Как найти точку минимума егэ математика

В этой статье мы разберём базовый алгоритм решения номера 12 из профиля ЕГЭ по математике!

Итак, перед нами условие:

ЕГЭ: Математика. Профиль. №12 - нахождение минимума или максимума функции. Проще, чем кажется!

В заданиях 12 основное умение, которое вам пригодится – умение брать производную. В данном номере надо найти минимум функции. Для того чтобы найти минимум (или максимум) функции необходимо:

1) Найти производную функции

2) Найти нули производной

3) Найти промежутки возрастания или убывания функции

4) Определить точки минимума или максимума функции

5) На основе полученных данных записать ответ и ВСЁ!

Итак, следуем алгоритму. Запишем производную данной функции (про производные скоро выйдет отдельная статья):

ЕГЭ: Математика. Профиль. №12 - нахождение минимума или максимума функции. Проще, чем кажется!

Далее находим нули получившейся производной. У нас дробь, поэтому числитель должен быть равен 0, а знаменатель не равен 0. Получаем икс, равное -5. На всякий случай подставим его в знаменатель, чтобы убедиться, что у нас там не выйдет 0. К счастью, такого не случилось, поэтому теперь определяем возрастание и убывание функции.

Чтобы определить возрастание или убывание функции надо воспользоваться методом интервалов. Для этого изобразим прямую, отметим на ней наши нули функции:

ЕГЭ: Математика. Профиль. №12 - нахождение минимума или максимума функции. Проще, чем кажется!

Далее найдём промежутки возрастания и убывания функции. Для этого можно просто подставлять любые значения из получившихся промежутков (до 5 и после 5) в ПРОИЗВОДНУЮ(!) Большая ошибка подставлять значения в функцию вместо производной, может получиться неверный знак! Итак, подставляя значения правее и левее пятёрки в производную, получаем знак “плюс” справа (так как производная положительна) и знак “минус” слева (производная отрицательная):

ЕГЭ: Математика. Профиль. №12 - нахождение минимума или максимума функции. Проще, чем кажется!

Что мы таким образом получили? Мы получили знаки производной! А эти знаки означают, убывает ли функция или возрастает. Когда знак производной положителен, функция возрастает; когда знак производной отрицателен, функция убывает. Отметим условными стрелочками возрастание или убывание функции под прямой:

ЕГЭ: Математика. Профиль. №12 - нахождение минимума или максимума функции. Проще, чем кажется!

Ну что же, теперь видно невооружённым взглядом – точка -5 является точкой, где функция переходит от убывания к возрастанию! Также несложно догадаться, что она является минимумом функции, который нам надо найти. Если бы функция шла вверх, а потом начала бы убывать, то этой была бы точка максимума. Таким образом, мы нашли точку минимума функции, чего мы и добивались. Поэтому смело можем записать ОТВЕТ: -5.

Следует сказать, что этот алгоритм универсален для решения всех 12-х номеров, они все нацелены на нахождение минимумов или максимумов функции. Поэтому основной навык, который вам может пригодиться при решении этих задач – это умение искать производную.

ПОНРАВИЛАСЬ СТАТЬЯ? ОБЯЗАТЕЛЬНО ПОДПИШИСЬ И ПОСТАВЬ ЛАЙК! ТАКЖЕ ПОДПИСЫВАЙСЯ НА МЕНЯ ВКОНТАКТЕ ПО ССЫЛКЕ: https://vk.com/hello_there_2021 Удачи!

P.S. Пишите в комментарии или в личку задачи, которые были бы Вам интересны для разбора или которые вызывают трудности. Постараюсь всем ответить!

было в ЕГЭ

в условии
в решении
в тексте к заданию
в атрибутах

Категория

Атрибут

Всего: 229    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Найдите точку минимума функции y= левая круглая скобка x плюс 16 правая круглая скобка e в степени левая круглая скобка x минус 16 правая круглая скобка .


Найдите точку минимума функции y= левая круглая скобка x плюс 11 правая круглая скобка e в степени левая круглая скобка x минус 11 правая круглая скобка .


