Содержание:
Система координат на плоскости позволяет установить взаимно однозначное соответствие между точками плоскости и упорядоченными парами чисел (рис. 331). Координаты вы широко использовали для графического представления зависимостей, при решении систем уравнений, а также в геометрии, чтобы геометрическую задачу свести к задаче алгебраической.
Декартова система координат в пространстве
Чтобы ввести декартову систему координат в пространстве, выберем точку
Б) Вы знаете, что по координатам концов и отрезка на плоскости можно определить его длину:
Аналогичная формула выражает длину отрезка в пространстве через координаты его концов и
Чтобы доказать эту формулу, рассмотрим плоскости, которые проходят через точки и перпендикулярно координатным осям. Получаем, что отрезок по сути является диагональю прямоугольного параллелепипеда, рёбра которого параллельны координатным осям и имеют длины
и (рис. 334) (если же какие-либо из проведённых плоскостей совпадут, то параллелепипед превратится в прямоугольник или отрезок).
Ранее вы доказывали, что координаты середины отрезка равны средним арифметическим соответствующих координат его концов. Это утверждение остаётся истинным и в случае пространства (см. пример 2 в § 6): если и точка — середина отрезка то
Пример:
На оси ординат найдём точку, равноудалённую от точек и
Решение:
Пусть — искомая точка. Тогда и, поскольку то
или Отсюда
Ответ:
Пример:
Найдём условие, задающее геометрическое место точек, равноудалённых от начала координат и от точки
Решение:
Согласно геометрическим соображениям искомое множество состоит из всех тех точек, размещённых на серединных перпендикулярах к отрезку Такие точки заполняют плоскость, проходящую через середину отрезка перпендикулярно ему. Найдём условие, которому удовлетворяют координаты произвольной точки этой плоскости. Условие означает, что
Ответ: Искомое геометрическое место точек есть плоскость, которая задаётся уравнением
Пример:
Найдём условие, которому удовлетворяют координаты точек плоскости проходящей через точку перпендикулярно прямой где
Решение:
Пусть — произвольная точка плоскости Тогда из прямоугольного треугольника по теореме Пифагора имеем:
Поскольку
то
или
Ответ:
Вектор. Действия над векторами
А) С векторами вы встречались в курсе физики девятого класса, когда знакомились с векторными величинами. Физическая величина является векторной, если она характеризуется не только числовым значением, но и направлением. Такие величины, как сила, скорость и другие, обозначают направленными отрезками. Длина направленного отрезка (стрелки) характеризует числовое значение векторной величины (её модуль).
Особенностью понятия вектор является то, что все основные определения и свойства, связанные с этим понятием, формулируются почти одинаково как в планиметрии, так и в стереометрии.
Вектор в геометрии представляется направленным отрезком (рис. 336), начало которого считается началом вектора, а конец — концом вектора.
Расстояние между началом направленного отрезка и его концом считается длиной вектора.
Направленные отрезки и представляют один вектор, если они одинаково направлены и имеют одинаковую длину (рис. 337). В таком случае говорят, что векторы и равны, и пишут Векторы и равны тогда и только тогда, когда совпадают середины отрезков и (рис. 338).
Это напоминает ситуацию с дробями: определённое число может представляться разными дробями, например, дроби представляют одно и то же число. Дроби и равны тогда и только тогда, когда
Если вектор изображается направленным отрезком то говорят, что этот вектор отложен от точки Вектор можно, и при этом однозначно, отложить от любой точки.
Вектор, представленный направленным отрезком называют нулевым: Векторы, представленные направленными отрезками и называют противоположными и пишут
Если ненулевые векторы и отложены от одной точки: то угол называется углом между векторами и .
Ненулевые векторы и называют коллинеарными, если прямые и параллельны или совпадают. Нулевой вектор считают кол-линеарным с любым вектором.
Векторы можно складывать и умножать на число. Чтобы сложить векторы и можно один из них заменить таким равным ему вектором, чтобы конец первого направленного отрезка совпадал с началом второго:
и тогда сумма векторов представляется направленным отрезком (рис. 339).
Сложение векторов имеет переместительное свойство, т. е. сочетательное свойство, т. е. кроме того, уравнение всегда имеет единственное решение, которое называют разностью векторов и (рис. 340).
Произведением вектора на число является такой вектор что, во-первых, векторы и одинаково направлены при и противоположно направлены при и, во-вторых, длины векторов и связаны равенством (рис. 341). Векторы и являются коллинеарными. При этом верно равенство Если то произведением является нулевой вектор.
С действием умножения вектора на число связываются два распределительных свойства— и
Б) Если векторы и коллинеарны, то один из них можно выразить через другой: либо либо при определённых числах и
Для любых двух векторов существует плоскость, которой они параллельны. Векторы, параллельные одной плоскости, называют компланарными. Если векторы и неколлинеарны, то любой вектор компланарный с ними, можно однозначно выразить через векторы и : (рис. 342).
Истинно и обратное утверждение: если векторы и связаны равенством то они компланарны.
Действительно, если векторы и представить направленными отрезками с общим началом (рис. 343), то поэтому точки и находятся в плоскости
Теорема 1. Если векторы и некомпланарны, то для любого вектора существует такая единственная упорядоченная тройка действительных чисел что
Доказательство: Сначала докажем существование нужных чисел. Представим векторы и направленными отрезками с общим началом Через точку проведём прямую параллельно и пусть — точка пересечения прямой с плоскостью (рис. 344). Тогда Поскольку вектор ненулевой и векторы и коллинеарны, то существует такое число что А поскольку векторы и компланарны, а векторы и неколлинеарны, то существуют такие числа и что
Поэтому
Теперь докажем единственность представления. Допустим, что существуют две разные упорядоченные тройки чисел и при которых и Тогда и
Поскольку тройки чисел и различны, то числа на соответствующих местах не могут все совпадать. Пусть, например, В этом случае из последнего равенства можно выразить вектор Последнее равенство означает, что векторы и компланарны. Полученное противоречие с условием означает, что сделанное допущение о существовании двух разных троек чисел неверно.
Следствие 1. Из четырёх любых векторов пространства один может быть выражен через три других.
Действительно, если среди данных четырёх векторов пространства есть три некомпланарных, то четвёртый вектор можно через эти три выразить. Далее, если среди данных четырёх векторов пространства любые три компланарны, то может найтись среди них два неколлинеарных, или любых два вектора коллинеарны. В первом случае через эти два неколлинеарных вектора можно выразить третий и к полученному выражению прибавить четвёртый, умноженный на ноль. Во втором случае один из векторов можно выразить через другой и потом прибавить к этому выражению два оставшихся вектора, умноженных на ноль.
Таким образом, теперь вы знаете, что из двух коллинеарных векторов один может быть выражен через другой, из трёх компланарных векторов один может быть выражен через два других, а из четырёх любых векторов один может быть выражен через три других.
Пример №1
На кронштейне, состоящем из подкоса и растяжки подвешен груз. Кронштейн прикреплён к вертикальной стене растяжка занимает горизонтальное положение (рис. 345). Найдём силы, действующие на подкос и растяжку, если угол между ними равен a масса груза равна
Решение:
Сила тяжести выражается вектором направленным вниз по вертикали. Выразим его суммой векторов, которые коллинеарны векторам и Для этого построим параллелограмм с диагональю стороны которого расположены на прямых и (рис. 346).
Поскольку углы и являются внутренними накрест лежащими при параллельных прямых и и секущей то в прямоугольном треугольнике угол равен и катет равен Поэтому
и
Ответ. Под воздействием груза подкос сжимается с силой а растяжка растягивается с силой
Пример №2
В правильной четырёхугольной пирамиде точки и — середины рёбер и соответственно. Плоскость, проходящая через точки и параллельно прямой пересекает прямую в точке (рис. 347). Найдём отношение
Решение:
Поскольку то векторы и полностью определяют пирамиду. Поскольку векторы и коллинеарны, то вектор можно выразить через при определённом числе Вектор можно выразить через векторы и используя то, что точка находится в плоскости, проходящей через точки и параллельно прямой Вектор компланарен с векторами и поэтому при определённых множителях и Выразим векторы и через векторы и
Имеем:
Поэтому
Учтём теперь то, что через некомпланарные векторы и каждый вектор пространства, в том числе и вектор выражается единственным образом. Поэтому должны одновременно выполняться условия: Отсюда получаем, что А поскольку то
В) Пусть в пространстве выбрана декартова система координат С каждой точкой пространства можно связать вектор Это соответствие между точками пространства и векторами является взаимно однозначным: различным точкам соответствуют различные векторы с началом и концами в этих точках, и различным векторам соответствуют различные точки пространства.
Будем говорить, что вектор имеет координаты в декартовой системе координат если и точка имеет координаты Это будем записывать:
Теорема 2. Если то
Доказательство: Пусть задана декартова система координат и Пусть также и Нужно доказать, что и
Поскольку то середины отрезков и совпадают.
Середина отрезка имеет координаты а середина отрезка — координаты Получаем:
Отсюда:
и
Теорема 3. Если то
Доказательство: Пусть задана декартова система координат и (рис. 348). Поскольку
то По теореме 2 получаем:
и
Поэтому
и
Значит, вектор имеет координаты
Докажем второе утверждение теоремы 3. Пусть сначала и Сравним одноимённые, например первые, координаты векторов и Для этого через точки и проведём плоскости, параллельные плоскости (рис. 349), которые пересекают ось в точках и Из подобия треугольников и следует, что Аналогично получается, что и
Если же то аналогичные рассуждения проводятся для рисунка 350. Векторы называют единичными координатными векторами.
Следствие 2. Если то
Пример №3
Дан параллелепипед Точки и — середины отрезков и соответственно (рис. 351). Выразим:
а) векторы и через векторы и
б) векторы и через векторы и
Решение:
а) Имеем:
б) Будем рассматривать полученные равенства –
как систему условий, из которой нужно найти и Из первого условия выразим
и исключим из двух других:
Теперь из последнего равенства выразим и исключим из предыдущего:
Далее можно последовательно выразить и через векторы
и
Пример №4
Через диагональ грани треугольной призмы проведена плоскость так, что она пересекает диагонали и граней в точках и соответственно (рис. 352). Найдём отношение учитывая, что
Решение:
Векторы и некомпланарны, поэтому через них можно выразить векторы и
Учтём, что и коллинеарны. Значит, существует такое число что
Аналогично, существует такое число что Кроме того,
и
Значит,
Из условия следует, что векторы и коллинеарны. Поэтому при определённом
Поскольку и учитывая однозначность разложения вектора по трём некомпланарным векторам, получаем, что Отсюда находим
Ответ:
Скалярное произведение векторов
А) Скалярным произведением векторов и называется число , равное произведению длин этих векторов на косинус угла между ними:
Скалярное произведение векторов имеет переместительное свойство распределительное свойство кроме того, множитель можно выносить за знак скалярного произведения С помощью скалярного произведения можно находить длины векторов и косинусы углов между ними:
У нулевого вектора направление не определено, поэтому удобно считать, что нулевой вектор перпендикулярен любому другому вектору.
С учётом этого получается следующее полезное утверждение: два вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю.
Теорема 1. Скалярное произведение векторов и выражается через их координаты в декартовой системе
равенством
Доказательство: Поскольку то
Находим далее:
Аналогично,
Поэтому
Пример №5
Найдём длину вектора
Имеем: Поэтому
Пример №6
Найдём угол между векторами и
Имеем:
Поэтому:
Пример №7
Найдём длину вектора равного учитывая, что векторы и перпендикулярны вектору а между собой образуют угол 60° и
Имеем:
Поскольку
Поэтому
Б) Вы знаете, что плоскость в пространстве можно задать тремя точками, не лежащими на одной прямой. Поскольку существует единственная плоскость, проходящая через данную точку перпендикулярно данной прямой, то плоскость можно задавать указанием одной из её точек и вектора, ей перпендикулярного.
Теорема 2. Если плоскость проходит через точку перпендикулярно ненулевому вектору то координаты любой точки этой плоскости удовлетворяют уравнению
Доказательство: Если — произвольная точка плоскости,
проходящей через точку перпендикулярно вектору
то векторы и перпендикулярны, а потому их скалярное произведение равно нулю:
Истинно и обратное утверждение.
Теорема 3. Уравнению в котором коэффициенты не равны нулю одновременно, удовлетворяет любая точка некоторой плоскости. Этой плоскости перпендикулярен вектор
Доказательство: Если есть уравнение и числа не равны нулю одновременно, то можно найти упорядоченную тройку чисел удовлетворяющую этому уравнению. Например, если то можно, взяв и найти значение переменной так, чтобы тройка чисел удовлетворяла уравнению
Поскольку то условия и равносильны. Получили, что исходное уравнение равносильно уравнению которому удовлетворяют координаты любой точки расположенной на прямой, проходящей через точку перпендикулярно вектору т. е. любой точки плоскости, проходящей через точку перпендикулярно вектору
Пример №8
Найдём уравнение плоскости, проходящей через точки А(2; 1; 3), В(4; 1, 2) и С(5; 2; 1).
