коэффициента k x = f ‘ ( x 0 ) . При параллельности к оси о х получаем, что k k = 0 , при параллельности к о у – k x = ∞ , причем вид уравнения касательной x = x 0 возрастает при k x > 0 , убывает при k x 0 .

Произвести составление уравнения касательной к графику функции y = e x + 1 + x 3 3 – 6 – 3 3 x – 17 – 3 3 в точке с координатами ( 1 ; 3 ) с определением угла наклона.

Решение

По условию имеем, что функция определяется для всех действительных чисел. Получаем, что точка с координатами, заданными по условию, ( 1 ; 3 ) является точкой касания, тогда x 0 = – 1 , f ( x 0 ) = – 3 .

Необходимо найти производную в точке со значением – 1 . Получаем, что

y ‘ = e x + 1 + x 3 3 – 6 – 3 3 x – 17 – 3 3 ‘ = = e x + 1 ‘ + x 3 3 ‘ – 6 – 3 3 x ‘ – 17 – 3 3 ‘ = e x + 1 + x 2 – 6 – 3 3 y ‘ ( x 0 ) = y ‘ ( – 1 ) = e – 1 + 1 + – 1 2 – 6 – 3 3 = 3 3

Значение f ’ ( x ) в точке касания является угловым коэффициентом касательной, который равняется тангенсу наклона.

Тогда k x = t g α x = y ‘ ( x 0 ) = 3 3

Отсюда следует, что α x = a r c t g 3 3 = π 6

Ответ: уравнение касательной приобретает вид

y = f ‘ ( x 0 ) · x – x 0 + f ( x 0 ) y = 3 3 ( x + 1 ) – 3 y = 3 3 x – 9 – 3 3

Для наглядности приведем пример в графической иллюстрации.

Черный цвет используется для графика исходной функции, синий цвет – изображение касательной, красная точка – точка касания. Рисунок, располагаемый справа, показывает в увеличенном виде.

Выяснить наличие существования касательной к графику заданной функции
y = 3 · x – 1 5 + 1 в точке с координатами ( 1 ; 1 ) . Составить уравнение и определить угол наклона.

Решение

По условию имеем, что областью определения заданной функции считается множество всех действительных чисел.

Перейдем к нахождению производной

y ‘ = 3 · x – 1 5 + 1 ‘ = 3 · 1 5 · ( x – 1 ) 1 5 – 1 = 3 5 · 1 ( x – 1 ) 4 5

Если x 0 = 1 , тогда f ’ ( x ) не определена, но пределы записываются как lim x → 1 + 0 3 5 · 1 ( x – 1 ) 4 5 = 3 5 · 1 ( + 0 ) 4 5 = 3 5 · 1 + 0 = + ∞ и lim x → 1 – 0 3 5 · 1 ( x – 1 ) 4 5 = 3 5 · 1 ( – 0 ) 4 5 = 3 5 · 1 + 0 = + ∞ , что означает существование вертикальной касательной в точке ( 1 ; 1 ) .

Ответ: уравнение примет вид х = 1 , где угол наклона будет равен π 2 .

Для наглядности изобразим графически.

Найти точки графика функции y = 1 15 x + 2 3 – 4 5 x 2 – 16 5 x – 26 5 + 3 x + 2 , где

  1. Касательная не существует;
  2. Касательная располагается параллельно о х ;
  3. Касательная параллельна прямой y = 8 5 x + 4 .

Решение

Необходимо обратить внимание на область определения. По условию имеем, что функция определена на множестве всех действительных чисел. Раскрываем модуль и решаем систему с промежутками x ∈ – ∞ ; 2 и [ – 2 ; + ∞ ) . Получаем, что

y = – 1 15 x 3 + 18 x 2 + 105 x + 176 , x ∈ – ∞ ; – 2 1 15 x 3 – 6 x 2 + 9 x + 12 , x ∈ [ – 2 ; + ∞ )

Необходимо продифференцировать функцию. Имеем, что

y ‘ = – 1 15 x 3 + 18 x 2 + 105 x + 176 ‘ , x ∈ – ∞ ; – 2 1 15 x 3 – 6 x 2 + 9 x + 12 ‘ , x ∈ [ – 2 ; + ∞ ) ⇔ y ‘ = – 1 5 ( x 2 + 12 x + 35 ) , x ∈ – ∞ ; – 2 1 5 x 2 – 4 x + 3 , x ∈ [ – 2 ; + ∞ )

