Как найти точку максимума функции дробь


СДАМ ГИА:

РЕШУ ЕГЭ

Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

≡ Математика

Базовый уровень

Профильный уровень

Информатика

Русский язык

Английский язык

Немецкий язык

Французский язык

Испанский язык

Физика

Химия

Биология

География

Обществознание

Литература

История

Сайты, меню, вход, новости

СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

Об экзамене

Каталог заданий

Варианты

Ученику

Учителю

Школа

Эксперту

Справочник

Карточки

Теория

Сказать спасибо

Вопрос — ответ

Чужой компьютер

Зарегистрироваться

Восстановить пароль

Войти через ВКонтакте

Играть в ЕГЭ-игрушку

Новости

1 мая

Новый сервис: можно исправить ошибки!

29 апреля

Разместили актуальные шкалы ЕГЭ  — 2023

24 апреля

Учителю: обновленный классный журнал

7 апреля

Новый сервис: ссылка, чтобы записаться к учителю

30 марта

Решения досрочных ЕГЭ по математике

31 октября

Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР

НАШИ БОТЫ

Все новости

ЧУЖОЕ НЕ БРАТЬ!

Экзамер из Таганрога

10 апреля

Предприниматель Щеголихин скопировал сайт Решу ЕГЭ

Наша группа

Каталог заданий.
Исследование частных


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 11 № 77467

i

Найдите точку максимума функции y= минус дробь: числитель: x в квадрате плюс 289, знаменатель: x конец дроби .

Аналоги к заданию № 77467: 129843 129871 523993 … Все

Решение

·

Видеокурс

·

Помощь


2

Тип 11 № 77468

i

Найдите точку минимума функции y= минус дробь: числитель: x в квадрате плюс 1, знаменатель: x конец дроби .

Аналоги к заданию № 77468: 129873 129899 129901 … Все

Решение

·

1 комментарий

·

Видеокурс

·

Помощь


3

Тип 11 № 77469

i

Найдите наименьшее значение функции y= дробь: числитель: x в квадрате плюс 25, знаменатель: x конец дроби на отрезке  левая квадратная скобка 1;10 правая квадратная скобка .

Аналоги к заданию № 77469: 129903 129931 129905 … Все

Решение

·

Видеокурс

·

Помощь


4

Тип 11 № 77470

i

Найдите наибольшее значение функции y= дробь: числитель: x в квадрате плюс 25, знаменатель: x конец дроби на отрезке  левая квадратная скобка минус 10; минус 1 правая квадратная скобка .

Аналоги к заданию № 77470: 129933 129961 129935 … Все

Решение

·

Видеокурс

·

Помощь


5

Тип 11 № 77471

i

Найдите точку максимума функции y= дробь: числитель: 16, знаменатель: x конец дроби плюс x плюс 3.

Аналоги к заданию № 77471: 129965 129963 130011 … Все

Решение

·

1 комментарий

·

Видеокурс

·

Помощь

Пройти тестирование по этим заданиям

О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2023

Skip to content

ЕГЭ профильный уровень. №11 Степенные, иррациональные и дробные функции. Задача 53

ЕГЭ профильный уровень. №11 Степенные, иррациональные и дробные функции. Задача 53admin2023-03-22T18:53:09+03:00

Задача 53. Найдите точку максимума функции    (y = frac{{16}}{x} + x + 3)

Область определения функции: (x in ,,left( { — infty ;0} right) cup left( {0;infty } right).)

Найдём производную заданной функции:

(y’ = ,frac{{{{16}^prime } cdot x — 16 cdot x’}}{{{x^2}}} + x’ + 3′ = frac{{0 cdot x — 16}}{{{x^2}}} + 1 =  — frac{{16}}{{{x^2}}} + 1)

Найдём нули производной:

(1 — frac{{16}}{{{x^2}}} = 0,,,,,,,, Leftrightarrow ,,,,,,,,,{x^2} = 16,,,,,,,, Leftrightarrow ,,,,,{x_1} =  — 4,,,,,,,{x_2} = 4.)