Решение:
Найдём координаты векторов и Поскольку координаты (2; 0; -1) и (3; 1; -2) этих векторов не пропорциональны, то сами векторы не коллинеарны, и, значит, точки и не лежат на одной прямой, они задают единственную плоскость.
Чтобы записать уравнение плоскости используя теорему 2, найдём вектор перпендикулярный этой плоскости. Поскольку и то и Из этих условий получаем: Таким образом, в качестве искомого вектора можно взять вектор с координатами (1; 1; 2).
Теперь можно записать уравнение плоскости, которая проходит через точку перпендикулярно найденному вектору
или
В) Теорема 4. Если плоскость имеет уравнение то расстояние до неё от точки равно
Доказательство: Пусть из точки на данную плоскость опущен перпендикуляр основание которого — точка — имеет координаты
Тогда вектор коллинеарен с
вектором Поскольку угол между этими векторами равен 0°
или 180°, то откуда
Находим
поскольку координаты точки удовлетворяют уравнению плоскости. Далее: А поскольку искомое расстояние равно длине вектора то требуемое утверждение обосновано.
Пример №9
Найдём расстояние от точки до плоскости, заданной уравнением
Решение:
Используя теорему 4, получаем:
Ответ: 5.
Применение векторов и координат
А) В ряде задач условие содержит сведения о параллельности некоторых прямых или об их точках пересечения, об отношениях длин параллельных отрезков. Для решения таких задач может быть полезным применение векторов, как это было при решении примера 3 из параграфа 12. При решении таких задач достаточно использовать действия сложения векторов и умножения вектора на число. Рассмотрим ещё один пример.
Пример №10
Пусть и — параллелограммы в пространстве, — середины отрезков соответственно. Докажем, что середины отрезков и совпадают.
Решение. Выберем в пространстве точку Тогда положение каждой точки полностью характеризуется соответствующим вектором. Из условия
следует, что и Точки определяются
векторами
Чтобы доказать, что середины отрезков и совпадают, докажем, что
Находим:
А поскольку
и
то выражения в двух последних скобках принимают одинаковые значения. Требуемое утверждение доказано.
Б) При решении других задач целесообразно пользоваться скалярным умножением векторов. Такими являются задачи, в которых нужно использовать или определять некоторые расстояния или углы.
Пример №11
Найдём угол между скрещивающимися диагоналями соседних боковых граней правильной шестиугольной призмы, у которой боковые грани — квадраты.
Решение:
Пусть нужно найти угол между прямыми и (рис. 370). Искомый угол может совпадать с углом между векторами, параллельными данным прямым, или дополнять его до 180°. Поэтому косинус искомого угла совпадает с модулем косинуса угла между векторами и
Выразим векторы и через некомпланарные векторы и Примем длину ребра призмы за а и найдём скалярное произведение векторов:
А поскольку
то
Ответ:
Скалярное произведение векторов можно использовать и для нахождения угла между плоскостями. Как и при определении угла между прямыми, так и при определении угла между плоскостями можно использовать векторы и только перпендикулярные рассматриваемым плоскостям:
Пример №12
У правильной шестиугольной призмы все рёбра имеют длину 1 (рис. 371). Найдём угол между плоскостями и
Решение:
Для получения ответа нужно определить векторы и перпендикулярные плоскостям и соответственно. Они должны удовлетворять условиям и
Используем прямоугольную декартову систему координат, начало которой находится в центре основания и точки и имеют координаты и соответственно. Тогда точки и будут иметь координаты и соответственно. Найдём координаты векторов и по координатам их концевых точек:
Поскольку то координаты вектора
удовлетворяют условиям и Этим условиям удовлетворяют числа Поэтому в качестве вектора, перпендикулярного плоскости можно взять вектор
Для нахождения вектора действовать будем аналогично. Координаты вектора перпендикулярного плоскости удовлетворяют условиям и удовлетворяют числа Поэтому
Используем равенство Поскольку угол между векторами и или совпадает с углом между плоскостями и
или дополняет его до 180°, то
Находим:
Ответ:
Для нахождения угла между прямой и плоскостью также можно использовать векторы, из которых один параллелен прямой, а другой перпендикулярен плоскости. Угол между этими векторами связан с углом между прямой и плоскостью равенством (рис. 372).
Пример №13
На рёбрах и куба отмечены точки и так, что (рис. 373). Найдём угол между прямой и плоскостью
Решение:
Примем точку за начало системы координат, координатные оси направим по рёбрам куба, взяв рёбра за единичные отрезки. Тогда определятся координаты нужных точек:
и
По теореме 3 из параграфа 13 уравнение плоскости имеет вид а поскольку координаты точек и удовлетворяют уравнению то это уравнение и есть уравнение плоскости а вектор этой плоскости перпендикулярен.
Прямой параллелен вектор Находим:
и
Ответ:
В) В предыдущем параграфе обсуждалось использование координат для вычисления расстояния от точки до прямой. Рассмотрим решение ещё двух задач на нахождение расстояний: от точки до прямой и расстояния между скрещивающимися прямыми.
Пример №14
В правильной шестиугольной пирамиде все рёбра основания имеют длину 3, они вдвое короче боковых рёбер. На рёбрах и отмечены точки и так, что Найдём расстояние от точки до прямой
Решение:
Пусть — центр основания Поскольку и то из прямоугольного треугольника находим:
Используем прямоугольную декартову систему координат, начало которой находится в центре основания оси абсцисс и аппликат проходят через точки и соответственно и точка имеет неотрицательные координаты (рис. 374). Точки и имеют координаты и . Тогда точки и будут иметь координаты
и соответственно. Найдем координаты векторов и по координатам их концевых точек:
Искомое расстояние есть длина перпендикуляра, опущенного из точки на прямую и равна высоте треугольника проведённой из точки Для её нахождения можно использовать формулу Поскольку
и
то
Теперь находим:
Ответ:
Пример №15
Измерения и прямоугольного параллелепипеда равны соответственно 5, 4 и 4. Точки и на рёбрах и выбраны так, что (рис. 375). Найдём расстояние между прямыми и
Решение:
Расстояние между скрещивающимися прямыми и можно найти как расстояние от какой-либо точки прямой до плоскости проходящей через прямую параллельно
Примем точку за начало системы координат, координатные оси направим по рёбрам параллелепипеда так, чтобы точки и имели координаты соответственно. Тогда Чтобы записать уравнение плоскости найдём координаты вектора перпендикулярного как вектору так и вектору Поскольку то координаты вектора должны удовлетворять равенствам и например
Теперь запишем уравнение плоскости используя координаты точки Для нахождения расстояния используем теорему 4 из параграфа 13:
Ответ:
Векторы в пространстве
Это интересно!
Основоположниками аналитической геометрии являются знаменитые ученые Декарт и Ферма. Однако Декарт свои исследования опубликовал первым. А исследования Ферма увидели свет намного позже, после его смерти. Интересно, что подойдя к проблеме с разных сторон, они пришли к одинаковым выводам. Декарт искал уравнение исследуемой кривой, а Ферма для заданного уравнения искал соответствующую кривую.
Применение правил алгебры к геометрии привело к возникновению аналитической геометрии. В последствии аналитическая геометрия была усовершенствована основателем математического анализа Исааком Ньютоном, который писал ” … я смог пойти дальше Декарта, только потому, что стоял на плечах гигантов”
Прямоугольная система координат в пространстве
Пусть мяч ударился о пол и отскочил вертикально вверх. Координаты мяча в точке на полу можно определить относительно длины и ширины комнаты двумя значениями. Однако когда мяч отскочил от пола, то его положение уже невозможно определить двумя координатами. Если положение мяча на полу определяется как то после поднятия на высоту 2,5 м его положение в пространстве задается уже гремя координатами
Прямоугольная система координат в пространстве. В пространстве возьмем произвольную точку и проведем через нее три попарно перпендикулярные прямые линии. Примем точку за начало координат и, выбрав на этих прямых положительное направление и единичный отрезок, назовем эти прямые координатными осями Начало координат делит каждую ось на две полуоси (положительную и отрицательную). Пересекаясь попарно, три координатные оси образуют координатные плоскости. Плоскость берется но горизонтали, положительное направление оси проводится по направлению вверх. Трехмерная система координат, образованная по данному правилу, называется еще системой правой руки. Если согнуть пальцы правой руки от положительного направления оси вдоль положительного направления оси то большой палец будет направлен вдоль положительного направления оси
- начало координат
- координатные оси
- координатные плоскости
Координатные плоскости обозначаются как и
Каждая координатная плоскость делит пространство на два полупространства и, таким образом, три координатные плоскости вместе делят пространство на восемь частей, каждая из которых называется октантом:
Пусть точка произвольная точка в пространстве. Параллельно плоскостям и через точку проведем плоскости, которые пересекают соответствующие координатные оси в точках и Получим три плоскости:
Координаты точки в пространстве
1) Плоскость, проходящая через точку и параллельная плоскости пересекает ось в точке
2) Плоскость, проходящая через точку и параллельная плоскости пересекает ось в точке
3) Плоскость, проходящая через точку и параллельная плоскости пересекает ось в точке
Значит, каждой точке пространства соответствует упорядоченная тройка и наоборот:
Упорядоченная тройка в прямоугольной системе координат называется координатами точки и декартовыми координатами. Расстояние от точки до плоскостей и соответствует абсолютным значениям координат Числа соответственно называются абсциссой, ординатой и аппликатой точки и это записывается так:
1) Начало координат:
2) Точка, расположенная на оси
Точка, расположенная на оси
Точка, расположенная на оси
3) Точка, расположенная на плоскости
Точка, расположенная на плоскости
Точка, расположенная на плоскости
Точка в пространстве расположена в I октанте, точка расположена на отрицательной полуоси точка расположена на плоскости точка расположена в III октанте.
Знаки координат точки
Знак координаты точки зависит от того, в каком октанте расположена точка. В следующей таблице показаны знаки координат точек в различных октантах.
В первом октанте все знаки координат положительны, в седьмом октанте все знаки отрицательны.
Пример №16
В прямоугольной системе координат в пространстве постройте точки:
Решение: а) для построения точки от начала координат но оси в положительном направлении на расстоянии 2-х единичных отрезков отметим точку От точки вдоль положительного направления оси и параллельно этой оси, на расстоянии 4-х единичных отрезков отметим точку От точки вдоль положительного направления оси и параллельно этой оси, на расстоянии 3-х единичных отрезков отметим точку
b) для построения точки от начала координат по оси в отрицательном направлении на расстоянии 2-х единичных отрезков отметим точку от точки вдоль отрицательного направления оси и параллельно этой оси, на расстоянии 2-х единичных отрезков отметим точку От точки вдоль положительного направления оси и параллельно этой оси, на расстоянии 3-х единичных отрезков отметим точку
Пример №17
От точки к осям координат проведены перпендикуляры. Запишите координаты оснований перпендикуляров, соответствующих точкам и
Решение: для точки основания перпендикуляра, проведенного из точки на ось координаты и равны нулю. Значит, координаты точки – Аналогично, координаты остальных точек – и
Пример №18
От точки к плоскостям и проведены перпендикуляры. Запишите координаты точек и которые являются основаниями перпендикуляров.
Решение: координата точки основания перпендикуляра, опущенного от точки на плоскость равна нулю. Значит, точка имеет координаты Аналогично находят координаты других точек: и
Расстояние между двумя точками в пространстве
Расстояние между точками и вычисляется но формуле
Доказательство. Пусть диагональ параллелепипеда с ребрами и которые параллельны координатным осям Из прямоугольного треугольника прямой) имеем: Из прямоугольного треугольника прямой) имеем:
Учитывая, что
получаем,
Расстояние от начала координат
В прямоугольной системе координат в пространстве расстояние от точки начала координат до любой точки вычисляется по формуле:
Пример №19
Точки, расположенные на одной прямой, называются коллинеарными точками.
Докажите, что точки и являются коллинеарными точками, используя формулу нахождения расстояния между двумя точками.
Решение:
Так как то точки и расположены на одной прямой, т. е. они коллинеарны.