Когда х = – 2 , тогда производная не существует, потому что односторонние пределы не равны в этой точке:

lim x → – 2 – 0 y ‘ ( x ) = lim x → – 2 – 0 – 1 5 ( x 2 + 12 x + 35 = – 1 5 ( – 2 ) 2 + 12 ( – 2 ) + 35 = – 3 lim x → – 2 + 0 y ‘ ( x ) = lim x → – 2 + 0 1 5 ( x 2 – 4 x + 3 ) = 1 5 – 2 2 – 4 – 2 + 3 = 3

Вычисляем значение функции в точке х = – 2 , где получаем, что

  1. y ( – 2 ) = 1 15 – 2 + 2 3 – 4 5 ( – 2 ) 2 – 16 5 ( – 2 ) – 26 5 + 3 – 2 + 2 = – 2 , то есть касательная в точке ( – 2 ; – 2 ) не будет существовать.
  2. Касательная параллельна о х , когда угловой коэффициент равняется нулю. Тогда k x = t g α x = f ‘ ( x 0 ) . То есть необходимо найти значения таких х , когда производная функции обращает ее в ноль. То есть значения f ’ ( x ) и будут являться точками касания, где касательная является параллельной о х .

Когда x ∈ – ∞ ; – 2 , тогда – 1 5 ( x 2 + 12 x + 35 ) = 0 , а при x ∈ ( – 2 ; + ∞ ) получаем 1 5 ( x 2 – 4 x + 3 ) = 0 .

– 1 5 ( x 2 + 12 x + 35 ) = 0 D = 12 2 – 4 · 35 = 144 – 140 = 4 x 1 = – 12 + 4 2 = – 5 ∈ – ∞ ; – 2 x 2 = – 12 – 4 2 = – 7 ∈ – ∞ ; – 2 1 5 ( x 2 – 4 x + 3 ) = 0 D = 4 2 – 4 · 3 = 4 x 3 = 4 – 4 2 = 1 ∈ – 2 ; + ∞ x 4 = 4 + 4 2 = 3 ∈ – 2 ; + ∞

Вычисляем соответствующие значения функции

y 1 = y – 5 = 1 15 – 5 + 2 3 – 4 5 – 5 2 – 16 5 – 5 – 26 5 + 3 – 5 + 2 = 8 5 y 2 = y ( – 7 ) = 1 15 – 7 + 2 3 – 4 5 ( – 7 ) 2 – 16 5 – 7 – 26 5 + 3 – 7 + 2 = 4 3 y 3 = y ( 1 ) = 1 15 1 + 2 3 – 4 5 · 1 2 – 16 5 · 1 – 26 5 + 3 1 + 2 = 8 5 y 4 = y ( 3 ) = 1 15 3 + 2 3 – 4 5 · 3 2 – 16 5 · 3 – 26 5 + 3 3 + 2 = 4 3

Отсюда – 5 ; 8 5 , – 4 ; 4 3 , 1 ; 8 5 , 3 ; 4 3 считаются искомыми точками графика функции.

Рассмотрим графическое изображение решения.

Черная линия – график функции, красные точки – точки касания.

  1. Когда прямые располагаются параллельно, то угловые коэффициенты равны. Тогда необходимо заняться поиском точек графика функции, где угловой коэффициент будет равняться значению 8 5 . Для этого нужно решить уравнение вида y ‘ ( x ) = 8 5 . Тогда, если x ∈ – ∞ ; – 2 , получаем, что – 1 5 ( x 2 + 12 x + 35 ) = 8 5 , а если x ∈ ( – 2 ; + ∞ ) , тогда 1 5 ( x 2 – 4 x + 3 ) = 8 5 .

Первое уравнение не имеет корней, так как дискриминант меньше нуля. Запишем, что

– 1 5 x 2 + 12 x + 35 = 8 5 x 2 + 12 x + 43 = 0 D = 12 2 – 4 · 43 = – 28 0

Другое уравнение имеет два действительных корня, тогда

1 5 ( x 2 – 4 x + 3 ) = 8 5 x 2 – 4 x – 5 = 0 D = 4 2 – 4 · ( – 5 ) = 36 x 1 = 4 – 36 2 = – 1 ∈ – 2 ; + ∞ x 2 = 4 + 36 2 = 5 ∈ – 2 ; + ∞

Перейдем к нахождению значений функции. Получаем, что

y 1 = y ( – 1 ) = 1 15 – 1 + 2 3 – 4 5 ( – 1 ) 2 – 16 5 ( – 1 ) – 26 5 + 3 – 1 + 2 = 4 15 y 2 = y ( 5 ) = 1 15 5 + 2 3 – 4 5 · 5 2 – 16 5 · 5 – 26 5 + 3 5 + 2 = 8 3

Точки со значениями – 1 ; 4 15 , 5 ; 8 3 являются точками, в которых касательные параллельны прямой y = 8 5 x + 4 .

