Как найти точку экстремума функции по рисунку

Исследование графика функции

На рисунке изображен график функции y=fleft( x right). Посмотрим, как исследовать функцию с помощью графика. Оказывается, глядя на график, можно узнать всё, что нас интересует, а именно:

  • область определения функции;
  • область значений функции;
  • нули функции;
  • промежутки возрастания и убывания;
  • точки максимума и минимума;
  • наибольшее и наименьшее значение функции на отрезке.

Уточним терминологию:

Абсцисса — это координата точки по горизонтали.
Ордината — координата по вертикали.
Ось абсцисс — горизонтальная ось, чаще всего называемая ось X.
Ось ординат — вертикальная ось, или ось Y.

Аргумент — независимая переменная, от которой зависят значения функции. Чаще всего обозначается x.
Другими словами, мы сами выбираем x, подставляем в формулу функции и получаем y.

Область определения функции — множество тех (и только тех) значений аргумента x, при которых функция существует.
Обозначается: D(f) или D(y).

На нашем рисунке область определения функции y=fleft( x right) — это отрезок left[ -6; 6 right]. Именно на этом отрезке нарисован график функции. Только здесь данная функция существует.

Область значений функции — это множество значений, которые принимает переменная y. На нашем рисунке это отрезок left[ -3; 7 right] — от самого нижнего до самого верхнего значения y.

Нули функции — точки, где значение функции равно нулю, то есть y=0. На нашем рисунке это точки x=-4 и x=1.

Значения функции положительны там, где y textgreater 0. На нашем рисунке это промежутки left[ -6; -4 right] и left[ 1; 6 right].
Значения функции отрицательны там, где y textless 0. У нас это промежуток (или интервал) от -4 до 1.

Важнейшие понятия — возрастание и убывание функции на некотором множестве M. В качестве множества M можно взять отрезок left[ a; b right], интервал left( a; b right), объединение промежутков или всю числовую прямую.

Функция y=fleft( x right) возрастает на множестве M, если для любых x_1 и x_2, принадлежащих множеству M, из неравенства x_2 textgreater x_1 следует неравенство fleft( x_2 right) textgreater fleft( x_1 right).

Иными словами, чем больше x, тем больше y, то есть график идет вправо и вверх.

Функция y=fleft( x right) убывает на множестве M, если для любых x_1 и x_2, принадлежащих множеству M, из неравенства x_2 textgreater x_1 следует неравенство fleft( x_2 right) textless fleft( x_1 right).

Для убывающей функции большему значению x соответствует меньшее значение y. График идет вправо и вниз.

На нашем рисунке функция fleft( x right) возрастает на промежутке left[ -2; 4 right] и убывает на промежутках left[ -6; -2 right] и left[ 4; 6 right].

Определим, что такое точки максимума и минимума функции.

Точка максимума — это внутренняя точка области определения, такая, что значение функции в ней больше, чем во всех достаточно близких к ней точках.
Другими словами, точка максимума — такая точка, значение функции в которой больше, чем в соседних. Это локальный «холмик» на графике.

На нашем рисунке x=4 — точка максимума.

Точка минимума — внутренняя точка области определения, такая, что значение функции в ней меньше, чем во всех достаточно близких к ней точках.
То есть точка минимума — такая, что значение функции в ней меньше, чем в соседних. На графике это локальная «ямка».

На нашем рисунке x= -2 — точка минимума.

Точка x= -6 — граничная. Она не является внутренней точкой области определения и потому не подходит под определение точки максимума. Ведь у нее нет соседей слева. Точно так же и x=6 на нашем графике не может быть точкой минимума.

Точки максимума и минимума вместе называются точками экстремума функции. В нашем случае это x=4 и x= -2.

А что делать, если нужно найти, например, минимум функции y=fleft ( x right ) на отрезке left[ -4; 0 right]? В данном случае ответ: y= -3. Потому что минимум функции — это ее значение в точке минимума.