Пример №20
Найдите координаты точки, расположенной на оси абсцисс и равноудаленной от точек и
Решение: если точка расположена на оси абсцисс, значит ее координаты- Так как точка равноудалена от точек и то или По формуле расстояния между двумя точками имеем:
Значит, точка расположена на оси абсцисс и равноудалена от точек и
Координаты точки, делящей отрезок в некотором отношении
Координаты точки делящей отрезок с концами в точках
и в отношении находятся как:
Доказательство: пусть точка делит отрезок в заданном отношении. Через точки и к плоскости проведем перпендикуляры и и через точки перпендикуляры и к оси По рисунку видно, что и
На основе теоремы о пропорциональных отрезках имеем:
Аналогично, используя перпендикуляры к осям и можно определить координаты и
Координаты середины отрезка
Координаты середины отрезка, соединяющих точки и находятся следующим образом:
Координаты центра тяжести треугольника
Координаты центра тяжести треугольника (точка пересечения медиан) с вершинами в точках и находятся следующим образом:
(проверьте сами)
Пример №21
Даны точки и Найдите
координаты точки которая делит отрезок как
Решение: пусть точка имеет координаты Эта точка делит отрезок в отношении По формуле нахождения координаты
точки, делящей отрезок в заданном отношении, получаем:
Пример №22
Даны координаты двух вершин треугольника и Найдите координаты третьей вершины, если центр тяжести треугольника совпадает с началом координат.
Решение: так как центр тяжести находится в начале координат, то:
Отсюда,
Значит, третьей вершиной треугольника является точка
Векторы в пространстве
Векторной величиной или вектором называется величина, которая определяется не только значением, но и направлением. Изображается вектор направленным отрезком. Длина отрезка, образующего вектор, называется длиной вектора или его модулем.
Вектор можно изобразить в одномерной, двухмерной и трехмерной системе координат.
Вектор, у которого начальная и конечная точки совпадают, называется нулевым вектором. Направление нулевого вектора не определено. Местоположение любой точки (объекта) в пространстве изображается вектором, начало которого совпадает с началом координат, а конец – с данной точкой. Например, на рисунке изображен вектор, показывающий положение мяча в пространстве, который брошен на высоту 3 м на игровой площадке, длина которой равна 4 м, а ширина 2 м.
В пространстве вектор, который определяет место (положение, позицию) точки и соединяет начальную и заданную точку, называется позиционным вектором или радиус – вектором. Каждой точке пространства соответствует единственный позиционный вектор. Положение точки в пространственной системе координат определяет вектор – вектор, заданный компонентами.
Два вектора называются равными если они имеют равные модули и одинаково направлены. Равные векторы, при помощи параллельного переноса, можно расположить друг на друге. Например, на рисунке векторы и равны. Для позиционного вектора можно провести бесконечно много равных по модулю и направлению векторов. В пространстве вектор с началом в точке и концом в точке записывается компонентами как Соответствующие компоненты равных векторов равны и наоборот. Векторы, которые равны по модулю, но имеют противоположные направления, называются противоположными векторами.
В пространстве, как и на плоскости, можно геометрически построить сумму и разность векторов, и произведение вектора на число.
Найти компоненты и длину вектора, а также выполнить действия над векторами в пространственной Декартовой системе координат можно но правилам, аналогичным для прямоугольной системы координат на плоскости.
Длина вектора
Модуль вектора можно найти, используя формулу нахождения расстояния между двумя точками.
Теорема. Если начало вектора расположено в точке а конец в точке то длина вектора вычисляется по формуле:
Следствие. Длина радиус-вектора равна (находится по формуле нахождения расстояния от начала координат до точки).
Сложение и вычитание векторов
Сложение и вычитание векторов: суммой (разностью) векторов и является вектор, компоненты которого равны сумме (разности) соответствующих компонент векторов, т. е. сумма (разность) векторов и равна вектору:
Пример №23
Найдите сумму и разность векторов и
Решение:
Умножение вектора на число
Умножение вектора на число: произведение вектора на действительное число к определяется как вектор Для произведения вектора на действительное число справедливы следующие правила:
Пример №24
Для вектора и запишите компонентами вектор
Решение:
Коллинеарные векторы
Если направленные отрезки, которыми изображены векторы, параллельны или лежат на одной прямой, то вектора называются коллинеарными. Если векторы и коллинеарны, тогда существует единственное число которое удовлетворяет условию При векторы сонаправленные, при они направлены в противоположные стороны. Соответствующие координаты коллинеарных векторов пропорциональны:
При это условие запишется как:
Пример №25
Определите, являются ли расположенные в пространстве векторы и коллинеарными.
Решение: так как вектор и коллинеарны и сонаправлены.
Пример №26
Постройте радиус-вектор, равный вектору
Решение: в _соответствии с правилом треугольника Точкам и соответствуют радиус-векторы и
По правилу сложения векторов на плоскости Отсюда,
Пример №27
В трехмерной системе координат задан вектор с началом в точке и концом в точке а) Найдите длину вектора б) Запишите компонентами радиус-вектор, равный вектору
Решение: а)
b) Обозначим вектор, равный вектору через Тогда точке
соответствует радиус-вектор точке соответствует
радиус-вектор
Так как то
Пример №28
Установите справедливость равенства для точек и
Решение:
Из равенства соответствующих компонентов следует
Векторы, расположенные на одной плоскости или на параллельных плоскостях, называются компланарными векторами. Например, векторы, расположенные на противолежащих гранях куба, компланарны, а векторы, направленные по трем ребрам выходящим из одной вершины, некомпланарны.
Единичный вектор – вектор, длина которого равна единице.
Для любого, отличного от нуля вектора вектор вида является единичным вектором. 1 1
Пример №29
Для вектора а) найдите единичный сонаправленный вектор b) запишите компонентами вектор сонанравленный вектору длина которого равна 10 единицам.
Решение: обозначим единичный вектор через
Проверим, действительно ли длина этого вектора равна единице:
b) чтобы определить вектор, сонаправленный с вектором длиной 10 единиц, надо компоненты единичного вектора, найденного в пункте а, увеличить в 10 раз.
В прямоугольной системе координат в пространстве векторы, направленные вдоль положительных направлений координатных осей и определенные как и при
называются орт векторами. Понятно, что векторы
– некомпланарны.
Любой позиционный вектор и на плоскости, и в пространстве, можно выразить через орт вектора. На плоскости точке соответствует позиционный вектор в пространстве точке соответствует вектор Данное выражение называется записью вектора компонентами. Здесь числа координаты точки
Теорема. Любой вектор можно разложить но орт векторам единственным образом, при этом справедливо равенство
Пример №30
Вектор началом которого на плоскости является точка а концом точка выразите через орт вектора.
Решение: зная, что получим
Пример №31
Запишите разложение вектора в пространстве по орт векторам.
Решение: по теореме разложения вектора по орт векторам имеем:
Пример №32
а) Запишите в виде позиционный вектор, соответствующий точке
b) Запишите вектор компонентами в виде
Решение: а) начало позиционного вектора совпадает с началом координат Таким образом вектор имеет вид
Пример №33
Найдите сумму и разность векторов.
Решение:
Скалярное произведение двух векторов
Тележка переместилась на расстояние по прямой под действием силы направленной под углом наклона Вычислите совершаемую работу: если значение силы равно то На горизонтальном пути работа вертикальной компоненты силы равна нулю. Тогда работа, совершаемая горизонтальной компонентой силы на расстоянии будет:
Работа, совершаемая при перемещении груза на расстояние равна произведению длины вектора перемещения и значения компонента вектора силы направленной вдоль перемещения.
Работа является скалярной величиной, однако ее значение зависит от угла между силой, действующей на тело, и вектором перемещения.
Скалярное произведение двух векторов
Углом между любыми двумя ненулевыми векторами и называется угол между равными им векторами с общим началом. Ясно, что
Скалярное произведение двух ненулевых векторов и равно произведению модулей этих векторов и косинуса угла между ними.
Скалярное произведение записывается как:
Значит,
Свойство скалярного произведения
• Для любого вектора справедливо равенство то есть скалярный квадрат вектора равен квадрату его длины.
Переместительное свойство скалярного произведения.
Для любых векторов и справедливо равенство
Свойство группировки скалярного произведения. Для любых векторов и и действительного числа справедливо равенство
Распределительное свойство скалярного произведения:
1) Для любых векторов, и действительного числа справедливо следующее равенство 2) Для любых векторов справедливо равенство
В частном случае, для скалярного произведения орт векторов получим:
Пример №34
По данным на рисунке найдите скалярное произведение векторов и
Решение:
Пример №35
Упростите выражение используя свойство скалярного произведения векторов.
Решение:
Скалярное произведение двух векторов на координатной плоскости можно найти при помощи координат.
Пусть даны векторы и По определению скалярного произведения имеем
Из получаем
По теореме косинусов получаем
а это значит, что
Таким образом, скалярное произведение двух векторов и равно сумме произведений соответствующих компонент.
Аналогичным образом, скалярное произведение двух векторов и в трехмерной, Декартовой системе координат находится как: .
Пример №36
Зная, что найдите скалярное произведение
Решение:
Угол между двумя векторами
Угол между двумя ненулевыми векторами находится из соотношения , здесь
Пример №37
Найдите косинус угла между векторами и
Решение:
Вывод: два ненулевых вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю:
Пример №38
При каком значении вектора и взаимно перпендикулярны?
Решение: при имеем
Общее уравнение прямой
В системе координат на плоскости уравнение прямой имеет вид Это уравнение называется общим уравнением прямой. Вектор, перпендикулярный прямой, называется нормальным вектором к данной прямой или нормалью. Покажем, что общее уравнение прямой с нормалью имеет вид Пусть заданная точка на прямой, а точка произвольная точка на прямой, отличная от точки а вектор – нормаль к прямой.
Так как векторы и перпендикулярны, то
Если ввести обозначение то получим уравнение в виде Здесь
Частные случаи:
• уравнение прямой, параллельной оси абсцисс
• уравнение прямой, параллельной оси ординат
• уравнение прямой, проходящей через начало координат
Пример №39
Запишите уравнение прямой проходящей через точку нормаль к которой равна
Решение: на координатной плоскости построим вектор и изобразим графическое решение задания, проведя через точку прямую перпендикулярную нормали. Теперь запишем требуемое уравнение.
Способ 1.
Пусть точка является точкой, расположенной на прямой и отличной от точки Тогда вектор коллинеарен прямой и Так как вектора и перпендикулярны, то Тогда получим:
Таким образом,
Способ 2.
Зная нормаль уравнение можно записать следующим образом: Так как точка должна находится на прямой, то и уравнение будет
Пример №40
Найдите угол между прямыми, заданными уравнениями и
Решение: угол между прямыми можно найти как угол между их нормалями.
Для угла между нормальных векторов и имеем:
Отсюда
Пример №41
Найдите расстояние от точки до прямой
Решение: пусть точка является основанием перпендикуляра, проведенного к прямой от точки
Так как векторы и коллинеарны, го существует такое число что или Из равенства соответствующих компонент получим Координаты и точки должны удовлетворять уравнению
Отсюда Тогда
Уравнение плоскости
Исследование. Какому множеству точек соответствует одно и тоже уравнение, например в одномерной, двухмерной и трехмерной системах координат?
1. В одномерной системе координат, т.е. на числовой оси, уравнению соответствует одна точка.
2. В двухмерной системе координат уравнению или удовлетворяют все точки с координатами Множеством таких точек является прямая, параллельная оси
3. В трехмерной системе координат уравнению или удовлетворяет множество точек Множеством таких точек является плоскость, параллельная плоскости Аналогично, уравнениям и соответствуют плоскости, параллельные плоскостям и
4. В трехмерной системе координат представьте множество точек, удовлетворяющих уравнениям и
5. Сопоставьте координаты точек, данных на плоскости, с уравнениями и Представьте плоскости.
Уравнение прямой в двухмерной системе координат имеет вид
Например, уравнение определяет прямую, проходящую через точки и
В трехмерной системе координат мы можем написать это уравнение в виде: Так как коэффициент равен нулю, то аппликата может получать любые значения. Т. е. в трехмерной системе координат для любого координаты точек и удовлетворяет уравнению Если отметить все такие точки в трехмерной системе координат, то получим плоскость, параллельную оси В общем, уравнение плоскости в трехмерной системе координат имеет вид
Плоскость может быть определена различными способами.
- тремя неколлинеарными точками
- прямой и точкой, не принадлежащей этой прямой
- двумя пересекающимися прямыми
- двумя параллельными прямыми
- точкой и перпендикуляром в этой точке в заданном направлении
Используя последний способ, которым можно задать плоскость, покажем, что уравнение плоскости имеет вид Вектор, перпендикулярный к плоскости называется ее нормалью. Пусть, дана плоскость точка расположенная на этой плоскости и нормаль к этой плоскости. Выберем на этой плоскости какую-либо другую точку и соединим точки и Прямая, перпендикулярная плоскости, перпендикулярна каждой прямой, лежащей в данной плоскости. Значит
А это значит, что Учитывая, что и имеем:
Обозначим тогда уравнение плоскости будет иметь вид:
Внимание! Три коэффициента при переменных в уравнении плоскости являются компонентами нормали и
Пример №42
Плоскость с нормалью проходит через точку Запишите уравнение этой плоскости.