Ответ: черная линия – график функции, красная линия – график y = 8 5 x + 4 , синяя линия – касательные в точках – 1 ; 4 15 , 5 ; 8 3 .

Возможно существование бесконечного количества касательных для заданных функций.

Написать уравнения всех имеющихся касательных функции y = 3 cos 3 2 x – π 4 – 1 3 , которые располагаются перпендикулярно прямой y = – 2 x + 1 2 .

Решение

Для составления уравнения касательной необходимо найти коэффициент и координаты точки касания, исходя из условия перпендикулярности прямых. Определение звучит так: произведение угловых коэффициентов, которые перпендикулярны прямым, равняется – 1 , то есть записывается как k x · k ⊥ = – 1 . Из условия имеем, что угловой коэффициент располагается перпендикулярно прямой и равняется k ⊥ = – 2 , тогда k x = – 1 k ⊥ = – 1 – 2 = 1 2 .

Теперь необходимо найти координаты точек касания. Нужно найти х , после чего его значение для заданной функции. Отметим, что из геометрического смысла производной в точке
x 0 получаем, что k x = y ‘ ( x 0 ) . Из данного равенства найдем значения х для точек касания.

y ‘ ( x 0 ) = 3 cos 3 2 x 0 – π 4 – 1 3 ‘ = 3 · – sin 3 2 x 0 – π 4 · 3 2 x 0 – π 4 ‘ = = – 3 · sin 3 2 x 0 – π 4 · 3 2 = – 9 2 · sin 3 2 x 0 – π 4 ⇒ k x = y ‘ ( x 0 ) ⇔ – 9 2 · sin 3 2 x 0 – π 4 = 1 2 ⇒ sin 3 2 x 0 – π 4 = – 1 9

Это тригонометрическое уравнение будет использовано для вычисления ординат точек касания.

3 2 x 0 – π 4 = a r c sin – 1 9 + 2 πk или 3 2 x 0 – π 4 = π – a r c sin – 1 9 + 2 πk

3 2 x 0 – π 4 = – a r c sin 1 9 + 2 πk или 3 2 x 0 – π 4 = π + a r c sin 1 9 + 2 πk

x 0 = 2 3 π 4 – a r c sin 1 9 + 2 πk или x 0 = 2 3 5 π 4 + a r c sin 1 9 + 2 πk , k ∈ Z

Z – множество целых чисел.

Найдены х точек касания. Теперь необходимо перейти к поиску значений у :

y 0 = 3 cos 3 2 x 0 – π 4 – 1 3

y 0 = 3 · 1 – sin 2 3 2 x 0 – π 4 – 1 3 или y 0 = 3 · – 1 – sin 2 3 2 x 0 – π 4 – 1 3

y 0 = 3 · 1 – – 1 9 2 – 1 3 или y 0 = 3 · – 1 – – 1 9 2 – 1 3

y 0 = 4 5 – 1 3 или y 0 = – 4 5 + 1 3

Отсюда получаем, что 2 3 π 4 – a r c sin 1 9 + 2 πk ; 4 5 – 1 3 , 2 3 5 π 4 + a r c sin 1 9 + 2 πk ; – 4 5 + 1 3 являются точками касания.

Ответ: необходимы уравнения запишутся как

y = 1 2 x – 2 3 π 4 – a r c sin 1 9 + 2 πk + 4 5 – 1 3 , y = 1 2 x – 2 3 5 π 4 + a r c sin 1 9 + 2 πk – 4 5 + 1 3 , k ∈ Z

Для наглядного изображения рассмотрим функцию и касательную на координатной прямой.

Рисунок показывает, что расположение функции идет на промежутке [ – 10 ; 10 ] , где черная прямя – график функции, синие линии – касательные, которые располагаются перпендикулярно заданной прямой вида y = – 2 x + 1 2 . Красные точки – это точки касания.

Касательная к окружности, эллипсу, гиперболе, параболе

Канонические уравнения кривых 2 порядка не являются однозначными функциями. Уравнения касательных для них составляются по известным схемам.

Касательная к окружности

Для задания окружности с центром в точке x c e n t e r ; y c e n t e r и радиусом R применяется формула x – x c e n t e r 2 + y – y c e n t e r 2 = R 2 .