Определим знаки производной и её поведение:

Следовательно, точка максимума  (x =  — 4.)

Ответ:  –4.

Рациональная функция. В этой статье мы рассмотрим несколько примеров. Требуется определить точки максимума или минимума. Ранее уже были рассмотрены подобные задания с логарифмами, тригонометрическими и степенными функциями.

Рекомендую повторить теорию, необходимую для решения, в том числе приоизводные элементарных функций и правила дифференцирования.

Алгоритм нахождения точек максимума (минимума) функции:

1. Вычисляем производную функции.

2. Приравниваем её к нулю, решаем уравнение.

3. Полученные корни отмечаем на числовой прямой. 

*Также на ней отмечаем точки, в которых производная не существует. Получим интервалы возрастания (убывания) функции.

4. Определяем знаки производной на этих интервалах (подставляя произвольные значения из полученных интервалов в производную).

Рассмотрим задания:

77471. Найдите точку максимума функции

Максимум и минимум рациональной функции

Найдём производную данной функции:

Найдем нули производной:

Определим знаки производной функции, подставляя значения из интервалов в найденную производную, и изобразим на рисунке поведение функции. На числовой прямой, кроме найденных корней, так же отмечаем точку в которой производная не существует, для данной функции это точка х = 0 (в ней функция прерывается):

В точке х = – 4  функция меняет знак с положительного на отрицательный, значит это искомая точка максимума.

Ответ: – 4

77500. Най­ди­те точку мак­си­му­ма функ­ции

Найдём производную данной функции:

Найдем нули производной:

*В данном случае производная существует при всех значениях  х.

Отметим на числовой прямой точки х1 = –17 и х2 = 17.  Определим знаки производной функции на интервалах, подставляя значения из них в найденную производную:

В точке х = –17 функция меняет знак с положительного на отрицательный,  значит это искомая точка максимума.

Ответ: – 17

77501. Най­ди­те точку ми­ни­му­ма функ­ции

Найдём производную данной функции:

Найдем нули производной:

*В данном случае производная существует при всех значениях  х.

Отметим на числовой прямой точки х1 = –1 и х2 = 1.  Определим знаки производной функции на интервалах, подставляя значения из них в найденную производную:

В точке х = 1 функция меняет знак с отрицательного на положительный,  значит это искомая точка минимума.

Ответ: 1

129871. Най­ди­те точку мак­си­му­ма функ­ции

Ответ: 18

129901. Най­ди­те точку ми­ни­му­ма функ­ции

Ответ: –26

132697. Най­ди­те точку мак­си­му­ма функ­ции

Ответ: 3

132727.  Най­ди­те точку ми­ни­му­ма функ­ции

Ответ: 14

Посмотреть решение

Посмотреть решение

Посмотреть решение

В будущем рассмотрим задания с дробно-рациональными функциями, где требуется найти наибольшее (наименьшее) значение на интервале, не пропустите!

Успеха Вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Найти точку минимума можно, выполнив 6 простых шагов.

1) Найдем первую производную.

2) Приравняем ее к нулю и найдем значения х, при которых производная обращается в ноль.

3) На координатной прямой отмечаем иксы, которые получились, и точки разрыва, если таковые имеются.

4) В получившихся промежутках выбираем любое число и подставляем его в ПРОИЗВОДНУЮ!!! Определяем знак получившегося результата.

5) На координатной прямой отмечаем знаками “+” и “-” в зависимости от того, что получилось в пункте 4. Расставляем стрелочки. Если в промежутке стоит плюс, значит стрелочка смотрит вверх, если минус – вниз.

6) По стрелочкам определяем какая точка будет точкой максимума, а какая – точкой минимума. Точка максимума – сверху, точка минимума – снизу.

Начнем-с.

Ищем производную от функции.

Приравниваем ее к 0 и решаем уравнение относительно х.