Решение: задание можно выполнить двумя способами.
1-ый способ. Возьмем произвольную точку на плоскости и запишем компонентами вектор с началом в точке и концом в точке Вектор будет иметь вид Так как нормальный вектор имеет вид то или справедливо следующее:
Отсюда
Умножим обе части уравнения на Тогда уравнение данной плоскости будет иметь вид
2-ой способ. Известно, что уравнение плоскости имеет вид а нормаль к плоскости имеет вид Значит, коэффициенты известны. Из вектора нормали имеем: Записав координаты точки принадлежащей плоскости, в уравнение найдем переменную
и уравнение плоскости будет иметь вид: или
Пример №43
Дано уравнение плоскости
a) Определите, принадлежат ли точки плоскости.
b) Определите координаты точки пересечения плоскости с осями
c) Запишите координаты какой-либо другой точки, принадлежащей данной плоскости.
Решение:
а) Проверка:
Принадлежит плоскости
Принадлежит плоскости
Не принадлежит плоскости
b) Координаты точек пересечения с осями
в точке пересечения с осью координаты и равны нулю
в точке пересечения с осью координаты и равны нулю
в точке пересечения с осью координаты и равны нулю
c) Для определения координаты другой точки на заданной плоскости задайте любые значения двум переменным и найдите третью координату.
Например, при значение находят гак: Значит, точка принадлежит данной плоскости.
- Заказать решение задач по высшей математике
Пример №44
Найдите расстояние от точки до плоскости
Решение: пусть точка является основанием перпендикуляра, проведенного от точки Так как векторы и коллинеарны, то существует такое число что или Из равенства соответствующих компонент получим Координаты точки удовлетворяют уравнению:
Отсюда Тогда
Это говорит о том, что расстояние от заданной точки до плоскости равно 3 единицам.
Взаимное расположение плоскостей
Плоскости и перпендикулярны тогда и только тогда, когда перпендикулярны их нормали:
Плоскости и параллельны тогда и только тогда, когда параллельны их нормали:
Пример №45
Определение параллельности или перпендикулярности плоскостей но уравнению.
a) плоскость задана уравнением а плоскость задана уравнением Обоснуйте, что данные плоскости перпендикулярны.
b) плоскость задана уравнением а плоскость задана уравнением Обоснуйте, что данные плоскости параллельны.
Решение: для того чтобы плоскости и были перпендикулярны, скалярное произведение нормалей и плоскостей и должно равняться нулю.
Значит, плоскости и перпендикулярны:
Нормали плоскостей и равны: Если для данных плоскостей постоянная имеет различное значение, то это значит, что плоскости не лежат друг на друге, т. е. они параллельны.
Уравнение сферы
Определение. Сферой называется множество всех точек, расположенных на расстоянии от заданной точки Точка называется центром сферы, радиусом сферы.
Если точка – произвольная точка сферы, то по формуле расстояния между двумя точками имеем:
Это уравнение сферы с центром в точке и радиусом
Если центр сферы находится в начале координат, то уравнение сферы радиуса имеет вид:
Как видно из рисунка, пересечение этой сферы с координатной плоскостью является ее большой окружностью.
Пример №46
Запишите уравнение сферы, радиус которой равен г а центр расположен в точке
Решение:
Пример №47
Представьте фигуру, которая получается при пересечении сферы с плоскостью
Решение: радиус сферы Учитывая в уравнении сферы, что получим: Пересечение плоскости z = 12 и данной сферы является окружность с центром в точке (0; 0; 12) и радиусом г = 5.
Плоскость, имеющая со сферой только одну общую точку, называется плоскостью, касательной к сфере.
Например, плоскость касается сферы в точке
Плоскость, касательная к сфере, в точке касания перпендикулярна радиусу сферы.
Преобразования на плоскости и в пространстве
Ремесленники и художники создают узоры, заполняя некоторую площадь без пробела рисунком при помощи преобразований (параллельный перенос, поворот, отображение) или увеличения или уменьшения этого рисунка (гомотетия).
Это знать интересно. Великий голландский художник Эшер, объединив такие разделы математики как симметрия, комбинаторика, стереометрия и топология, создал динамические рисунки, заполняя плоскости цветовыми оттенками. Не имея специального математического образования, Эшер создавал свои произведения, опираясь на интуицию и визуальные представления. Ряду работ, построенных на параллельном переносе, он дал название “Правильное движение плоскости”.
https://en.wikipedia.org/wiki/M._C._Escher
Если каждой точке фигуры в пространстве, по определенному правилу, ставится в соответствие единственная точка то это называется преобразованием фигуры в пространстве. Преобразование, сохраняющее расстояние между точками, называется движением. Движение преобразовывает плоскость в плоскость, прямую в прямую, отрезок в отрезок, а угол – в конгруэнтный ему угол. Значит, движение преобразовывает фигуру в конгруэнтную себе фигуру. Известно, что в двухмерной системе координат за преобразование каждой точки в точку т. е. за параллельный перенос отвечает вектор Аналогичным образом, в пространстве при параллельном переносе координаты каждой точки изменяются так:
Параллельный перенос является движением. Каждому параллельному переносу соответствует один вектор. Справедливо и обратное.
Пример №48
В какую точку переходит точка при параллельном переносе на вектор
Решение: по определению при данном преобразовании, координаты точки преобразуются в координаты точки следующим образом: Т. е. при этом параллельном переносе точка преобразуется в точку
Симметрия. В пространстве симметрии относительно точки и прямой дается такое же определение как и на плоскости. В пространстве также рассматривается симметрия относительно плоскости.
Для точки пространства
- Точка, симметричная относительно начала координат:
- Точка, симметричная относительно оси
- Точка, симметричная относительно оси
- Точка, симметричная относительно оси
- Точка, симметричная относительно плоскости
- Точка, симметричная относительно плоскости
- Точка, симметричная относительно плоскости
Пример №49
Найдите точку, симметричную точке относительно плоскости
Решение: точка симметричная точке относительно плоскости расположена на прямой, перпендикулярной как плоскости так и плоскости Поэтому абсциссы и ординаты точек равны: Координаты точки можно найти из отношения Таким образом, это точка
Поворот. Поворотом фигуры в пространстве вокруг прямой на угол называется такое преобразование, при котором каждая плоскость, перпендикулярная прямой поворачивается в одном направлении на угол вокруг точек пересечения прямой с плоскостью. Прямая называется осью симметрии, угол называется углом поворота.
Ниже на рисунках представлены примеры различных изображений поворота куба вокруг оси в направлении по часовой стрелке на угол 90°, 180°, 270°.
Гомотетия
Аналогичным образом в пространстве вводится понятие преобразования подобия. Если при преобразовании фигуры расстояние между двумя точками и изменяется в раз, то такое преобразование называется преобразованием подобия. Здесь число к называется коэффициентом подобия.
Если для любой точки фигуры при преобразовании ее в точку выполняется равенство то это преобразование называется гомотетией с центром в точке и с коэффициентом Гомотетия – это преобразование подобия. В частном случае, при получаем центральную симметрию относительно при – тождественное преобразование.
Пример №50
Пусть дана сфера с центром в точке и радиусом 2. Запишите уравнение сферы, полученной гомотетией с центром в начале координат и коэффициентом
Решение: позиционный вектор, соответствующий точке равен Пусть позиционный вектор, соответствующий точке будет Тогда, по определению, или Тогда Т. е. центром данной сферы будет точка Зная, что радиус сферы равен получим уравнение сферы
Предел
Это интересно!
Предел (лимит) от латинского слова “limes”, что означает цель.
Понятие предела независимо друг от друга было введено английским математиком Исааком Ньютоном (1642-1727) и немецким математиком Готфридом Лейбницом (1646-1716). Однако ни Ни Ныотон, ни Лейбниц не смогли полностью объяснить вводимые ими понятия. Точное определение предела было дано французским математиком Коши. А работы немецкого ученого » Вейерштрасса наконец завершили создание этой серьезной теории.
Координаты и векторы в пространстве
В этом параграфе вы ознакомитесь с прямоугольной системой координат в пространстве, научитесь находить координаты точек в пространстве, длину отрезка и координаты его середины. Вы обобщите и расширите свои знания о векторах.
Декартовы координаты точки в пространстве
В предыдущих классах вы ознакомились с прямоугольной (декартовой) системой координат на плоскости — это две перпендикулярные координатные прямые с общим началом отсчета (рис. 38.1).
Систему координат можно ввести и в пространстве. Прямоугольной (декартовой) системой координат в пространстве называют три попарно перпендикулярные координатные прямые с общим началом отсчета (рис. 38.2). Точку, в которой пересекаются три координатные прямые, обозначают буквой О. Ее называют началом координат. Координатные прямые обозначают буквами их соответственно называют осью абсцисс, осью ординат и осью аппликат.
Плоскости, проходящие через пары координатных прямых и называют координатными плоскостями, их соответственно обозначают (рис. 38.3).
Пространство, в котором задана система координат, называют координатным пространством. Если оси координат обозначены буквами то координатное пространство обозначают Из курса планиметрии вы знаете, что каждой точке М координатной плоскости ставится в соответствие упорядоченная пара чисел , которые называют координатами точки М. Записыва ют:
Аналогично каждой точке М координатного пространства ставится в соответствие упорядоченная тройка чисел , определяемая следующим образом. Проведем через точку М три плоскости перпендикулярно осям соответственно. Точки пересечения этих плоскостей с координатными осями обозначим (рис. 38.4). Координату точки на оси называют абсциссой точки М и обозначают буквой Координату точки на оси у называют ординатой точки М и обозначают буквой . Координату точки , на оси называют аппликатой точки М и обозначают буквой .
Полученную упорядоченную тройку чисел называют координатами точки М в пространстве. Записывают: . Если точка М имеет координаты , то числа равны расстояниям от точки М до координатных плоскостей . Используя этот факт, можно доказать, что, например точки с координатами и лежат на прямой, перпендикулярной плоскости и равноудалены от этой плоскости (рис. 38.5). В этом случае говорят, что точки М и N симметричны относительно плоскости
Если точка принадлежит координатной плоскости или координатной оси, то некоторые ее координаты равны нулю. Например, точка принадлежит координатной плоскости , а точка — оси аппликат. Справедливы следующие утверждения.
Теорема 38.1. Расстояние между двумя точками и можно найти по формуле
Теорема 38.2. Каждая координата середины отрезка равна полусумме соответствующих координат его концов, то есть серединой отрезка с концами в точках является точка
Доказательства теорем 38.1 и 38.2 аналогичны тому, как были доказаны соответствующие теоремы в курсе планиметрии. Например, серединой отрезка с концами в точках и является начало координат — точка .
В таком случае говорят, что точки А и В симметричны относительно начала координат.
Векторы в пространстве
В курсе планиметрии вы изучали векторы на плоскости. Теперь вы начинаете изучать векторы в пространстве. Многие понятия и свойства, связанные с векторами на плоскости, можно почти дословно отнести к векторам в пространстве. Доказательства такого рода утверждений о векторах в пространстве аналогичны доказательствам соответствующих утверждений о векторах на плоскости.
Рассмотрим отрезок АВ. Если мы договоримся точку А считать началом отрезка, а точку В — его концом, то такой отрезок будет характеризоваться не только длиной, но и направлением от точки А до точки В. Если указано, какая точка является началом отрезка, а какая точка — его концом, то такой отрезок называют направленным отрезком или вектором.
Вектор с началом в точке А и концом в точке В обозначают так: (читают: «вектор АВ»). Для обозначения векторов также используют строчные буквы латинского алфавита со стрелкой сверху. На рисунке 39.1 изображены векторы
В отличие от отрезка, концы которого — различные точки, у вектора начало и конец могут совпадать.
Договорились называть вектор, начало и конец которого — одна и та же точка, нулевым вектором или нуль-вектором и обозначать . Модулем вектора называют длину отрезка АВ. Обозначают: . Модуль вектора обозначают так: . Считают, что модуль нулевого вектора равен нулю. Записывают:
Определение. Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.
На рисунке 39.2 изображена четырехугольная призма . Векторы и являются коллинеарными.
Записывают:
Ненулевые коллинеарные векторы бывают сонаправленными и противоположно направленными. Например, на рисунке 39.2 векторы , сонаправлены. Записывают: . Векторы противоположно направлены. Записывают: .