Найдите точку минимума функции y= левая круглая скобка 3 минус x правая круглая скобка e в степени левая круглая скобка 3 минус x правая круглая скобка .


Найдите наименьшее значение функции y=3x минус натуральный логарифм левая круглая скобка x плюс 3 правая круглая скобка в кубе на отрезке [−2,5; 0].


Найдите наименьшее значение функции y=4x минус 4 натуральный логарифм левая круглая скобка x плюс 7 правая круглая скобка плюс 6 на отрезке  левая квадратная скобка минус 6,5;0 правая квадратная скобка .


Найдите наименьшее значение функции y=9x минус натуральный логарифм левая круглая скобка 9x правая круглая скобка плюс 3 на отрезке  левая квадратная скобка дробь: числитель: 1, знаменатель: 18 конец дроби ; дробь: числитель: 5, знаменатель: 18 конец дроби правая квадратная скобка .


Найдите наименьшее значение функции y=3x в квадрате минус 10x плюс 4 натуральный логарифм x плюс 11 на отрезке  левая квадратная скобка дробь: числитель: 10, знаменатель: 11 конец дроби ; дробь: числитель: 12, знаменатель: 11 конец дроби правая квадратная скобка .


Найдите точку минимума функции y= левая круглая скобка x в квадрате минус 17x плюс 17 правая круглая скобка e в степени левая круглая скобка x минус 17 правая круглая скобка .


Найдите точку минимума функции y= левая круглая скобка x минус 2 правая круглая скобка в квадрате e в степени левая круглая скобка x минус 5 правая круглая скобка .


Найдите точку минимума функции y=4x минус натуральный логарифм левая круглая скобка x плюс 11 правая круглая скобка плюс 12.


Найдите точку минимума функции y=4x минус натуральный логарифм левая круглая скобка x плюс 8 правая круглая скобка плюс 12.





На рисунке изображен график функции y=f(x), определенной на интервале (−3; 9). Найдите количество точек, в которых касательная к графику функции параллельна прямой y  =  12 или совпадает с ней.



Найдите наименьшее значение функции y=3 плюс дробь: числитель: 5 Пи , знаменатель: 4 конец дроби минус 5x минус 5 корень из: начало аргумента: 2 конец аргумента косинус x на отрезке  левая квадратная скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая квадратная скобка .


Найдите точку минимума функции y= левая круглая скобка x плюс 16 правая круглая скобка e в степени левая круглая скобка x минус 16 правая круглая скобка .


Найдите точку минимума функции y= левая круглая скобка 3 минус x правая круглая скобка e в степени левая круглая скобка 3 минус x правая круглая скобка .


Найдите наименьшее значение функции y=3x минус натуральный логарифм левая круглая скобка x плюс 3 правая круглая скобка в кубе на отрезке [−2,5; 0].

Всего: 229    1–20 | 21–40 | 41–60 | 61–80 …

В (11) задании ЕГЭ нужно уметь находить точки минимума и максимума функции, определять наибольшее и наименьшее значения функции на отрезке.

За правильное выполнение задания даётся (1) первичный балл.

Пример:

найди точку минимума функции

y=(x+5)2(x−1)+7

.

Алгоритм выполнения задания

1. Определи тип задания:

  • найди точку максимума (минимума);
  • найди точку максимума (минимума) на отрезке;
  • найди максимальное (минимальное) значение функции;
  • найди максимальное (минимальное) значение функции на отрезке.

2. Вычисли производную (f’(x)).

3. Реши уравнение (f’(x)=0).

4. Выполни действия в соответствии с типом задания, сделай вывод.

5. Запиши в ответе значение, которое требуется найти. 

Как решить задание из примера?

1. В задании нужно найти точку максимума.
 

2. Производная функции:
 

y′=2(x+5)(x−1)+x+52=(x+5)(2x−2+x+5)=3(x+5)(x+1).
 

3. Приравняем производную к нулю и найдём корни уравнения:
 

4. Найдём промежутки возрастания и убывания функции (рис. (1)). В точке (-1) функция меняет знак с минуса на плюс, значит, это точка минимума. 