Данное равенство может быть записано как объединение двух функций:

y = R 2 – x – x c e n t e r 2 + y c e n t e r y = – R 2 – x – x c e n t e r 2 + y c e n t e r

Первая функция располагается вверху, а вторая внизу, как показано на рисунке.

Для составления уравнения окружности в точке x 0 ; y 0 , которая располагается в верхней или нижней полуокружности, следует найти уравнение графика функции вида y = R 2 – x – x c e n t e r 2 + y c e n t e r или y = – R 2 – x – x c e n t e r 2 + y c e n t e r в указанной точке.

Когда в точках x c e n t e r ; y c e n t e r + R и x c e n t e r ; y c e n t e r – R касательные могут быть заданы уравнениями y = y c e n t e r + R и y = y c e n t e r – R , а в точках x c e n t e r + R ; y c e n t e r и
x c e n t e r – R ; y c e n t e r будут являться параллельными о у , тогда получим уравнения вида x = x c e n t e r + R и x = x c e n t e r – R .

Касательная к эллипсу

Когда эллипс имеет центр в точке x c e n t e r ; y c e n t e r с полуосями a и b , тогда он может быть задан при помощи уравнения x – x c e n t e r 2 a 2 + y – y c e n t e r 2 b 2 = 1 .

Эллипс и окружность могут быть обозначаться при помощи объединения двух функций, а именно: верхнего и нижнего полуэллипса. Тогда получаем, что

y = b a · a 2 – ( x – x c e n t e r ) 2 + y c e n t e r y = – b a · a 2 – ( x – x c e n t e r ) 2 + y c e n t e r

Если касательные располагаются на вершинах эллипса, тогда они параллельны о х или о у . Ниже для наглядности рассмотрим рисунок.

Написать уравнение касательной к эллипсу x – 3 2 4 + y – 5 2 25 = 1 в точках со значениями x равного х = 2 .

Решение

Необходимо найти точки касания, которые соответствуют значению х = 2 . Производим подстановку в имеющееся уравнение эллипса и получаем, что

x – 3 2 4 x = 2 + y – 5 2 25 = 1 1 4 + y – 5 2 25 = 1 ⇒ y – 5 2 = 3 4 · 25 ⇒ y = ± 5 3 2 + 5

Тогда 2 ; 5 3 2 + 5 и 2 ; – 5 3 2 + 5 являются точками касания, которые принадлежат верхнему и нижнему полуэллипсу.

Перейдем к нахождению и разрешению уравнения эллипса относительно y . Получим, что

x – 3 2 4 + y – 5 2 25 = 1 y – 5 2 25 = 1 – x – 3 2 4 ( y – 5 ) 2 = 25 · 1 – x – 3 2 4 y – 5 = ± 5 · 1 – x – 3 2 4 y = 5 ± 5 2 4 – x – 3 2

Очевидно, что верхний полуэллипс задается с помощью функции вида y = 5 + 5 2 4 – x – 3 2 , а нижний y = 5 – 5 2 4 – x – 3 2 .

Применим стандартный алгоритм для того, чтобы составить уравнение касательной к графику функции в точке. Запишем, что уравнение для первой касательной в точке 2 ; 5 3 2 + 5 будет иметь вид

y ‘ = 5 + 5 2 4 – x – 3 2 ‘ = 5 2 · 1 2 4 – ( x – 3 ) 2 · 4 – ( x – 3 ) 2 ‘ = = – 5 2 · x – 3 4 – ( x – 3 ) 2 ⇒ y ‘ ( x 0 ) = y ‘ ( 2 ) = – 5 2 · 2 – 3 4 – ( 2 – 3 ) 2 = 5 2 3 ⇒ y = y ‘ ( x 0 ) · x – x 0 + y 0 ⇔ y = 5 2 3 ( x – 2 ) + 5 3 2 + 5

Получаем, что уравнение второй касательной со значением в точке
2 ; – 5 3 2 + 5 принимает вид

y ‘ = 5 – 5 2 4 – ( x – 3 ) 2 ‘ = – 5 2 · 1 2 4 – ( x – 3 ) 2 · 4 – ( x – 3 ) 2 ‘ = = 5 2 · x – 3 4 – ( x – 3 ) 2 ⇒ y ‘ ( x 0 ) = y ‘ ( 2 ) = 5 2 · 2 – 3 4 – ( 2 – 3 ) 2 = – 5 2 3 ⇒ y = y ‘ ( x 0 ) · x – x 0 + y 0 ⇔ y = – 5 2 3 ( x – 2 ) – 5 3 2 + 5