Определение. Два ненулевых вектора называют равны ми, если их модули равны и они сонаправлены. Любые два нулевых вектора равны. На рисунке 39.2
Часто, говоря о векторах, мы не конкретизируем, какая точка является началом вектора. Так, на рисунке 39.3, изображен вектор . На рисунке 39.3, изображены векторы, равные вектору . Каждый из них также принято называть вектором .
На рисунке 39.3, изображены вектор и точка А. Построим вектор , равный вектору . В таком случае говорят, что вектор отложен от точки А (рис. 39.3, ).
Рассмотрим в координатном пространстве вектор . От начала координат отложим вектор , равный вектору (рис. 39.4). Координатами вектора называют координаты точки А . Запись означает, что вектор имеет координаты
Равные векторы имеют равные соответствующие координаты, и наоборот, если соответствующие координаты векторов равны, то равны и сами векторы.
Теорем а 39.1. Если точки и — соответственно начало и конец вектора , то числа и равны соответственно первой, второй и третьей координатам вектора . Из формулы расстояния между двумя точками следует, что если вектор имеет координаты , то
Сложение и вычитание векторов
Пусть в пространстве даны векторы . Отложим от произвольной точки А пространства вектор , равный вектору .
Далее от точки В отложим вектор , равный вектору . Век тор называют суммой векторов (рис. 40.1) и записывают: Описанный алгоритм сложения двух векторов называют правилом треугольника.
Можно показать, что сумма не зависит от выбора точки А. Заметим, что для любых трех точек А, В и С выполняется равенство Оно выражает правило треугольника.
Свойства сложения векторов аналогичны свойствам сложения чисел. Для любых векторов выполняются равенства:
Сумму трех и большего количества векторов находят так: вначале складывают первый и второй векторы, потом к полученной сумме прибавляют третий вектор и т. д. Например, Для тетраэдра DABC, изображенного на рисунке 40.2, можно записать:
Для сложения двух неколлинеарных векторов удобно пользоваться правилом параллелограмма.
Отложим от произвольной точки А вектор , равный вектору , и вектор , равный вектору (рис. 40.3). Построим параллелограмм ABCD. Тогда искомая сумма равна вектору .
Рассмотрим векторы , не лежащие в одной плоскости (рис. 40.4). Найдем сумму этих векторов.
Построим параллелепипед так, чтобы отрезки ОА, ОВ и ОС были его ребрами (рис. 40.5). Отрезок OD является диагональю этого параллелепипеда. Докажем, что Так как четырехугольник — параллелограмм, то . Имеем: . Поскольку четырехугольник — параллелограмм, то
Описанный способ сложения трех векторов, отложенных от одной точки и не лежащих в одной плоскости, называют правилом параллелепипеда.
Определение. Разностью векторов называют такой вектор , сумма которого с вектором равна вектору .
Записывают: .
Покажем, как построить вектор, равный разности векторов и . От произвольной точки О отложим векторы , соответственно равные векторам (рис. 40.6). Тогда По определению разности двух векторов , то есть , следовательно, вектор равен разности векторов .
Отметим, что для любых трех точек О, А и В выполняется равенство Оно выражает правило нахождения разности двух векторов, отложенных от одной точки.
Теорема 40.1. Если координаты векторов равны соответственно , то координаты вектора равны , а координаты вектора равны .
Умножение вектора на число
Определение. Произведением ненулевого вектора и чис ла , отличного от нуля, называют такой вектор , что:
1)
2) если если
Записывают: Если или , то считают, что На рисунке 41.1 изображен параллелепипед . Имеем: , Из определения следует, что
.
Теорема 41.1. Для любых векторов выполняется равенство
Эта теорема позволяет свести вычитание векторов к сложению: чтобы из вектора вычесть вектор , можно к вектору прибавить вектор. Произведение обозначают и называют вектором, противоположным вектору . Например, записывают:
Из определения умножения вектора на число следует, что если, то векторы коллинеарны. Следовательно, из равенства получаем, что точки О, А и В лежат на одной прямой.
Теорема 41.2. Если векторы коллинеарны и то существует такое число , что
Теорема 41.3. Если координаты вектора равны , то координаты вектора равны .
Умножение вектора на число обладает следующими свойствами.
Для любых чисел и для любых векторов выполняются равенства:
- (сочетательное свойство);
- (первое распределительное свойство);
- (второе распределительное свойство).
Эти свойства позволяют преобразовывать выражения, содержащие сумму векторов, их разность и произведение вектора на число, аналогично тому, как мы преобразовываем алгебраические выражения. Например,
Скалярное произведение векторов
Пусть — два ненулевых и несонаправленных вектора. От произвольной точки О отложим векторы равные соответственно векторам (рис. 42.1). Величину угла АОВ будем называть углом между векторами
Угол между векторами обозначают так: . Очевидно, что если , то = 180° (рис. 42.2).
Если , то считают, что . Если хотя бы один из векторов или нулевой, то также считают, что .
Векторы называют перпендикулярными, если угол между ними равен 90°. Записывают:
На рисунке 42.3 изображена треугольная призма, основанием которой является правильный треугольник, а боковое ребро перпендикулярно плоскости основания.
Имеем:
Определение. Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними.
Скалярное произведение векторов обозначают так: Имеем:
Если хотя бы один из векторов нулевой, то очевидно, что Скалярное произведение называют скалярным квадратом вектора и обозначают .
Скалярный квадрат вектора равен квадрату его модуля, то есть .
Теорема 42.1. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Например, для векторов, изображенных на рисунке 42.3, имеем:
Теорема 42.2. Скалярное произведение векторов и можно вычислить по формуле
Теорема 42.3. Косинус угла между ненулевыми векторами можно вычислить по формуле
Некоторые свойства скалярного произведения векторов аналогичны соответствующим свойствам произведения чисел. Например, для любых векторов и любого числа справедливы равенства:
Эти свойства вместе со свойствами сложения векторов и умножения вектора на число позволяют преобразовывать выражения, содержащие скалярное произведение векторов, по правилам преобразования алгебраических выражений. Например,
Пример №51
Основанием призмы является равнобедренный треугольник АВС (АВ =АС). Боковое ребро образует равные углы с ребрами АВ и АС (рис. 42.4). Докажите, что .
Решение:
Пусть . С учетом условия можно записать: . Найдем скалярное произведение векторов . Имеем:
Запишем:
Поскольку , то рассматриваемое скалярное произведение равно 0. Следовательно,
Напомню:
Расстояние между точками
Расстояние между двумя точками можно найти по формуле
Координаты середины отрезка
Каждая координата середины отрезка равна полусумме соответствующих координат его концов.
Взаимное расположение двух векторов
Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.
Равенство векторов
Два ненулевых вектора называют равными, если их модули равны и они сонаправлены. Любые два нулевых вектора равны.
Координаты вектора
Если точки — соответственно начало и конец вектора , то числа равны соответственно первой, второй и третьей координатам вектора
Модуль вектора
Если вектор имеет координаты
Действия над векторами
Для любых трех точек А , В и С выполняется равенство
Разностью векторов называют такой вектор , сумма которого с вектором равна вектору .
Для любых трех точек О, А и В выполняется равенство . Произведением ненулевого вектора и числа , отличного от нуля, называют такой вектор , что: 1) 2) если если
Если векторы коллинеарны и , то существует такое число , что Произведение обозначают и называют вектором, противоположным вектору .
Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Если координаты векторов равны соответственно то:
- Множества
- Рациональные уравнения
- Рациональные неравенства и их системы
- Геометрические задачи и методы их решения
- Предел и непрерывность числовой функции одной переменной
- Функции, их свойства и графики
- Параллельность в пространстве
- Перпендикулярность в пространстве
Координаты точки и координаты вектора. Как найти координаты вектора
Вы будете перенаправлены на Автор24
Прямоугольная система координат
Чтобы определить понятие координат точек, нам необходимо ввести систему координат, в которой мы и будем определять ее координаты. Одна и та же точка в разных системах координат может иметь различные координаты. Здесь мы будем рассматривать прямоугольную систему координат в пространстве.
Возьмем в пространстве точку $O$ и введем для нее координаты $(0,0,0)$. Назовем ее началом системы координат. Проведем через нее три взаимно перпендикулярные оси $Ox$, $Oy$ и $Oz$, как на рисунке 1. Эти оси будут называться осями абсцисс, ординат и аппликат, соответственно. Осталось только ввести масштаб на осях (единичный отрезок) – прямоугольная система координат в пространстве готова (рис. 1)
Рисунок 1. Прямоугольная система координат в пространстве. Автор24 — интернет-биржа студенческих работ
Координаты точки
Теперь разберем, как определяют в такой системе координаты любой точки. Возьмем произвольную точку $M$ (рис. 2).
Рисунок 2. Произвольная точка. Автор24 — интернет-биржа студенческих работ
Построим на координатных осях прямоугольный параллелепипед, так, что точки $O$ и $M$ противоположные его вершины (рис. 3).
Рисунок 3. Построение прямоугольного параллелепипеда. Автор24 — интернет-биржа студенческих работ
Готовые работы на аналогичную тему
Тогда точка $M$ будет иметь координаты $(X,Y,Z)$, где $X$ – значение на числовой оси $Ox$, $Y$ – значение на числовой оси $Oy$, а $Z$ – значение на числовой оси $Oz$.
Необходимо найти решение следующей задачи: написать координаты вершин параллелепипеда, изображенного на рисунке 4.
Рисунок 4. Параллелепипед. Автор24 — интернет-биржа студенческих работ
Решение.
Точка $O$ начало координат, следовательно, $O=(0,0,0)$.
Точки $Q$, $N$ и $R$ лежат на осях $Ox$, $Oz$ и $Oy$, соответственно, значит
Точки $S$, $L$ и $M$ лежат в плоскостях $Oxz$, $Oxy$ и $Oyz$, соответственно, значит
Точка $P$ имеет координаты $P=(2,2.5,1.5)$
Координаты вектора по двум точкам и формула нахождения
Чтобы узнать, как найти вектор по координатам двух точек, необходимо рассмотреть введенную нами ранее систему координат. В ней от точки $O$ по направлению оси $Ox$ отложим единичный вектор $overline$, по направлению оси $Oy$ – единичный вектор $overline$, а единичный вектор $overline$ нужно направлять по оси $Oz$.
Для того чтобы ввести понятие координат вектора, введем следующую теорему (здесь ее доказательство мы рассматривать не будем).
Произвольный вектор в пространстве может быть разложен по трем любым векторам, которые не лежат в одной плоскости, причем коэффициенты в таком разложении будут единственным образом определены.
Математически это выглядит следующим образом:
Так как векторы $overline$, $overline$ и $overline$ построены на координатных осях прямоугольной системы координат, то они, очевидно, не будут принадлежать одной плоскости. Значит любой вектор $overline<δ>$ в этой системе координат, по теореме 1, может принимать следующий вид
Три вектора $overline$, $overline$ и $overline$ будут называться координатными векторами.
Коэффициенты перед векторами $overline$, $overline$ и $overline$ в разложении (1) будут называться координатами этого вектора в заданной нами системе координат, то есть
Линейные операции над векторами
Теорема о сумме: Координаты суммы любого числа векторов определяются суммой их соответствующих координат.
Доказательство.
Будем доказывать эту теорему для 2-х векторов. Для 3-х и более векторов доказательство строится аналогичным образом. Пусть $overline<α>=(α_1,α_2,α_3)$, $overline<β>=(β_1,β_2 ,β_3)$.
Эти вектора можно записать следующим образом
$overline<α>=α_1overline+ α_2overline+α_3overline$, $overline<β>=β_1overline+ β_2overline+β_3overline$
$overline<α>+overline<β>=α_1overline+α_2overline+α_3overline+β_1overline+ β_2overline+β_3overline=(α_1+β_1 )overline+(α_2+β_2 )overline+(α_3+β_3)overline$
Замечание: Аналогично, находится решение разности нескольких векторов.
Теорема о произведении на число: Координаты произведения произвольного вектора на действительное число определяется произведением координат на это число.
Доказательство.
Возьмем $overline<α>=(α_1,α_2,α_3)$, тогда $overline<α>=α_1overline+α_2overline+α_3overline$, а
$loverline<α>=l(α_1overline+ α_2overline+α_3overline)=lα_1overline+ lα_2overline+lα_3overline$
Пусть $overline<α>=(3,0,4)$, $overline<β>=(2,-1,1)$. Найти $overline<α>+overline<β>$, $overline<α>-overline<β>$ и $3overline<α>$.
Решение.
$3overline<α>=(3cdot 3,3cdot 0,3cdot 4)=(9,0,12)$
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 20 07 2022
Нахождение координат вектора
В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.