Аналогично, максимум нашей функции равен 4. Он достигается в точке x=4.

Можно сказать, что экстремумы функции равны 4 и -3.

Иногда в задачах требуется найти наибольшее и наименьшее значения функции на заданном отрезке. Они не обязательно совпадают с экстремумами.

В нашем случае наименьшее значение функции на отрезке left[ -6; 6 right] равно -3 и совпадает с минимумом функции. А вот наибольшее ее значение на этом отрезке равно 7. Оно достигается в левом конце отрезка.

В любом случае наибольшее и наименьшее значения непрерывной функции на отрезке достигаются либо в точках экстремума, либо на концах отрезка.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Исследование графика функции» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.

Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.

Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.

на графике функции отмечены локальные минимумы и максимумы

Минимумы и максимумы вместе именуют экстремумами функции.

Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.

В точках экстремумов (т.е. максимумов и минимумов) производная
равна нулю.

Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.

Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. (y). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, (-5) точка минимума (или точка экстремума), а (1) – минимум (или экстремум).

Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?

Давайте вместе найдем количество точек экстремума функции по графику производной на примере:

найдите количество точек экстремумов функции

У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки (-13), (-11), (-9),(-7) и (3). Количество точек экстремума функции – (5).

Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось (x)).

на графике функции отмечены локальные минимумы и максимумы         график производной и отмеченные на ней точки минимумов и максимумов функции

Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:

– Производная положительна там, где функция возрастает.
– Производная отрицательна там, где функция убывает.

С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.

найдите количество точек экстремумов функции

Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди (-13), (-11), (-9),(-7) и (3).

Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.

по графику производной определить минимумы и максимумы функции

Начнем с (-13): до (-13) производная положительна т.е. функция растет, после – производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что (-13) – точка максимума.

(-11): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что (-11) – это минимум.

(- 9): функция возрастает, а потом убывает – максимум.

(-7): минимум.

(3): максимум.

Все вышесказанное можно обобщить следующими выводами:

– Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
– Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.

Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:

  1. Найдите производную функции (f'(x)). 
  2. Найдите корни уравнения (f'(x)=0). 
  3. Нарисуйте ось (x) и отметьте на ней точки полученные в пункте 2, изобразите дугами промежутки, на которые разбивается ось. Подпишите над осью (f'(x)), а под осью (f(x)).
  4. Определите знак производной в каждом промежутке (методом интервалов). 
  5. Поставьте знак производной в каждом промежутке (над осью), а стрелкой укажите возрастание (↗) или убывание (↘) функции (под осью). 
  6. Определите, как изменился знак производной при переходе через точки, полученные в пункте 2:
    – если (f’(x)) изменила знак с «(+)» на «(-)», то (x_1) – точка максимума;
    – если (f’(x)) изменила знак с «(-)» на «(+)», то (x_3) – точка минимума;
    – если (f’(x)) не изменила знак, то (x_2) – может быть точкой перегиба.

нахождение минимума и максимума

Всё! Точки максимумов и минимумов найдены.

Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.

схематичное изображение функции

Пример(ЕГЭ). Найдите точку максимума функции (y=3x^5-20x^3-54).
Решение:
1. Найдем производную функции: (y’=15x^4-60x^2).
2. Приравняем её к нулю и решим уравнение:

(15x^4-60x^2=0)      (|:15)
(x^4-4x^2=0)
(x^2 (x^2-4)=0)
(x=0)       (x^2-4=0)
               (x=±2)

3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:

поиск минимумов и максимумов

Теперь очевидно, что точкой максимума является (-2).

Ответ. (-2).

Смотрите также:
Связь функции и её производной | 7 задача ЕГЭ
Разбор задач на поиск экстремумов, минимумов и максимумов

Скачать статью

Производная положительна только тогда, когда функция возрастает. То есть, нам необходимо найти точки, в которых функция растет. Смотрим на график нашей функции: функция растет на промежутках: от (x=-7) до (x=0) и от (x = 6) до (x=12).