Графически касательные обозначаются так:

Касательная к гиперболе

Когда гипербола имеет центр в точке x c e n t e r ; y c e n t e r и вершины x c e n t e r + α ; y c e n t e r и x c e n t e r – α ; y c e n t e r , имеет место задание неравенства x – x c e n t e r 2 α 2 – y – y c e n t e r 2 b 2 = 1 , если с вершинами x c e n t e r ; y c e n t e r + b и x c e n t e r ; y c e n t e r – b , тогда задается при помощи неравенства x – x c e n t e r 2 α 2 – y – y c e n t e r 2 b 2 = – 1 .

Гипербола может быть представлена в виде двух объединенных функций вида

y = b a · ( x – x c e n t e r ) 2 – a 2 + y c e n t e r y = – b a · ( x – x c e n t e r ) 2 – a 2 + y c e n t e r или y = b a · ( x – x c e n t e r ) 2 + a 2 + y c e n t e r y = – b a · ( x – x c e n t e r ) 2 + a 2 + y c e n t e r

В первом случае имеем, что касательные параллельны о у , а во втором параллельны о х .

Отсюда следует, что для того, чтобы найти уравнение касательной к гиперболе, необходимо выяснить, какой функции принадлежит точка касания. Чтобы определить это, необходимо произвести подстановку в уравнения и проверить их на тождественность.

Составить уравнение касательной к гиперболе x – 3 2 4 – y + 3 2 9 = 1 в точке 7 ; – 3 3 – 3 .

Решение

Необходимо преобразовать запись решения нахождения гиперболы при помощи 2 функций. Получим, что

x – 3 2 4 – y + 3 2 9 = 1 ⇒ y + 3 2 9 = x – 3 2 4 – 1 ⇒ y + 3 2 = 9 · x – 3 2 4 – 1 ⇒ y + 3 = 3 2 · x – 3 2 – 4 и л и y + 3 = – 3 2 · x – 3 2 – 4 ⇒ y = 3 2 · x – 3 2 – 4 – 3 y = – 3 2 · x – 3 2 – 4 – 3

Необходимо выявить, к какой функции принадлежит заданная точка с координатами 7 ; – 3 3 – 3 .

Очевидно, что для проверки первой функции необходимо y ( 7 ) = 3 2 · ( 7 – 3 ) 2 – 4 – 3 = 3 3 – 3 ≠ – 3 3 – 3 , тогда точка графику не принадлежит, так как равенство не выполняется.

Для второй функции имеем, что y ( 7 ) = – 3 2 · ( 7 – 3 ) 2 – 4 – 3 = – 3 3 – 3 ≠ – 3 3 – 3 , значит, точка принадлежит заданному графику. Отсюда следует найти угловой коэффициент.

y ‘ = – 3 2 · ( x – 3 ) 2 – 4 – 3 ‘ = – 3 2 · x – 3 ( x – 3 ) 2 – 4 ⇒ k x = y ‘ ( x 0 ) = – 3 2 · x 0 – 3 x 0 – 3 2 – 4 x 0 = 7 = – 3 2 · 7 – 3 7 – 3 2 – 4 = – 3

Ответ: уравнение касательной можно представить как

y = – 3 · x – 7 – 3 3 – 3 = – 3 · x + 4 3 – 3

Наглядно изображается так:

Касательная к параболе

Чтобы составить уравнение касательной к параболе y = a x 2 + b x + c в точке x 0 , y ( x 0 ) , необходимо использовать стандартный алгоритм, тогда уравнение примет вид y = y ‘ ( x 0 ) · x – x 0 + y ( x 0 ) . Такая касательная в вершине параллельна о х .

Следует задать параболу x = a y 2 + b y + c как объединение двух функций. Поэтому нужно разрешить уравнение относительно у . Получаем, что

x = a y 2 + b y + c ⇔ a y 2 + b y + c – x = 0 D = b 2 – 4 a ( c – x ) y = – b + b 2 – 4 a ( c – x ) 2 a y = – b – b 2 – 4 a ( c – x ) 2 a

Графически изобразим как:

Для выяснения принадлежности точки x 0 , y ( x 0 ) функции, нежно действовать по стандартному алгоритму. Такая касательная будет параллельна о у относительно параболы.

Написать уравнение касательной к графику x – 2 y 2 – 5 y + 3 , когда имеем угол наклона касательной 150 ° .