ось1.png

Рис. (1). Промежутки возрастания и убывания функции

5. Запишем ответ (непосредственно в самом задании — без точки в конце).

Ответ: (-1).

Обрати внимание!

В заданиях «Как на ЕГЭ» ответы записывай в виде целого числа или десятичной дроби без пробелов и точки в конце.

Если получилась обыкновенная дробь и её нельзя перевести в конечную десятичную дробь — ищи ошибку в решении!

Источники:

Рис. 1. Промежутки возрастания и убывания функции. © ЯКласс.

Аналогичные рассуждения, если функция убывает: значение функции в следующей точке будет меньше, чем в предыдущей, значит производная будет отрицательной.

Итак, если производная положительна на промежутке, то это значит, что функция на этом промежутке возрастает. На рисунке 1 такие участки показаны зеленым. А если производная отрицательна, то функция убывает, на рисунке 1 участки показаны синим:

$$f^{/}(x)>0 leftrightarrow f(x) Uparrow ;$$
$$f^{/}(x)<0 leftrightarrow f(x) Downarrow ;$$

Кроме этого, производная от функции может быть равна нулю. Функция в той точке, где производная равна нулю, будет принимать наибольшее или наименьшее значение в окрестности этой точки. На графике нашей функции (Рис. 1) эти точки выглядят как «холмы» и «впадины».

Обратите внимание, что «холмов» и «впадин» на графике может быть бесконечно много, какие-то из этих «холмов» будут выше, какие-то ниже. Производная равна нулю во всех таких точках. И значения функции во всех таких точках я называю наибольшими и наименьшими, хотя на самом деле это локальные наибольшие и наименьшие значения.

Кстати, ТОЧКАМИ минимума или максимума называют координаты «холмов» и «впадин» по оси (x). Еще их называют точками экстремума функции: это общее название для минимумов и максимумов. Поэтому, когда вас просят найти точки экстремума, это значит найти координаты по оси (x) и минимумов, и максимумов.

В точке (x=-2) будет минимум функции. Точка (x=-3) из знаменателя, поэтому на рисунке она выколотая: ее мы не рассматриваем.

Чтобы определить наименьшее значение, подставим в исходную функцию найденную точку минимума и концы отрезка (xin[-2,5;0]):
$$y(-2)=3x—ln(x+3)^3=3*(-2)-ln(-2+3)^3=-6-0=-6;$$
$$y(-2,5)=3x—ln(x+3)^3=3*(-2,5)-ln(-2,5+3)^3=-7,5-ln(0,5)^3;$$
$$y(0)=3x—ln(x+3)^3=3*0-ln(0+3)^3=ln(3)^3;$$

Обратите внимание, что значение функции в точках ((-2,5)) и ((0)) получились “плохие”: мы не можем посчитать значения таких логарифмов без калькулятора. Поэтому, если возникает такая ситуация, то мы просто отбрасываем эти значения, ведь в заданиях ЕГЭ в первой части не может быть иррациональных значений. Такая маленькая хитрость. Но будьте внимательны, может быть, иррациональные значения у вас получаются, потому что где-то ошибка.

Кстати, подставлять в этом примере границы отрезка необязательно еще и по другой причине: на промежутке ([-2,5;-2)) функция убывает, а на промежутке ((-2;0]] возрастает. Минимальное значение на указанном промежутке может быть только в точке минимума.

Ответ: (-6.)

Пример 21
Найдите наименьшее значение функции (y=x*sqrt{x}-9x+25) на интервале ([1;50].)