Нахождение координат вектора
Для того, чтобы найти координаты вектора AB , нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).
Формулы для определения координат вектора
” data-lang=”default” data-override=”<“emptyTable”:””,”info”:””,”infoEmpty”:””,”infoFiltered”:””,”lengthMenu”:””,”search”:””,”zeroRecords”:””,”exportLabel”:””,”file”:”default”>” data-merged=”[]” data-responsive-mode=”2″ data-from-history=”0″>
Для плоских задач | AB = x – Ax; By – Ay> |
Для трехмерных задач | AB = x – Ax; By – Ay; Bz – Az> |
Для n-мерных векторов | AB = 1 – A1; B2 – A2; . Bn – An> |
Примеры задач
Задание 1
Найдем координаты вектора AB , если у его точек следующие координаты: , .
Задание 2
Определим координаты точки B вектора , если координаты точки .
Решение:
Координаты точки B можно вывести из формулы для расчета координат вектора:
Bx = AB x + Ax = 6 + 2 = 8.
By = AB y + Ay = 14 + 5 = 19.
Нахождение координат вектора через координаты точек
Отложим от начала координат единичные векторы, то есть векторы, длины которых равны единице. Направление вектора i → должно совпадать с осью O x , а направление вектора j → с осью O y .
Векторы i → и j → называют координатными векторами.
Координатные векторы неколлинеарны. Поэтому любой вектор p → можно разложить по векторам p → = x i → + y j → . Коэффициенты x и y определяются единственным образом. Коэффициенты разложения вектора p → по координатным векторам называются координатами вектора p → в данной системе координат.
Координаты вектора записываются в фигурных скобках p → x ; y . На рисунке вектор O A → имеет координаты 2 ; 1 , а вектор b → имеет координаты 3 ; – 2 . Нулевой вектор представляется в виде 0 → 0 ; 0 .
Если векторы a → и b → равны, то и y 1 = y 2 . Запишем это так: a → = x 1 i → + y 1 j → = b → = x 2 i → + y 2 j → , значит x 1 = x 2 , y 1 = y 2 .
Таким образом, координаты равных векторов соответственно равны.
Если точка координат не совпадает с его началом системы координат, тогда рассмотрим задачу. Пусть в декартовой системе координат на O x y заданы координаты точек начала и конца A B → : A x a , y a , B x b , y b . Найти координаты заданного вектора.
Изобразим координатную ось.
Из формулы сложения векторов имеем O A → + A B → = O B → , где O – начало координат. Отсюда следует, что A B → = O B → – O A → .
O A → и O B → – это радиус-векторы заданных точек А и В, значит координаты точек имеют значения O A → = x a , y a , O B → = x b , y b .
По правилу операций над векторами найдем A B → = O B → – O A → = x b – x a , y b – y a .
Нахождение в трехмерном пространстве проходит по такому же принципу, только для трех точек.
Для нахождения координат вектора, необходимо найти разность его точек конца и начала.
Найти координаты O A → и A B → при значении координат точек A ( 2 , – 3 ) , B ( – 4 , – 1 ) .
Для начала определяется радиус-вектор точки A . O A → = ( 2 , – 3 ) . Чтобы найти A B → , нужно вычесть значение координат точек начала из координат точек конца.
Получаем: A B → = ( – 4 – 2 , – 1 – ( – 3 ) ) = ( – 6 , 2 ) .
Ответ: O A → = ( 2 , – 3 ) , A B → = ( – 6 , – 2 ) .
Задано трехмерное пространство с точкой A = ( 3 , 5 , 7 ) , A B → = ( 2 , 0 , – 2 ) . Найти координаты конца A B → .
Подставляем координаты точки A : A B → = ( x b – 3 , y b – 5 , z b – 7 ) .
По условию известно, что A B → = ( 2 , 0 , – 2 ) .
Известно, что равенство векторов справедливо тогда, когда координаты равны соответственно. Составим систему уравнений: x b – 3 = 2 y b – 5 = 0 z b – 7 = – 2
Отсюда следует, что координаты точки B A B → равны: x b = 5 y b = 5 z b = 5
Ответ: B ( 5 , 5 , 5 ) .
[spoiler title=”источники:”]
http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie_kordinat_vectora/
[/spoiler]
Вектор – это направленный прямолинейный отрезок, то есть отрезок, имеющий
определенную длину и определенное направление. Пусть точка А – начало вектора, а точка B – его конец, тогда вектор обозначается символом или . Вектор называется противоположным
вектору и может быть
обозначен .
Сформулируем ряд базовых определений.
Длиной
или модулем
вектора называется
длина отрезка и обозначается . Вектор нулевой длины (его суть – точка) называется нулевым и направления
не имеет. Вектор единичной длины, называется единичным. Единичный вектор,
направление которого совпадает с направлением вектора , называется ортом вектора .
Векторы
называются коллинеарными, если они лежат на одной прямой или на
параллельных прямых, записывают. Коллинеарные векторы могут иметь совпадающие или
противоположные направления. Нулевой вектор считают коллинеарным любому
вектору.
Векторы
называются равными , если они коллинеарны, одинаково направлены и имеют
одинаковые длины.
Три вектора в пространстве называются компланарными,
если они лежат в одной плоскости или на параллельных плоскостях. Если среди
трех векторов хотя бы один нулевой или два любые коллинеарны, то такие векторы
компланарны.
Рассмотрим в
пространстве прямоугольную систему координат 0xyz. Выделим на осях координат 0x, 0y, 0z единичные векторы (орты) и
обозначим их через соответственно.
Выберем произвольный вектор
пространства и совместим его начало с началом
координат. Спроектируем вектор
на координатные
оси и обозначим проекции через ax, ay, az
соответственно. Тогда нетрудно показать, что
. (2.25)
Эта
формула является основной в векторном исчислении и называется разложением
вектора по ортам координатных осей. Числа ax, ay, az называются координатами вектора . Таким образом, координаты вектора являются его
проекциями на оси координат. Векторное равенство (2.25) часто записывают в
виде
. Мы будем использовать обозначение вектора в фигурных
скобках, чтобы визуально легче различать координаты вектора и координаты точки.
С использованием формулы длины отрезка, известной из школьной геометрии, можно
найти выражение для вычисления модуля вектора
:
, (2.26)
то
есть модуль вектора равен корню квадратному из суммы квадратов его координат.
Обозначим углы между вектором
и осями
координат через α, β, γ соответственно. Косинусы этих углов называются
для вектора направляющими, и для них выполняется соотношение:Верность данного равенства можно показать с помощью
свойства проекции вектора на ось, которое будет рассмотрено в нижеследующем
пункте 4.
Пусть в трехмерном пространстве заданы векторы своими
координатами. Имеют место следующие
операции над ними: линейные (сложение, вычитание, умножение на число и
проектирование вектора на ось или другой вектор); не линейные – различные
произведения векторов (скалярное, векторное, смешанное).
1. Сложение двух векторов производится покоординатно, то
есть если
.
Данная
формула имеет место для произвольного конечного числа слагаемых.
Геометрически
два вектора складываются по двум правилам:
а) правило треугольника –
результирующий вектор суммы двух векторов соединяет начало первого из них с
концом второго при условии, что начало второго совпадает с концом первого
вектора; для суммы векторов –
результирующий вектор суммы соединяет начало первого из них с концом последнего
вектора-слагаемого при условии, что начало последующего слагаемого совпадает с
концом предыдущего;
б)
правило
параллелограмма (для двух
векторов) – параллелограмм строится на векторах-слагаемых как на сторонах,
приведенных к одному началу; диагональ параллелограмма исходящая из их общего начала, является суммой
векторов.
2. Вычитание двух векторов производится
покоординатно, аналогично сложению, то есть если , то
.
Геометрически два
вектора складываются по уже упомянутому правилу параллелограмма с учетом того, что разностью векторов
является диагональ, соединяющая концы векторов, причем результирующий вектор
направлен из конца вычитаемого в конец уменьшаемого вектора.
Важным следствием
вычитания векторов является тот факт, что если известны координаты начала и
конца вектора, то для вычисления координат вектора необходимо из координат его конца
вычесть координаты его начала. Действительно, любой вектор пространства может быть
представлен в виде разности двух векторов, исходящих из начала координат: . Координаты векторов и совпадают с
координатами точек А и В, так как начало координат О(0;0;0). Таким образом, по правилу
вычитания векторов следует произвести вычитание координат точки А из координат точки В.
3. Умножение вектора на число λ покоординатно:.
При λ>0
– вектор сонаправлен ; λ<0 – вектор противоположно направлен ; |λ|>1 – длина вектора увеличивается в λ раз; |λ|<1 – длина вектора уменьшается в λ раз.
4. Пусть в пространстве задана
направленная прямая (ось l), вектор задан
координатами конца и начала. Обозначим проекции точек A и B на ось l
соответственно через A’ и B’.
Проекцией вектора на ось l называется длина вектора , взятая со
знаком «+», если вектор и ось l сонаправлены, и со
знаком «–», если и l противоположно направлены.
Если
в качестве оси l взять некоторый другой вектор , то получим проекцию вектора на вектор .
Рассмотрим некоторые
основные свойства проекций:
1) проекция вектора на ось l равна произведению модуля
вектора на косинус угла
между вектором и осью, то есть ;
2.) проекция вектора на ось
положительна (отрицательна), если вектор образует с осью острый (тупой) угол, и
равна нулю, если этот угол – прямой;
3) проекция суммы нескольких
векторов на одну и ту же ось равна сумме проекций на эту ось.
Сформулируем определения и
теоремы о произведениях векторов, представляющих нелинейные операции над
векторами.
5. Скалярным произведением векторов и называется
число (скаляр), равное произведению длин этих векторов на косинус угла φ между
ними, то есть
. (2.27)
Очевидно, что скалярный квадрат любого ненулевого вектора равен квадрату его длины, так как в этом случае угол , поэтому его косинус (в 2.27) равен 1.
Теорема 2.2. Необходимым и достаточным условием
перпендикулярности двух векторов является равенство нулю их скалярного
произведения
Следствие. Попарные скалярные произведения единичных орт равны нулю, то есть
Теорема 2.3. Скалярное произведение двух векторов ,
заданных своими координатами, равно сумме произведений их одноименных координат, то есть
(2.28)
С помощью скалярного произведения векторов можно
вычислить угол между ними.
Если заданы два ненулевых вектора
своими координатами , то косинус угла φ между ними:
(2.29)
Отсюда
следует условие перпендикулярности ненулевых векторов
и :
(2.30)
Нахождение проекции вектора на направление,
заданное вектором , может осуществляться по формуле
(2.31)
С помощью скалярного произведения векторов находят
работу постоянной силы на
прямолинейном участке пути.
Предположим, что под действием постоянной силы материальная точка перемещается прямолинейно из
положения А в положение B. Вектор силы образует угол φ с вектором перемещения (рис. 2.14). Физика утверждает, что работа силы при перемещении
равна .
Следовательно, работа постоянной силы
при прямолинейном перемещении точки ее приложения равна скалярному произведению
вектора силы на вектор перемещения.
Пример
2.9. С
помощью скалярного произведения векторов найти угол при вершине A параллелограмма ABCD, построенного на векторах
Решение. Вычислим модули векторов и их скалярное произведение
по теореме (2.3):
Отсюда согласно формуле (2.29) получим косинус
искомого угла
Пример 2.10. Затраты сырьевых и материальных ресурсов, используемых
на производство одной тонны творога, заданы в таблице 2.2 (руб.).
Какова общая цена этих ресурсов, затрачиваемых на изготовление одной
тонны творога?
Таблица 2.2
Решение. Введем в рассмотрение два вектора: вектор затрат
ресурсов на тонну продукции и вектор цены единицы
соответствующего ресурса .
Тогда . Общая цена
ресурсов , что представляет собой скалярное произведение
векторов . Вычислим его по формуле (2.28) согласно теореме 2.3:
Таким образом, общая цена затрат на производство одной
тонны творога составляет 279 541,5 рублей
Примечание. Действия с векторами, осуществленные в примере 2.10,
можно выполнить на персональном компьютере. Для нахождения скалярного
произведения векторов в MS Excel используют функцию СУММПРОИЗВ( ), где в качестве
аргументов указываются адреса диапазонов элементов матриц, сумму произведений
которых необходимо найти. В MathCAD
скалярное произведение двух векторов выполняется при помощи соответствующего
оператора панели инструментов Matrix
Пример 2.11. Вычислить работу, произведенную силой , если точка ее приложения перемещается прямолинейно
из положения A(2;4;6) в положение A(4;2;7). Под каким углом к AB направлена сила ?
Решение. Находим вектор перемещения, вычитая из координат его конца координаты
начала
. По формуле (2.28) (единиц работы).