Решение

Начинаем решение с представления параболы в качестве двух функций. Получим, что

– 2 y 2 – 5 y + 3 – x = 0 D = ( – 5 ) 2 – 4 · ( – 2 ) · ( 3 – x ) = 49 – 8 x y = 5 + 49 – 8 x – 4 y = 5 – 49 – 8 x – 4

Значение углового коэффициента равняется значению производной в точке x 0 этой функции и равняется тангенсу угла наклона.

k x = y ‘ ( x 0 ) = t g α x = t g 150 ° = – 1 3

Отсюда определим значение х для точек касания.

Первая функция запишется как

y ‘ = 5 + 49 – 8 x – 4 ‘ = 1 49 – 8 x ⇒ y ‘ ( x 0 ) = 1 49 – 8 x 0 = – 1 3 ⇔ 49 – 8 x 0 = – 3

Очевидно, что действительных корней нет, так как получили отрицательное значение. Делаем вывод, что касательной с углом 150 ° для такой функции не существует.

Вторая функция запишется как

y ‘ = 5 – 49 – 8 x – 4 ‘ = – 1 49 – 8 x ⇒ y ‘ ( x 0 ) = – 1 49 – 8 x 0 = – 1 3 ⇔ 49 – 8 x 0 = – 3 x 0 = 23 4 ⇒ y ( x 0 ) = 5 – 49 – 8 · 23 4 – 4 = – 5 + 3 4

Имеем, что точки касания – 23 4 ; – 5 + 3 4 .

Ответ: уравнение касательной принимает вид

Уравнение касательной к графику функции

п.1. Уравнение касательной

Рассмотрим кривую (y=f(x)).
Выберем на ней точку A с координатами ((x_0,y_0)), проведем касательную AB в этой точке.

Как было показано в §42 данного справочника, угловой коэффициент касательной равен производной от функции f в точке (x_0): $$ k=f'(x_0) $$ Уравнение прямой AB, проведенной через две точки: ((y_B-y_A)=k(x_B-x_A)).
Для (A(x_0,y_0), B(x,y)) получаем: begin (y-y_0)=k(x-x_0)\ y=k(x-x_0)+y_0\ y=f'(x_0)(x-x_0)+f(x_0) end

Чтобы записать уравнение касательной с угловым коэффициентом в виде (y=kx+b), нужно раскрыть скобки и привести подобные: $$ y=f'(x_0)(x-x_0)+f(x_0)=underbrace_<=k>x+underbrace_ <=b>$$

п.2. Алгоритм построения касательной

На входе: уравнение кривой (y=f(x)), абсцисса точки касания (x_0).
Шаг 1. Найти значение функции в точке касания (f(x_0))
Шаг 2. Найти общее уравнение производной (f’ (x))
Шаг 3. Найти значение производной в точке касания (f'(x_0 ))
Шаг 4. Записать уравнение касательной (y=f’ (x_0)(x-x_0)+f(x_0)), привести его к виду (y=kx+b)
На выходе: уравнение касательной в виде (y=kx+b)

Пусть (f(x)=x^2+3).
Найдем касательную к этой параболе в точке (x_0=1).

(f(x_0)=1^2+3=4 )
(f'(x)=2x )
(f'(x_0)=2cdot 1=2)
Уравнение касательной: $$ y=2(x-1)+4=2x-2+4=2x+2 $$ Ответ: (y=2x+2)

п.3. Вертикальная касательная

Не путайте вертикальные касательные с вертикальными асимптотами.
Вертикальная асимптота проходит через точку разрыва 2-го рода (x_0notin D), в которой функция не определена и производная не существует. График функции приближается к асимптоте на бесконечности, но у них никогда не бывает общих точек.
А вертикальная касательная проходит через точку (x_0in D), входящую в область определения. График функции и касательная имеют одну общую точку ((x_0,y_0)).

Вертикальные касательные характерны для радикалов вида (y=sqrt[n]).

Пусть (f(x)=sqrt[5]+1).
Найдем касательную к этой кривой в точке (x_0=1).

(f(x_0)=sqrt[5]<1-1>+1=1)
(f'(x)=frac15(x-1)^<frac15-1>+0=frac15(x-1)^<-frac45>=frac<1><5(x-1)^<frac45>> )
(f'(x_0)=frac<1><5(1-1)^<frac45>>=frac10=+infty)
В точке (x_0) проходит вертикальная касательная.
Её уравнение: (x=1)
Ответ: (y=2x+2)

п.4. Примеры

Пример 1. Для функции (f(x)=2x^2+4x)
a) напишите уравнения касательных, проведенных к графику функции в точках его пересечения с осью OX.