На числовой прямой отмечаем точки -12 и 12, в получившихся промежутках выбираем числа. Я выбрала -20, 0 и 20.

Выбранные числа подставляем в производную, прикидываем знак результата.

Там, где у меня получились положительные результаты, на чертеже я поставила плюсики, а там, где отрицательный результат, – минусик.

Расставляем стрелочки и видим, что точка максимума у нас равна -12.

Ответ: -12.

Значения функции и точки максимума и минимума

Наибольшее значение функции 

Наменьшее значение функции 

Точки max 

Точки min


Как говорил крестный отец: «Ничего личного». Только производные!

Статью Как посчитать производные? надеюсь, ты изучил, без этого дальше будет проблематично.

12 задание по статистике считается достаточно трудным, а все потому, что ребята не прочитали эту статью (joke). В большинстве случаев виной всему невнимательность.

12 задание бывает двух видов:

  1. Найти точку максимума / минимума (просят найти значения «x»).
  2. Найти наибольшее / наименьшее значение функции (просят найти значения «y»).

Как же действовать в этих случаях?

Найти точку максимума / минимума

  1. Взять производную от предложенной функции.
  2. Приравнять ее к нулю.
  3. Найденный или найденные «х» и будут являться точками минимума или максимума.
  4. Определить с помощью метода интервалов знаки и выбрать, какая точка нужна в задании.

Задания с ЕГЭ: 

Найдите точку максимума функции 

  • Берем производную:

  • Приравняем ее к нулю:
  • Получили одно значение икса, для нахождения знаков подставим −20 слева от корня и 0 справа от корня в преобразованную производную (последняя строчка с преобразованием):


Все верно, сначала функция возрастает, затем убывает — это точка максимума!
Ответ: −15

Найдите точку минимума функции

  • Преобразуем и возьмем производную: 

  • Получается один корень «−2», однако не стоит забывать о «−3», она тоже будет влиять на изменение знака.

  • Отлично! Сначала функция убывает, затем возрасает — это точка минимума!

Ответ: −2

Найти наибольшее / наименьшее значение функции

  1. Взять производную от предложенной функции.
  2. Приравнять ее к нулю.
  3. Найденный «х» и будет являться точкой минимума или максимума.
  4. Определить с помощью метода интервала знаки и выбрать, какая точка нужна в задании.
  5. В таких заданиях всегда задается промежуток: иксы, найденные в пункте 3, должны входить в данный промежуток.
  6. Подставить в первоначальное уравнение полученную точку максимума или минимума, получаем наибольшее или наименьшее значение функции. 

Задания с ЕГЭ: 

Найдите наибольшее значение функции на отрезке [−4; −1] 

  • Преобразуем и возьмем производную: 
  • «3» не вдходит в промежуток [−4; −1]. Значит, остается проверить «−3» — это точка максимума?

  • Подходит, сначала функция возрастает, затем убывает — это точка максимума, и в ней будет наибольшее значение функции. Остается только подставить в первоначальную функцию:

Ответ: −6

Найдите наибольшее значение функции на отрезке [0; 1,5π]

  • Наибольшее значение функции равно «11» при точке максимума (на этом отрезке) «0».

Ответ: 11

Выводы:

  1. 70% ошибок заключается в том, что ребята не запоминают, что в ответ на наибольшее/наименьшее значение функции нужно написать «y», а на точку максимума/минимума написать «х».
  2. Нет решения у производной при нахождении значений функции? Не беда, подставляй крайние точки промежутка!
  3. Ответ всегда может быть записан в виде числа или десятичной дроби. Нет? Тогда перерешивай пример.
  4. В большинстве заданий будет получаться одна точка и наша лень проверять максимум или минимум будет оправдана. Получили одну точку — можно смело писать в ответ.
  5. А вот с поиском значения функции так поступать не стоит! Проверяйте, что это нужная точка, иначе крайние значения промежутка могут оказаться больше или меньше.

Будь в курсе новых статеек, видео и легкого математического юмора.

Добавить комментарий