Производную от данной функции можно посчитать, воспользовавшись формулой производной от произведения ((f(x)*g(x))^{/}=(f(x))^{/}*g(x)+f(x)*(g(x))^{/}:)
$$y^{/}=(x*sqrt{x}-9x+25)^{/}=(xsqrt{x})^{/}-(9x)^{/}+25^{/}=x^{/}*sqrt{x}+x*(sqrt{x})^{/}-9=$$
$$=1*sqrt{x}+x*frac{1}{2sqrt{x}}-9=sqrt{x}+frac{sqrt{x}*sqrt{x}}{2sqrt{x}}-9=sqrt{x}+frac{1}{2}*sqrt{x}-9=frac{3}{2}*sqrt{x}-9;$$
Есть другой вариант взятия производной, на мой взгляд, он легче. Для это мы представим квадратный корень в виде степени:
$$sqrt{x}=x^{frac{1}{2}};$$
$$y^{/}=(x*sqrt{x}-9x+25)^{/}=(x*x^{frac{1}{2}}-9x+25)^{/}=(x^{frac{3}{2}-9x+25)^{/}=frac{3}[2}*x^{frac{1}{2}}-9=frac{3}{2}*sqrt{x}-9;$$

Приравниваем производную к нулю и находим корни уравнения на указанном интервале:
$$frac{3}{2}*sqrt{x}-9=0;$$
$$sqrt{x}=9*frac{2}{3};$$
$$sqrt{x}=6;$$
$$x=36;$$
На числовой прямой определяем знаки производной и промежутки возрастания и убывания функции:

Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.

Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.

Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.

на графике функции отмечены локальные минимумы и максимумы

Минимумы и максимумы вместе именуют экстремумами функции.

Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.

В точках экстремумов (т.е. максимумов и минимумов) производная
равна нулю.

Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.

Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. (y). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, (-5) точка минимума (или точка экстремума), а (1) – минимум (или экстремум).

Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?

Давайте вместе найдем количество точек экстремума функции по графику производной на примере:

найдите количество точек экстремумов функции

У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки (-13), (-11), (-9),(-7) и (3). Количество точек экстремума функции – (5).

Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось (x)).

на графике функции отмечены локальные минимумы и максимумы         график производной и отмеченные на ней точки минимумов и максимумов функции

Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:

– Производная положительна там, где функция возрастает.
– Производная отрицательна там, где функция убывает.

С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.

найдите количество точек экстремумов функции

Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди (-13), (-11), (-9),(-7) и (3).

Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.

по графику производной определить минимумы и максимумы функции

Начнем с (-13): до (-13) производная положительна т.е. функция растет, после – производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что (-13) – точка максимума.

(-11): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что (-11) – это минимум.

(- 9): функция возрастает, а потом убывает – максимум.

(-7): минимум.

(3): максимум.

Все вышесказанное можно обобщить следующими выводами:

– Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
– Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.

Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:

  1. Найдите производную функции (f'(x)). 
  2. Найдите корни уравнения (f'(x)=0). 
  3. Нарисуйте ось (x) и отметьте на ней точки полученные в пункте 2, изобразите дугами промежутки, на которые разбивается ось. Подпишите над осью (f'(x)), а под осью (f(x)).
  4. Определите знак производной в каждом промежутке (методом интервалов). 
  5. Поставьте знак производной в каждом промежутке (над осью), а стрелкой укажите возрастание (↗) или убывание (↘) функции (под осью). 
  6. Определите, как изменился знак производной при переходе через точки, полученные в пункте 2:
    – если (f’(x)) изменила знак с «(+)» на «(-)», то (x_1) – точка максимума;
    – если (f’(x)) изменила знак с «(-)» на «(+)», то (x_3) – точка минимума;
    – если (f’(x)) не изменила знак, то (x_2) – может быть точкой перегиба.

нахождение минимума и максимума

Всё! Точки максимумов и минимумов найдены.

Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.

схематичное изображение функции

Пример(ЕГЭ). Найдите точку максимума функции (y=3x^5-20x^3-54).
Решение:
1. Найдем производную функции: (y’=15x^4-60x^2).
2. Приравняем её к нулю и решим уравнение:

(15x^4-60x^2=0)      (|:15)
(x^4-4x^2=0)
(x^2 (x^2-4)=0)
(x=0)       (x^2-4=0)
               (x=±2)

3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:

поиск минимумов и максимумов

Теперь очевидно, что точкой максимума является (-2).

Ответ. (-2).

Смотрите также:
Связь функции и её производной | 7 задача ЕГЭ
Разбор задач на поиск экстремумов, минимумов и максимумов

Скачать статью

Добавить комментарий