Находим точки пересечения, решаем уравнение: $$ 2x^2+4x=0Rightarrow 2x(x+2)=0Rightarrow left[ begin x=0\ x=-2 end right. $$ Две точки на оси: (0;0) и (-2;0).
Касательная в точке (x_0=0): begin f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot 0+4=4\ y=4(x-0)+0=4x end Касательная в точке (x_0=-2): begin f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot (-2)+4=-4\ y=-4(x+2)+0=-4x-8 end

б) Найдите, в какой точке касательная образует с положительным направлением оси OX угол 45°. Напишите уравнение этой касательной.

Общее уравнение касательной: (f'(x)=4x+4)
По условию (f'(x_0)=tgalpha=tg45^circ=1)
Решаем уравнение: $$ 4x_0+4=1Rightarrow 4x_0=-3Rightarrow x_0=-frac34 $$ Точка касания (x_0=-frac34) begin f(x_0)=2cdotleft(-frac34right)^2+4cdotleft(-frac34right)=frac98-3=-frac<15> <8>end Уравнение касательной: begin y=1cdotleft(x+frac34right)-frac<15><8>=x-frac98 end

в) найдите, в какой точке касательная будет параллельна прямой (2x+y-6=0). Напишите уравнение этой касательной.

Найдем угловой коэффициент заданной прямой: (y=-2x+6Rightarrow k=-2).
Касательная должна быть параллельной, значит, её угловой коэффициент тоже (k=-2). Получаем уравнение: begin f'(x_0)=-2\ 4x_0+4=-2Rightarrow 4x_0=-6Rightarrow x_0=-frac32 end Точка касания (x_0=-frac32) begin f(x_0)=2cdotleft(-frac32right)^2+4cdotleft(-frac32right)=\ =frac92-6=-frac32 end Уравнение касательной: begin y=-2cdotleft(x+frac32right)-frac32=-2x-frac92 end Или, в каноническом виде: begin 2x+y+frac92=0 end

г) в какой точке функции можно провести горизонтальную касательную? Напишите уравнение этой касательной.

У горизонтальной прямой (k=0).
Получаем уравнение: (f'(x_0)=0). begin 4x_0+4=0Rightarrow 4x_0=-4Rightarrow x_0=-1 end Точка касания (x_0=-1) begin f(x_0)=2cdot(-1)^2+4cdot(-1)=-2 end Уравнение касательной: begin y=0cdot(x+1)-2=-2 end

Ответ: а) (y=4x) и (y=-4x-8); б) (y=x-frac98); в) (2x+y+frac92=0); г) (y=-2)

Пример 3*. Найдите точку, в которой касательная к графику функции (f(x)=frac-x) перпендикулярна прямой (y=11x+3). Напишите уравнение этой касательной.

Угловой коэффициент данной прямой (k_1=11).
Угловой коэффициент перпендикулярной прямой (k_2=-frac<1>=-frac<1><11>) begin f'(x)=left(fracright)’-x’=frac<2x(x+3)-(x^2+2)cdot 1><(x+3)^2>-1=frac<2x^2+6x-x^2-2-(x+3)^2><(x+3)^2>=\ =frac<(x+3)^2>=- frac<11> <(x+3)^2>end В точке касания: begin f'(x_0)=k_2Rightarrow=-frac<11><(x+3)^2>=-frac<1><11>Rightarrow (x+3)^2=121Rightarrow (x+3)^2-11^2=0Rightarrow\ Rightarrow (x+14)(x+8)=0Rightarrow left[ begin x=-14\ x=8 end right. end
Уравнение касательной при (x_0=-14) begin f(x_0)=frac<(-14)^2+2><-14+3>+14=frac<198><-11>+14=-18+14=-4\ y=-frac<1><11>(x+14)-4=-frac <11>end Уравнение касательной при (x_0=8) begin f(x_0)=frac<8^2+2><8+3>-8=frac<66><11>-8=-2\ y=-frac<1><11>(x-8)-2=-frac <11>end
Ответ: точка касания (-14;-4), уравнение (y=-frac<11>)
и точка касания (8;-2), уравнение (-frac<11>)

Пример 4*. Найдите уравнения общих касательных к параболам (y=x^2-5x+6) и (y=x^2+x+1). Укажите точки касания.

Найдем производные функций: begin f_1′(x)=2x-5, f_2′(x)=2x+1 end Пусть a – абсцисса точки касания для первой параболы, b – для второй.
Запишем уравнения касательных (g_1(x)) и (g_2(x)) через эти переменные. begin g_1(x)=f_1′(a)(x-a)+f_1(a)=(2a-5)(x-a)+a^2-5a+6=\ =(2a-5)x-2a^2+5a+a^2-5a+6=(2a-5)x+(6-a^2)\ \ g_2(x)=f_2′(b)(x-b)+f_2(b)=(2b+1)(x-b)+b^2+b+1=\ =(2b+1)x-2b^2-b+b^2+b+1=(2b+1)x+(1-b^2) end Для общей касательной должны быть равны угловые коэффициенты и свободные члены. Получаем систему уравнений: begin begin 2a-5=2b+1\ 6-a^2=1-b^2 end Rightarrow begin 2(a-b)=6\ a^2-b^2=5 end Rightarrow begin a-b=3\ (a-b)(a+b)=5 end Rightarrow begin a-b=3\ a+b=frac53 end Rightarrow \ Rightarrow begin 2a=3+frac53\ 2b=frac53-3 end Rightarrow begin a=frac73\ b=-frac23 end end Находим угловой коэффициент и свободный член из любого из двух уравнений касательных: $$ k=2a-5=2cdotfrac73-5=-frac13, b=6-a^2=6-frac<49><9>=frac59 $$ Уравнение общей касательной: $$ y=-frac x3+frac59 $$
Точки касания: begin a=frac73, f_1(a)=left(frac73right)^2-5cdotfrac73+6=frac<49><9>-frac<35><3>+6=frac<49-105+54><9>=-frac29\ b=-frac23, f_2(b)=left(-frac23right)^2-frac23+1=frac49-frac23+1frac<4-6+9><9>=frac79 end
Ответ: касательная (y=-frac x3+frac59); точки касания (left(frac73;-frac29right)) и (left(-frac23;frac79right))

Пример 5*. Докажите, что кривая (y=x^4+3x^2+2x) не пересекается с прямой (y=2x-1), и найдите расстояние между их ближайшими точками.

Решим уравнение: (x^4+3x^2+2x=2x-1) begin x^4+3x^2+1=0Rightarrow D=3^2-4=5Rightarrow x^2=frac<-3pmsqrt<5>> <2>end Оба корня отрицательные, а квадрат не может быть отрицательным числом.
Значит, (xinvarnothing) – решений нет, кривая и прямая не пересекаются.
Что и требовалось доказать.

Чтобы найти расстояние, необходимо построить касательную к кривой с тем же угловым коэффициентом (k=2), то и y данной прямой. Тогда искомым расстоянием будет расстояние от точки касания до прямой (y=2x-1).
Строим уравнение касательной. По условию: (f'(x)=4x^3+6x+2=2) begin 4x^3+6x=0Rightarrow 2x(2x^2+3)=0Rightarrow left[ begin x=0\ 2x^2+3=0 end right. Rightarrow left[ begin x=0\ x^2=-frac32 end right. Rightarrow left[ begin x=0\ xinvarnothing end right. Rightarrow x=0 end Точка касания (x_0=0, y_0=0^4+3cdot 0^2+2cdot 0=0).
Уравнение касательной: (y=2(x-0)+0=2x)

Ищем расстояние между двумя параллельными прямыми:
(y=2x) и (y=2x-1).
Перпендикуляр из точки (0;0) на прямую (y=2x-1) имеет угловой коэффициент (k=-frac12), его уравнение: (y=-frac12 x+b). Т.к. точка (0;0) принадлежит этому перпендикуляру, он проходит через начало координат и (b=0).

Уравнение перпендикуляра: (y=-frac x2).
Находим точку пересечения прямой (y=2x-1) и перпендикуляра (y=-frac x2): begin 2x-1=-frac x2Rightarrow 2,5x=1Rightarrow x=0,4; y=-frac<0,4><2>=-0,2 end Точка пересечения A(0,4;-0,2).
Находим расстояние (OA=sqrt<0,4^2+(-0,2)^2>=0,2sqrt<2^2+1^2>=frac<sqrt<5>><5>)
Ответ: (frac<sqrt<5>><5>)

[spoiler title=”источники:”]

http://zaochnik.com/spravochnik/matematika/proizvodnye/kasatelnaja-k-grafiku-funktsii-v-tochke/

http://reshator.com/sprav/algebra/10-11-klass/uravnenie-kasatelnoj-k-grafiku-funkcii/

[/spoiler]

Добавить комментарий