Угол φ между и
находим по
формуле (2.29), то есть
6. Три некомпланарных вектора , взятые в указанном порядке, образуют правую
тройку, если при наблюдении из конца третьего вектора кратчайший
поворот от первого вектора ко второму
вектору совершается против часовой стрелки, и левую,
если по часовой стрелке.
Векторным
произведением вектора на вектор называется
вектор , удовлетворяющий следующим условиям:
– перпендикулярен векторам и ;
– имеет длину, равную , где φ – угол, образованный векторами
и ;
– векторы образуют правую
тройку (рис. 2.15).
Теорема 2.4. Необходимым и достаточным
условием коллинеарности двух векторов является равенство нулю их векторного
произведения
Теорема 2.5. Векторное произведение векторов , заданных своими координатами, равно определителю
третьего порядка вида
(2.32)
Примечание. Определитель (2.25)
раскладывается по свойству 7 определителей
Следствие 1. Необходимым и достаточным условием коллинеарности двух
векторов является пропорциональность их соответствующих координат
Следствие 2. Векторные произведения единичных орт равны
Следствие 3. Векторный квадрат любого вектора равен нулю
Геометрическая
интерпретация векторного произведения состоит в том, что длина результирующего
вектора численно равна площади S
параллелограмма, построенного на векторах–сомножителях как на сторонах,
приведенных к одному началу. Действительно, согласно определению, модуль
векторного произведения векторов равен . С другой стороны, площадь параллелограмма,
построенного на векторах и , также равна
. Следовательно,
. (2.33)
Также с помощью векторного произведения можно
определить момент силы относительно точки и линейную скорость вращения.
Пусть в точке A приложена
сила и пусть O –
некоторая точка пространства (рис. 2.16). Из курса физики известно, что моментом
силы относительно
точки O называется вектор , который проходит через точку O и удовлетворяет следующим условиям:
– перпендикулярен плоскости, проходящей через точки O, A, B;
– его модуль численно равен произведению силы на плечо .
– образует правую тройку с векторами и .
Следовательно,
момент силы относительно
точки O представляет собой векторное произведение
. (2.34)
Линейная скорость точки М твердого тела, вращающегося с
угловой скоростью вокруг
неподвижной оси, определяется формулой Эйлера , O – некоторая неподвижная
точка оси (рис. 2.17).
Пример 2.12. С помощью
векторного произведения найти площадь треугольника ABC, построенного на векторах
, приведенных к одному началу.
Решение. Найдем векторное произведение заданных векторов по
формуле (2.32).
. Согласно формуле (2.33) модуль векторного
произведения двух неколлинеарных векторов численно равен площади
параллелограмма, построенного на данных векторах как на сторонах, приведенных к
общему началу, то есть . Тогда площадь треугольника
. Следовательно, искомая площадь равна (единиц
площади)
7. Рассмотрим произведение трех векторов , составленное следующим образом: . Здесь первые два вектора перемножаются векторно, а
результирующий вектор – скалярно на третий. Такое произведение называется смешанным
произведением трех векторов
(векторно–скалярным произведением).
Теорема 2.6. Необходимым и достаточным условием компланарности
трех векторов является равенство нулю их смешанного произведения
Теорема 2.7. Если три вектора заданы своими координатами, то их смешанное
произведение представляет собой определитель третьего порядка, составленный из
координат векторов- сомножителей соответственно, то есть
(2.35)
Нетрудно показать, что объем параллелепипеда,
построенного на векторах как на
сторонах, приведенных к общему началу, численно равен модулю смешенного
произведения этих векторов .
Объем треугольной пирамиды, построенной на этих же
векторах, равен
(2.36)
Пример 2.13. Вершинами пирамиды служат точки . Вычислить объем пирамиды.
Решение. Найдем
координаты векторов
. Вычислим смешанное произведение этих векторов:
По формуле (2.36) объем пирамиды, построенной на
векторах равен
(единиц объема)
Рассмотрим очень важный вопрос о
разложении вектора по базису. Приведем
следующие определения.
Система векторов называется
линейно зависимой, если существуют такие числа , хотя бы одно из которых отлично от нуля, что имеет
место равенство
(2.37)
Отсюда всегда можно один из линейно
зависимых векторов выразить через линейную комбинацию остальных. Действительно,
допустим для определенности, что . Тогда на это число разделим равенство (2.37), имеем:
получим выражение вектора через
остальные векторы
Линейно независимыми называют векторы, если равенство
(2.37) выполняется только тогда, когда
все
В системе векторов число линейно
независимых векторов равняется рангу матрицы, которая составлена из координат
этих векторов (смотри раздел I.5).
Базисом n – мерного
пространства En называют любую совокупность линейно независимых векторов n – мерного пространства.
Произвольный вектор n
– мерного пространства можно представить
в виде линейной комбинации векторов базиса
таким образом:
Числа
называются координатами
вектора в базисе
векторов .
Линейное пространство называется
конечномерным и имеет размерность n, если в этом
пространстве существует система из n линейно независимых векторов (базис) такая,
что каждое ее расширение приводит к линейной зависимости системы.
Например, в трехмерном пространстве
существует базис единичных орт такой, что любое расширение этой системы
линейно независимых векторов, то есть каждый вектор трехмерного
пространства, приводит к линейной зависимости векторов (является линейной
комбинацией орт ): Коэффициенты {x1, x2, x3} такого разложения вектора
по ортам являются координатами вектора в трехмерном
пространстве.
Вопросы для самопроверки
План урока:
Прямоугольная система координат
Координаты вектора
Координаты середины отрезка
Вычисление длины векторов и расстояния между точками
Коллинеарность векторов
Определение компланарности векторов
Скалярное произведение векторов
Прямоугольная система координат
В планиметрии мы уже рассматривали прямоугольную систему координат. Ее образовывали 2 перпендикулярные друг другу оси – Ох и Оу. С ее помощью можно было определить положение любой точки на координатной плоскости, просто указав две ее координаты – абсциссу х и ординату у.
В стереометрии необходимо определять положение точки уже не на плоскости, а в пространстве. Для этого добавляется третья ось Оz, которую ещё называют осью апликат. Каждые пара осей образует свою отдельную координатную плоскость, всего получается три таких плос-ти: Оху, Охz и Oуz.
Точка О именуется началом координат. Она делит каждую ось на два луча, один из которых – это положительная полуось, а второй – отрицательная полуось.
Для каждой точки в пространстве можно указать три координаты, однозначно определяющие ее положение в пространстве. Пусть в пространстве есть некоторая точка М. Опустим из нее перпендикуляры на координатные плоскости. В свою очередь из этих проекций точки М опустим перпендикуляры уже на координатные оси. В результате будет построен прямоугольный параллелепипед. Измерения этого параллелепипеда и будут координатами точки М:
Если точка M находится в одной из координатных плоскостей, то одна из ее координат будет нулевой. Например, если М принадлежит плоскости Охz, то нулю будет равна координата у. Если же точка располагается на одной из координатных осей, то у нее уже две координаты будут нулевыми. Так, если точка находится на оси Ох, то только координата х может быть ненулевой, а у и z окажутся нулевыми координатами.
На показанном рисунке ребра параллелепипеда лежат на положительных полуосях, поэтому все координаты положительны. Если же какие-то ребра будут лежать на отрицательных полуосях, то и соответствующие координаты будут отрицательными.
Координаты вектора
Введем в пространстве прямоугольную систему коорд-т, а далее от ее начала отложим вектора i, j и k, которые соответственно будут лежать на координатных осях Ох, Оу и Оz, и длина которых составит единицу. Эти вектора именуют координатными векторами, единичными векторами или просто ортами.
Ясно, что орты находятся в разных плоскостях, то есть они образуют тройку некомпланарных векторов. Это означает, что любой вектор а в пространстве можно разложить на орты:
где х, у и z – какие-то действительные числа. Они как раз и считаются координатами вектора а. Записываются коорд-ты вектора в фигурных скобках. На следующем рисунке показан вектор а{3; – 2; – 4}.
Задание. Разложите на орты вектор
Если начало вектора ОМ располагается в начале системы координат О, то вектор ОМ именуют радиус-вектором. В таком случае коорд-ты точки конца вектора, то есть точки М, совпадают с коорд-тами самого вектора ОМ.
Это свойство радиус-вектора мы уже изучали в 9 классе в планиметрии, и в стереометрии оно сохраняется.
Задание. О – начало координат, а точка М имеет коорд-ты (2; 5; – 3). Найдите коорд-ты вектора ОМ.
Решение. Всё очень просто – коорд-ты вектора будут совпадать с коорд-тами его конца, так его начало совпадает с началом коорд-т:
Также в стереометрии остаются справедливыми ещё несколько правил, которые были доказаны в курсе планиметрии:
Задание. Найдите сначала сумму, а потом разность векторов а{3; 7; 5} и b{2; 4; 6}.
Решение. Будем обозначать коорд-ты векторов через индексы. Например, коорд-ты вектора а – это ха, уа и zа. Пусть сумма векторов будет вектором с, а их разность – вектором d. Для вычисления суммы надо складывать соответствующие координаты:
Для вычисления разности надо из коорд-т вектора а вычитать коорд-ты вектора b:
Задание. Вычислите коорд-ты вектора р, зная, что:
Решение. Для вычисления координат надо в выражении для вектора р сами векторы заменить на их координаты:
Получается, что вектор p имеет координаты {0; – 2; 3}.
Теперь мы можем доказать ещё одно утверждение, уже известное из курса планиметрии:
Действительно, пусть есть некоторый вектор АВ, причем коорд-ты точек А и В известны. Построим радиус-вектора OА и OВ:
Координаты радиус-векторов будут совпадать с координатами их концов:
ч. т. д.
Задание. Определите коорд-ты вектора CD, если даны коорд-ты точек С и D: С(3; 8; – 5) и D(5; 4; 1).
Решение. Здесь надо просто из коорд-т точки D, являющейся концом вектора, вычесть коорд-ты точки С:
Задание. От точки K(10; 6; 13) отложен вектор m{3; 2; 5}, конец совпал в точку H. Найдите коорд-ты точки H.
Решение. Коорд-ты вектора m и его концов связаны формулами:
Координаты середины отрезка
Пусть в пространстве есть отрезок АВ, и координаты его концов известны. Точка М – середина этого отрезка. Как вычислить ее координаты? Рассмотрим взаимосвязь векторов АМ, МВ и АВ:
Раз М – середина АВ, то вектора АМ и МВ имеют равные длины, и при этом они находятся на одной прямой. Значит, эти вектора равны и потому у них одинаковые коорд-ты:
Аналогично можно получить аналогичные формулы для коорд-т у и z:
Рассмотрим несколько задач на координаты точек.
Задание. Найдите коорд-ты середины отрезка, соединяющего точки А(3; 7; 12) и В(1; 5; – 4).
Решение. Просто используем только что выведенные формулы. Середину также обозначаем буквой М:
Задание. Известно, что K середина отрезка CD. Даны координаты точек С и K: С(12; 9; – 3) и K(15; 7; 3). Найдите коорд-ты D.
Решение. Сначала запишем формулу для коорд-ты х:
Вычисление длины векторов и расстояния между точками
Рассмотрим радиус-вектор ОМ с коорд-тами {x; у; z}. Попытаемся найти его длину. Мы можем построить прямоугольный параллелепипед, в котором этот вектор окажется диагональю:
Напомним, что квадрат длины диагонали в прямоугольном параллелепипеде равен сумме квадратов его измерений. Но в полученном параллелепипеде измерения – это коорд-ты х, у и z, поэтому можно записать:
Так как равные вектора имеют как одинаковы и коорд-ты, и длина, то ясно, что каждый вектор с коорд-тами {x; y; z} будет равен рассмотренному радиус-вектору, а значит и его длина будет рассчитываться по такой же формуле.
Задание. Найдите длину вектора m{– 2; 9; 6}.
Решение. Просто используем формулу:
Рассмотрим отрезок АВ с известными коорд-тами его концов. Можно построить вектор АВ, его коорд-ты будут определяться так:
Задание. Найдите расстояние между точкой K(10; 15; 5) и M(16; 21; – 2).
Решение. Просто подставляем коорд-ты точек в формулу:
Задание. Найдите длину медианы KM в ∆ KPN, если известны коорд-ты его вершин: P(2; 5; 8), N (6; 9; 12) и K(16; 11; 13).