Так как по условию нам нужны только ЦЕЛЫЕ точки, в которых производная положительна, то это будут: (x=—6); (x=-5), (x=-4), (x=-3), (x=-2), (x=-1), (x=7), (x=8), (x=9), (x=10), (x=11). Всего точек получилось (11). Я отметил их зеленым цветом.

Обратите внимание, что точки (x=-7), (x=0), (x=6), (x=12) мы не считаем, так как в этих точках у нас будут минимумы и максимумы функции, а в них производная равна нулю, то есть не положительна.

Ответ: (11.)

Пример 2
На рисунке 6 изображен график функции, определенной на промежутке ((-10;12)). Найдите количество точек, в которых производная функции равна нулю.

Рассмотрим примеры заданий из №7 ЕГЭ, в которых нужно найти точки экстремума на графике производной.

Точка xo, в которой существует производная f'(xo), является точкой экстремума функции f(x), если производная в этой точке равна нулю и при переходе через xo производная меняет свой знак.

Отсюда следует, что в точках экстремума функции график производной должен не просто касаться оси Ox, он должен её пересекать.

№1

На рисунке изображён график производной функции f(x), определённой на интервале (-6;7). Найти точку экстремума функции f(x) на отрезке [-2;5].

tochki-ehkstremuma-na-grafike-proizvodnoj
Решение:

На рисунке изображён график производной (а не график функции)!

В точках экстремума функции производная f'(x) равна нулю и меняет знак.

Выделяем отрезок [-2;5]. Точка, в которой производная равна нулю и меняет знак —  это точка с абсциссой 3.

Значит x=3 — точка экстремума функции y=f(x).

Ответ: 3.

№2

На рисунке изображён график производной функции f(x), определённой на интервале (-9;5). Найти количество точек экстремума функции f(x) на отрезке [6-;4].

kolichestvo-tochek-ehkstremuma-na-grafike-proizvodnoj

Решение:

Выделяем отрезок [-6;4].

На этом отрезке график производной пересекает ось абсцисс в трёх точках.

Следовательно, на отрезке [-6;4] функция f(x) имеет три точки экстремума.

Ответ: 3.

№3

На рисунке изображён график производной функции f(x), определённой на интервале (-7;7). Найти количество точек экстремума функции f(x) на отрезке [-5;6].

skolko-tochek-ehkstremuma-na-grafike-proizvodnoj

Решение:

Выделяем отрезок [-5;6].

На этом отрезке график производной пересекает ось абсцисс в четырёх точках. Значит, функция f(x) имеет на отрезке [-5;6] четыре точки экстремума.

Точка, в которой производная равна нулю, но знак не меняет (график производной коснулся оси Ox, но не пересёк её), не является точкой экстремума.

Ответ: 4.

Важно внимательно читать условие, чтобы не перепутать нахождение точек экстремума по графику производной с заданием на нахождение точек экстремума по графику функции!

7. Взаимосвязь функции и ее производной


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Связь производной с точками экстремума функции

В данных задачах речь идет о непрерывных функциях (простым языком, функция будет непрерывна на интервале, если ее график можно нарисовать на этом интервале, не отрывая ручку от листа).

(blacktriangleright) (color{royalblue}{text{Точки}}) (локального) (color{royalblue}{text{экстремума}}) функции – это точки (локального) максимума и минимума.

Окрестность – это интервал вокруг точки некоторого радиуса. Например, окрестностью точки (x=0) можно назвать интервал ((-1;1)), или ((-0,1;0,1)), или ((-0,0000001;0,0000001)) и т.д.

(blacktriangleright) (color{royalblue}{text{Точка}}) (color{royalblue}{text{максимума}}) (x_{max}) – такая внутренняя точка области определения функции, для которой выполнено: (f(x)leqslant
f(x_{max}))
для любого (x) из некоторой окрестности точки (x_{max}).

То есть можно найти такую окрестность, что для любой точки из этой окрестности будет выполнено данное неравенство.
Заметим, что, например, если функция определена на отрезке ([0;2]), то все точки интервала ((0;2)) будут внутренними, а вот точки (0) и (2) – граничными (то есть не внутренними).

(blacktriangleright) (color{royalblue}{text{Точка}}) (color{royalblue}{text{минимума}}) (x_{min}) – такая внутренняя точка области определения функции, для которой выполнено: (f(x)geqslant
f(x_{min}))
для любого (x) из некоторой окрестности точки (x_{min}).

Например, для точки (C) за окрестность можно взять интервал ((3;5)) или даже ((2;6)), а можно совсем маленький — ((4-0,01;4+0,01)).

 

Следующие факты помогают искать точки экстремума функции.

(blacktriangleright) Если производная (f’) в точке (x) равна нулю и меняет свой знак слева направо с “(+)” на “(-)” , то эта точка является точкой максимума.
Заметим также, что если производная (f’) в точке (x) не существует и меняет свой знак слева направо с “(+)” на “(-)” (но (x) – внутренняя точка области определения функции (f,)!), то эта точка является точкой максимума.

Пример: в точке (A) производная равна нулю и эта точка является точкой максимума; в точке (C) производная не “равна нулю”, а не существует, при этом точка (C) также является точкой максимума.

(blacktriangleright) Если производная в точке (x) равна нулю и меняет свой знак слева направо с “(-)” на “(+)” , то эта точка является точкой минимума.
Также, если производная (f’) в точке (x) не существует и меняет свой знак слева направо с “(-)” на “(+)” (но (x) – внутренняя точка области определения функции (f,)!), то эта точка является точкой минимума.

(blacktriangleright) Заметим, что точки экстремума – это значение абсциссы (x).

(blacktriangleright) Заметим, что существует такое понятие, как критические точки — это все точки, в которых производная функции либо равна нулю, либо не существует.
Таким образом, только часть критических точек является точками экстремума.


Задание
1

#3107

Уровень задания: Равен ЕГЭ

На рисунке изображен график производной функции (f(x)), определенной на отрезке ([-10;37]). Найдите количество точек максимума функции (f(x)) на отрезке ([0;37]).

Точка максимума – значение (x), в котором производная меняет свой знак с “(+)” на “(-)”. Следовательно, в этой точке ее график пересекает ось абсцисс “сверху вниз” (если двигаться по рисунку слева направо). Отметим отрезок ([0;37]) и увидим, что таких точек 2:

Ответ: 2


Задание
2

#2962

Уровень задания: Равен ЕГЭ

На рисунке изображен график функции (y = f(x)), определенной на интервале ((-2,4; 8,7)). Найдите сумму точек экстремума этой функции на отрезке ([1;6]).

Так как на рисунке изображен график функции, то точки экстремума – это точки на графике, в которых функция меняется с возрастания на убывание или наоборот. Эти точки: (x=-1; 0; 2; 4; 5; 8.) Из них на отрезке ([1;6]) лежат только точки (2; 4; 5), следовательно, их сумма равна (2+4+5=11.)

Ответ: 11


Задание
3

#730

Уровень задания: Равен ЕГЭ

На рисунке изображен график функции (y = f(x)), определенной на интервале ((-3; 8,5)). Найдите сумму точек экстремума этой функции.

Точкой экстремума функции называется точка, в которой функция достигает локально минимальное или локально максимальное значение.

По рисунку можно определить, что функция (f(x)) достигает локально минимальные значения в точках (0), (4) и (8), а локально максимальные значения в точках (-2), (1) и (6). Таким образом, сумма точек экстремума этой функции равна (0 + 4 + 8 + (-2) + 1 + 6 = 17).

Ответ: 17


Задание
4

#731

Уровень задания: Равен ЕГЭ

На рисунке изображен график функции (y = f(x)), определенной на интервале ((-2,4; 8,7)). Найдите сумму точек экстремума этой функции.

Точкой экстремума функции называется точка, в которой функция достигает локально минимальное или локально максимальное значение.

По рисунку можно определить, что функция (f(x)) достигает локально минимальные значения в точках (-1), (2) и (5), а локально максимальные значения в точках (0), (4) и (8). Таким образом, сумма точек экстремума этой функции равна (-1 + 2 + 5 + 0 + 4 + 8 = 18).

Ответ: 18


Задание
5

#732

Уровень задания: Равен ЕГЭ

На рисунке изображен график функции (y = f(x)), определенной на интервале ((-3; 9)). Найдите произведение точек экстремума этой функции.

Точкой экстремума функции называется точка, в которой функция достигает локально минимальное или локально максимальное значение.

По рисунку можно определить, что функция (f(x)) достигает локально минимальные значения в точках (-1) и (5), а локально максимальные значения в точках (-2), (4) и (8). Таким образом, произведение точек экстремума этой функции равно ((-1)cdot 5cdot (-2)cdot 4cdot 8 = 320).

Ответ: 320


Задание
6

#733

Уровень задания: Равен ЕГЭ

На рисунке изображен график функции (y = f(x)), определенной на интервале ((-2.8; 7.8)). Найдите произведение точек экстремума этой функции.

Точкой экстремума функции называется точка, в которой функция достигает локально минимальное или локально максимальное значение.

По рисунку можно определить, что функция (f(x)) достигает локально минимальные значения в точках (1) и (4), а локально максимальные значения в точках (-2), (3) и (7). Таким образом, произведение точек экстремума этой функции равно (1cdot 4cdot (-2)cdot 3cdot 7 = -168).

Ответ: -168


Задание
7

#734

Уровень задания: Равен ЕГЭ

На рисунке изображен график (y = f'(x)) – производной функции (y = f(x)), определенной на интервале ((-1; 8)). В какой точке отрезка ([2; 5]) функция (y = f(x)) принимает наибольшее значение?

По рисунку можно определить, что функция (y = f'(x)) на отрезке ([2; 5]) принимает неположительные значения, при этом (f'(2) = 0). Так как на полуинтервале ((2; 5]) производная функции (f(x)) отрицательна, то сама функция (f(x)) на ((2; 5]) убывает, тогда (y = f(x)) на отрезке ([2; 5]) принимает наибольшее значение при (x = 2).

Ответ: 2

Итоговый экзамен по математике для выпускников 11-х классов обязательно включает задания на поиск точек максимума и минимума функциональных зависимостей. Их решение проводится аналитически – методом дифференцирования. Применение производной для исследования функции на экстремум сокращает время анализа и позволяет представить общий вид графика зависимости еще до выполнения построений.

Обучающий ресурс «Школково» позволит учащимся освежить в памяти главные моменты темы – уточнить теоретические знания и отработать их в решении ряда задач. Наш подход к обучению в отношении поиска точек экстремума функции через производную в типовых заданиях ЕГЭ основан на принципе глубокой взаимосвязи теории и практики. Сначала ученик читает правила «Теоретической справки», потом смотрит видео с объяснениями учителя, а затем работает с реальным педагогом. В процессе просмотра предлагаемых на сайте вебинаров можно задать интересующие вопросы и получить помощь в решении конкретных задач.

В разделе «Каталог» имеются подборки тематических заданий на нахождение точек экстремума функции с помощью производной, а также нахождения производной угла наклона касательной. Каждый пример содержит готовое решение и правильный ответ, с которыми можно ознакомиться после окончания самостоятельной работы. «Конструктор» примерных вариантов ЕГЭ позволит провести исследование экстремумов функций с помощью производных в ходе пробного выполнения экзаменационной работы.

УСТАЛ? Просто отдохни

Добавить комментарий