Решение. Для нахождения длины медианы достаточно знать коорд-ты ее концов. Коорд-ты K уже известны, а M – середина PN, что позволяет вычислить и ее коорд-ты:
Коллинеарность векторов
Напомним, что если два вектора а и b коллинеарны друг другу, то должно существовать такое число k, что
Полученное отношение (1) является одновременно и признаком коллинеарных векторов, и их свойством. Слово «признак» означает, что любые вектора, чьи координаты соответствуют условию (1), будут коллинеарны. Слово «свойство» означает обратное – если известно, что вектора коллинеарны, то для них обязательно выполняется условие (1). В таких случаях в математике может использоваться словосочетание «тогда и только тогда»:
Очень важно то, что это правило действует только в случае, если все коорд-ты векторов ненулевые. Теперь рассмотрим случай, когда какие-то коорд-ты вектора b (одна или две из них) равны нулю. Например, пусть
В результате мы выяснили, что если коорд-та одного вектора нулевая, то и у любого вектора, коллинеарному ему, эта же коорд-та также должна быть нулевой. Особняком стоит случай с нулевым вектором с коорд-тами {0; 0; 0}. Он условно признается коллинеарным любому вектору.
Задание. Выясните, какие из этих пар векторов коллинеарны:
Решение. В первом задании просто делим друг на друга соответствующие коорд-ты и находим значение коэффициента k:
Значение коэффициента k оказалось одинаковым для каждой пары коорд-т, значит, вектора коллинеарны.
Повторяем эти действия в задании б):
На этот раз коэффициенты k оказались различными, значит, вектора неколлинеарны.
В задании в) у вектора е коорд-та z нулевая. Значит, если и у вектора f, если он коллинеарен z, эта координата должна быть нулевой, но это не так. Значит, вектора e и f неколлинеарны.
В задании г) снова указаны вектора с нулевыми коорд-тами. Но у обоих векторов коорд-та z нулевая, поэтому они могут быть коллинеарными. Однако необходимо проверить, что отношение ненулевых координат одинаково:
Коэффициент k получился одинаковым, поэтому вектора коллинеарны.
В последнем задании д) вектор n – нулевой, ведь все его коорд-ты нулевые. Нулевой вектор всегда коллинеарен другим векторам, в том числе и в этом задании.
Ответ: а) да; б) нет; в) нет; г) да; д) да.
Задание. Выясните, располагаются ли на одной прямой точки А(3; 5; 12), В(5; 7; 16) и С(0; 2; 6).
Решение. Ясно, что если эти точки находятся на одной прямой, то вектора АВ и ВС будут коллинеарными. Если же эти вектора неколлинеарны, то и точки должны находиться на разных прямых.
Сначала вычислим коорд-ты векторов АВ и ВС:
Теперь проверяем, коллинеарны ли эти вектора:
Коэффициенты k одинаковы, а потому АВ и ВС – коллинеарные векторы. Значит, точки А, В и С находятся на одной прямой.
Определение компланарности векторов
Пусть у нас есть три вектора с известными коорд-тами:
Как определить, компланарны ли эти вектора, то есть располагаются ли они в одной плоскости? Если эти вектора компланарны, то, по признаку компаланарности, вектор а можно разложить на вектора b и с:
где х и y – некоторые числа. Но если такое разложение существует, то коорд-ты векторов а, b и с будут связаны равенствами:
Получили систему из 3 уравнений с двумя неизвестными (х и y). Если такая система имеет решение, то вектора компланарны. Если же решения нет, то вектора не компланарны.
Задание. Определите, компланарны ли вектора
Имеем систему с тремя уравнениями. Из последних двух уравнений очевидно, что его решением может быть только пара чисел:
Значит, рассмотренная тройка векторов компланарна.
Задание. Располагаются ли в одной плос-ти вектора:
Решение. Нам надо проверить компаланарность векторов, поэтому действуем также, как и в предыдущей задаче. Если вектора компланарны, то существует разложение:
Получилось неверное равенство. Это означает, что у системы уравнений решения нет, и потому тройка векторов некомпланарна.
Скалярное произведение векторов
В 9 классе мы уже изучали скалярное произведение векторов.
Для нахождения угла между векторами необходимо отложить их от одной точки, тогда они образуют такой угол.
Задание. Угол между векторами с и d составляет 60°, а их длины соответственно равны 5 и 6. Найдите их скалярное произведение.
Решение. Здесь для расчета просто перемножаем длины векторов и косинус 60°:
Напомним несколько уже известных нам фактов о скалярном произведении, остающихся верными и в стереометрии:
Формула для расчета скалярного произведения по коорд-там векторов, используемая в стереометрии, несколько отличается от формулы из курса планиметрии. Напомним, что в планиметрии произведение векторов а{xа; уа} и b{хb; yb} можно было рассчитать так:
Задание. Вычислите скалярное произведение векторов:
На практике скалярное произведение обычно используется для расчета углов между векторами, а также отрезками и прямыми. Рассмотрим несколько задач.
Задание. Вычислите угол между векторами:
Теперь через скалярное произведение возможно рассчитать косинус искомого нами угла, а затем и сам угол, который мы обозначим как α:
Задание. Рассчитайте углы в ∆АВС, зная коорд-ты его вершин: А(1; – 1; 3), В(3; – 1; 1) и С(– 1; 1; 3).
Решение. Чтобы найти ∠В, необходимо просто рассчитать угол между векторами ВС и ВА также, как это сделано в предыдущей задаче. Но сначала найдем коорд-ты векторов ВС и ВА и их длины:
Далее рассчитываем скалярное произведение векторов:
Теперь найдем угол А, который представляет собой угол между векторам AВ и AС. Вектор AВ – это вектор, противоположный ВA, то у него та же длина, но противоположный знак у коорд-т:
Задание. В прямоугольном параллелепипеде АВСDA1B1C1D1 ребра имеют длину:
AB = 1
BC = 2
BB1 = 2
Рассчитайте угол между векторами DB1 и BC1.
Решение. Введем систему коорд-т Охуz и расположим в нем параллелепипед следующим образом:
При этом построении граничные точки векторов будут иметь следующие коорд-ты:
Находим коорд-ты векторов, а также их длины:
Рассчитываем скалярное произведение DB1 и BC1:
Получили ноль. Из этого вытекает, что вектора перпендикулярны, то есть искомый нами угол составляет 90°.
Ответ: 90°
Сегодня мы научились использовать координаты для решения стереометрических задач. Почти все формулы, используемые в методе координаты, аналогичны тем формулам, которые были выведены ещё в курсе планиметрии. Надо лишь учитывать существование ещё одной, третьей координаты z.
Марина Николаевна Ковальчук
Эксперт по предмету «Геометрия»
Задать вопрос автору статьи
Прямоугольная система координат
Чтобы определить понятие координат точек, нам необходимо ввести систему координат, в которой мы и будем определять ее координаты. Одна и та же точка в разных системах координат может иметь различные координаты. Здесь мы будем рассматривать прямоугольную систему координат в пространстве.
Возьмем в пространстве точку $O$ и введем для нее координаты $(0,0,0)$. Назовем ее началом системы координат. Проведем через нее три взаимно перпендикулярные оси $Ox$, $Oy$ и $Oz$, как на рисунке 1. Эти оси будут называться осями абсцисс, ординат и аппликат, соответственно. Осталось только ввести масштаб на осях (единичный отрезок) – прямоугольная система координат в пространстве готова (рис. 1)
Рисунок 1. Прямоугольная система координат в пространстве. Автор24 — интернет-биржа студенческих работ
Сделаем домашку
с вашим ребенком за 380 ₽
Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online
Бесплатное пробное занятие
*количество мест ограничено
Координаты точки
Теперь разберем, как определяют в такой системе координаты любой точки. Возьмем произвольную точку $M$ (рис. 2).
Рисунок 2. Произвольная точка. Автор24 — интернет-биржа студенческих работ
Построим на координатных осях прямоугольный параллелепипед, так, что точки $O$ и $M$ противоположные его вершины (рис. 3).
Рисунок 3. Построение прямоугольного параллелепипеда. Автор24 — интернет-биржа студенческих работ
«Координаты точки и координаты вектора. Как найти координаты вектора» 👇
Тогда точка $M$ будет иметь координаты $(X,Y,Z)$, где $X$ – значение на числовой оси $Ox$, $Y$ – значение на числовой оси $Oy$, а $Z$ – значение на числовой оси $Oz$.
Пример 1
Необходимо найти решение следующей задачи: написать координаты вершин параллелепипеда, изображенного на рисунке 4.
Рисунок 4. Параллелепипед. Автор24 — интернет-биржа студенческих работ
Решение.
Точка $O$ начало координат, следовательно, $O=(0,0,0)$.
Точки $Q$, $N$ и $R$ лежат на осях $Ox$, $Oz$ и $Oy$, соответственно, значит
$Q=(2,0,0)$, $N=(0,0,1.5)$, $R=(0,2.5,0)$
Точки $S$, $L$ и $M$ лежат в плоскостях $Oxz$, $Oxy$ и $Oyz$, соответственно, значит
$S=(2,0,1.5)$, $L=(2,2.5,0)$, $R=(0,2.5,1.5)$
Точка $P$ имеет координаты $P=(2,2.5,1.5)$
Координаты вектора по двум точкам и формула нахождения
Чтобы узнать, как найти вектор по координатам двух точек, необходимо рассмотреть введенную нами ранее систему координат. В ней от точки $O$ по направлению оси $Ox$ отложим единичный вектор $overline{i}$, по направлению оси $Oy$ – единичный вектор $overline{j}$, а единичный вектор $overline{k}$ нужно направлять по оси $Oz$.
Для того чтобы ввести понятие координат вектора, введем следующую теорему (здесь ее доказательство мы рассматривать не будем).
Теорема 1
Произвольный вектор в пространстве может быть разложен по трем любым векторам, которые не лежат в одной плоскости, причем коэффициенты в таком разложении будут единственным образом определены.
Математически это выглядит следующим образом:
$overline{δ}=moverline{α}+noverline{β}+loverline{γ}$
Так как векторы $overline{i}$, $overline{j}$ и $overline{k}$ построены на координатных осях прямоугольной системы координат, то они, очевидно, не будут принадлежать одной плоскости. Значит любой вектор $overline{δ}$ в этой системе координат, по теореме 1, может принимать следующий вид
$overline{δ}=moverline{i}+noverline{j}+loverline{k}$ (1)
где $n,m,l∈R$.
Определение 1
Три вектора $overline{i}$, $overline{j}$ и $overline{k}$ будут называться координатными векторами.
Определение 2
Коэффициенты перед векторами $overline{i}$, $overline{j}$ и $overline{k}$ в разложении (1) будут называться координатами этого вектора в заданной нами системе координат, то есть
$overline{δ}=(m,n,l)$
Линейные операции над векторами
Теорема 2
Теорема о сумме: Координаты суммы любого числа векторов определяются суммой их соответствующих координат.
Доказательство.
Будем доказывать эту теорему для 2-х векторов. Для 3-х и более векторов доказательство строится аналогичным образом. Пусть $overline{α}=(α_1,α_2,α_3)$, $overline{β}=(β_1,β_2 ,β_3)$.
Эти вектора можно записать следующим образом
$overline{α}=α_1overline{i}+ α_2overline{j}+α_3overline{k}$, $overline{β}=β_1overline{i}+ β_2overline{j}+β_3overline{k}$
$overline{α}+overline{β}=α_1overline{i}+α_2overline{j}+α_3overline{k}+β_1overline{i}+ β_2overline{j}+β_3overline{k}=(α_1+β_1 )overline{i}+(α_2+β_2 )overline{j}+(α_3+β_3)overline{k}$
Следовательно
$overline{α}+overline{β}=(α_1+β_1,α_2+β_2,α_3+β_3)$
Теорема доказана.
Замечание 1
Замечание: Аналогично, находится решение разности нескольких векторов.
Теорема 3
Теорема о произведении на число: Координаты произведения произвольного вектора на действительное число определяется произведением координат на это число.
Доказательство.
Возьмем $overline{α}=(α_1,α_2,α_3)$, тогда $overline{α}=α_1overline{i}+α_2overline{j}+α_3overline{k}$, а
$loverline{α}=l(α_1overline{i}+ α_2overline{j}+α_3overline{k})=lα_1overline{i}+ lα_2overline{j}+lα_3overline{k}$
Значит
$koverline{α}=(lα_1,lα_2,lα_3)$
Теорема доказана.
Пример 2
Пусть $overline{α}=(3,0,4)$, $overline{β}=(2,-1,1)$. Найти $overline{α}+overline{β}$, $overline{α}-overline{β}$ и $3overline{α}$.
Решение.
$overline{α}+overline{β}=(3+2,0+(-1),4+1)=(5,-1,5)$
$overline{α}-overline{β}=(3-2,0-(-1),4-1)=(1,1,3)$
$3overline{α}=(3cdot 3,3cdot 0,3cdot 4)=(9,0,12)$
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме