Диагональ треугольника – формула
Очень часто в начале изучения фигуры ученики путают значение диагонали прямоугольника и треугольника. Поэтому, чтобы не путаться в обозначениях, лучше разобраться в тематике раз и навсегда.
Треугольник
Треугольник – это фигура, состоящая из трех сторон и трех углов. Треугольник имеет три характеризующих отрезка:
Треугольник не может иметь диагональ в принципе. Дело в том, что диагонали могут быть проведены только в многоугольниках, количество сторон которых больше 3.
Почему так? Потому что диагональ это отрезок, соединяющий противоположные вершины. В треугольнике противоположных вершин нет и быть не может. Существует сторона, противоположная вершине, но сами по себе вершины всегда смежные, т.е. соединенные одной стороной. Значит, диагонали треугольника не существует
Рис. 1. Три медианы в треугольнике.
Прямоугольник
Прямоугольник – это первая фигура школьного курса математики, которая имеет диагональ. Так же, как диагональ имеет и квадрат.
Диагональ прямоугольника или квадрата всегда:
- Делит фигуру на две равных прямоугольных треугольника.
- В полученных треугольниках диагональ будет являться гипотенузой
- Диагональ будет равняться корню квадратному из суммы квадратов катетов согласно теореме Пифагора
Диагоналей в любом четырехугольнике 2, а в квадрате и прямоугольнике обе диагонали равны между собой.
При этом правило не касается других четырехугольников. Например, диагонали параллелограмма всегда неравны между собой. Запомните, если перед вами произвольный четырехугольник использовать утверждение о равенстве диагоналей без доказательства нельзя. Любое утверждение в геометрии, кроме аксиом должно быть доказано.
Кроме прямоугольника и квадрата равными диагоналями обладает ромб. При этом диагонали ромба перпендикулярны друг другу и, так же, как и диагонали квадрата и прямоугольника, точкой пересечения делятся пополам.
Многоугольник
На самом деле, многоугольником может называться любая фигура с количеством углов, больше 2. По факту, любая фигура может называться многоугольником, поскольку 2 угла у замкнутой фигуры быть не может.
Рассмотрим многоугольники с количеством углов больше 4, поскольку четырехугольники мы уже рассмотрели.
Рис. 2. Диагонали многоугольника.
В многоугольнике, если он не является правильным, не получится решить задачу нахождения диагонали без дополнительных построений. В правильном многоугольнике все диагонали равны между собой и точкой пересечения делятся пополам.
Правильным многоугольником зовется фигура, все стороны и углы которой соответственно равны между собой.
Количество диагоналей можно посчитать, прикинув количество смежных и несмежных вершин. Смежными зовутся вершины, соединенные одним отрезком.
Например, в четырехугольнике у любой вершины есть две смежные вершины. Значит, для каждой вершины есть только одна диагональ. Диагональ соединяет две противоположные вершины, всего вершин 4, значит 4:2=2 – в любом четырехугольнике 2 диагонали.
Но этот способ не подойдет, если в задаче требуется подсчитать количество диагоналей у многоугольника с 5989 сторонами. Такая фигура вполне возможна в теории. На практике начертить ее весьма утомительно, как и подсчитать диагонали на чертеже. Поэтому была выведена формула числа диагоналей многоугольника:
$P=>$ – где n это число сторон многоугольника.
Проверим для квадрата:
Рис. 3. Диагонали квадрата.
Что мы узнали?
Мы узнали, почему не существует формулы диагонали треугольника. Поговорили о том, что диагонали в принципе нет, и не может быть в многоугольниках с количеством сторон, меньше 3. Обсудили различные свойства диагоналей в различных фигурах.
Свойства равностороннего треугольника
Основные свойства равностороннего треугольника непосредственно следуют из свойств равнобедренного треугольника, частным случаем которого он является.
Свойства равностороннего треугольника
2) Высота, медиана и биссектриса, проведённые к каждой из сторон равностороннего треугольника, совпадают:
AK — высота, медиана и биссектриса, проведённые к стороне BC;
BF — высота, медиана и биссектриса, проведённые к стороне AC;
CD — высота, медиана и биссектриса, проведённые к стороне AB.
Длины всех трёх высот (медиан, биссектрис) равны между собой:
Если a — сторона треугольника, то
3) Точка пересечения высот, биссектрис и медиан называется центром правильного треугольника и является центром вписанной и описанной окружностей (то есть в равностороннем треугольнике центры вписанной и описанной окружностей совпадают).
4) Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, считая от вершин:
5) Расстояние от точки пересечения высот, биссектрис и медиан
до любой вершины треугольника равно радиусу описанной окружности:
6) Расстояние от точки пересечения высот, биссектрис и медиан до любой стороны треугольника равно радиусу вписанной окружности:
7) Сумма радиусов вписанной и описанной окружностей правильного треугольника равна его высоте, медиане и биссектрисе: R+r=BF.
8) Радиус вписанной в правильный треугольник окружности в два раза меньше радиуса описанной окружности:
Свойства равностороннего треугольника: теория и пример задачи
В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.
Определение равностороннего треугольника
Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.
Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.
Свойства равностороннего треугольника
Свойство 1
В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.
Свойство 2
В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.
CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.
Свойство 4
Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.
Свойство 5
Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.
- R – радиус описанной окружности;
- r – радиус вписанной окружности;
- R = 2r.
Свойство 6
В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:
1. Высоту/медиану/биссектрису:
2. Радиус вписанной окружности:
3. Радиус описанной окружности:
4. Периметр:
5. Площадь:
Пример задачи
Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.
Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:
[spoiler title=”источники:”]
[/spoiler]
Медиана равна половине гипотенузы прямоугольного треугольника!
Почему??? При чём тут прямой угол?
Давай смотреть внимательно. Только не на треугольник, а на … прямоугольник.
Ты заметил, что наш треугольник ( displaystyle ABC) – ровно половина этого прямоугольника?
Проведём диагональ ( displaystyle BD):
Помнишь ли ты, что диагонали прямоугольника равны и делятся точкой пересечения пополам?
Если не помнишь, загляни в тему «Параллелограмм, прямоугольник, ромб…»
Но одна из диагоналей – ( displaystyle AC) – наша гипотенуза! Значит, точка пересечения диагоналей – середина гипотенузы ( displaystyle Delta ABC).
Она называлась у нас ( displaystyle M).
Значит, половина второй диагонали – наша медиана ( displaystyle BM). Диагонали равны, их половинки, конечно же, тоже. Вот и получим ( displaystyle BM=MA=MC)
Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы.
Более того, так бывает только в прямоугольном треугольнике!
Если медиана равна половине стороны, то треугольник прямоугольный, и эта медиана проведена к гипотенузе.
Доказывать это утверждение мы не будем, а чтобы в него поверить, подумай сам: разве бывает какой-нибудь другой параллелограмм с равными диагоналями, кроме прямоугольника?
Нет, конечно! Ну вот, значит, и медиана может равняться половине стороны только в прямоугольном треугольнике.
Решение задач на свойства медианы в прямоугольном треугольнике
Давай посмотрим, как это свойство помогает решать задачи.
Задача №1:
В ( displaystyle Delta ABC) стороны ( displaystyle AC=5); ( displaystyle BC=12). Из вершины ( displaystyle C) проведена медиана ( displaystyle CN).
Найти ( displaystyle AB), если ( displaystyle AB=2CN).
Рисуем:
Сразу вспоминаем, это если ( displaystyle CN=frac{AB}{2}), то ( displaystyle angle ACB=90{}^circ )!
Ура! Можно применить теорему Пифагора!
Видишь, как здорово? Если бы мы не знали, что медиана равна половине стороны только в прямоугольном треугольнике, мы никак не могли бы решить эту задачу. А теперь можем!
Применяем теорему Пифагора:
( A{{B}^{2}}=A{{C}^{2}}+B{{C}^{2}})
( A{{B}^{2}}={{5}^{2}}+{{12}^{2}}=169)
Ответ: ( AB=13)
А в следующей задаче пусть у нас будет не одна, а целых три медианы! Как же они себя ведут?
Запомни очень важный факт:
Три медианы в треугольнике (любом!) пересекаются в одной точке и делятся этой точкой в отношении ( 2:1), считая от вершины.
Сложно? Смотри на рисунок:
Медианы ( displaystyle AM), ( displaystyle BN) и ( displaystyle CK) пересекаются в одной точке.
Запомни:
- ( displaystyle AO) – вдвое больше, чем ( displaystyle OM);
- ( displaystyle BO) – вдвое больше, чем ( displaystyle ON);
- ( displaystyle CO) – вдвое больше, чем ( displaystyle OK).
Три медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении ( displaystyle 2:1 ), считая от вершины.
Что бы это такое значило? Посмотри на рисунок. На самом деле утверждений в этой теореме целых два. Ты это заметил?
1. Медианы треугольника пересекаются в одной точке.
2. Точкой пересечения медианы делятся в отношении ( displaystyle 2:1 ), считая от вершины.
Давай попробуем разгадать секрет этой теоремы, то есть доказать ее.
Доказательство теоремы о трех медианах треугольника
Сначала проведем не все три, а только две медианы. Они-то уж точно пересекутся, правда? Обозначим точку их пресечения буквой ( displaystyle E).
Соединим точки ( displaystyle N) и ( displaystyle K). Что получилось?
Конечно, ( displaystyle NK) – средняя линяя ( displaystyle triangle ABC). Ты помнишь, что это значит?
- ( displaystyle NK) параллельна ( displaystyle AC);
- ( displaystyle NK=frac{AC}{2}).
А теперь проведем ещё одну среднюю линию: отметим середину ( displaystyle AE) – поставим точку ( displaystyle F), отметим середину ( displaystyle EC) — поставим точку ( displaystyle G).
Теперь ( displaystyle FG) – средняя линия ( displaystyle triangle AEC). То есть:
- ( displaystyle FG) параллельна ( displaystyle AC);
- ( displaystyle FG=frac{AC}{2}).
Заметил совпадения? И ( displaystyle NK) , и ( displaystyle FG) – параллельны ( displaystyle AC). И ( displaystyle NK=frac{AC}{2}), и ( displaystyle FG=frac{AC}{2}).
Что из этого следует?
- ( displaystyle NK) параллельна ( displaystyle FG);
- ( displaystyle NK=FG)
Посмотри теперь на четырехугольник ( displaystyle NKGF). У какого четырехугольника противоположные стороны (( displaystyle NK) и ( displaystyle FG)) параллельны и равны?
Конечно же, только у параллелограмма!
Значит, ( displaystyle NKGF) – параллелограмм. Ну и что?
А давай вспомним свойства параллелограмма. Например, что тебе известно про диагонали параллелограмма? Правильно, они делятся точкой пересечения пополам.
Снова смотрим на рисунок.
Получилось что:
Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике по треугольникам
Лучше всего смотреть это видео с ручкой и тетрадкой в руках. То есть ставьте видео на паузу и решайте задачи самостоятельно.
Помните, понимать и уметь решать — это два, совершенно разных навыка. Очень часто вы понимаете как решить задачу, но не можете это сделать. Или допускаете ошибки, или просто теряетесь и не можете найти ход решения.
Как с этим справиться?
Нужно решать много задач. Другого способа нет. Вы должны совершить свои ошибки, чтобы научиться их не допускать.
ЕГЭ №6 Равнобедренный треугольник, произвольный треугольник
В этом видео мы вспомним все свойства равнобедренных треугольников и научимся их применять в задачах из ЕГЭ. Очень часто все «проблемы» с решением задач на равнобедренный треугольник решаются построением высоты. Также мы научимся решать и «обычные» треугольники.
ЕГЭ №6 Прямоугольный треугольник, теорема Пифагора, тригонометрия
Большинство задач в планиметрии решается через прямоугольные треугольники. Как это так? Ведь далеко не в каждой задаче речь идёт о треугольниках вообще, не то что прямоугольных.
Но на уроках этой темы мы убедимся, что это действительно так. Дело в том, что редкая сложная задача решается какой-то одной теоремой — почти всегда она разбивается на несколько задач поменьше.
И в итоге мы имеем дело с треугольниками, зачастую — прямоугольными.
В этом видео мы научимся решать задачи о прямоугольных треугольниках из ЕГЭ, выучим все необходимые теоремы и затронем основы тригонометрии.
ЕГЭ №16. Подобие треугольников. Задачи н доказательство
Это одна из самых сложных задачи в профильном ЕГЭ. Полные 3 балла за эту задачу получают менее 1% выпускников!
Основная сложность – построение доказательств. Баллы здесь снимают за любой пропущенный шаг доказательства. Например, нам часто кажется очевидным, что треугольники на рисунке подобны и мы забываем указать, по какому признаку. И за это нам снимут баллы.
В этом видео вы научитесь применять подобие треугольников для доказательств, указывать признаки подобия и доказывать каждое умозаключение.
Вы научитесь правильно записывать решение задачи, сокращать записи чтобы не тратить время на выписывание всех своих мыслей или полных названий теорем.
Вы научитесь также применять подобие треугольников не только для доказательств, а и для расчётных задач.
Свойство медиан треугольника может быть доказано многими способами. Доказательство, опирающееся на свойства параллелограмма и средней линии треугольника, может быть проведено сразу же после изучения соответствующих тем, что позволяет начать использовать свойство медиан треугольника уже с начала 8 класса.
Теорема
(Свойство медиан треугольника)
Медианы треугольника пересекаются и в точке пересечения делятся в отношении 2:1, считая от вершины.
Дано: ABC, AA1, BB1, CC1 — медианы
Доказать:
Доказательство:
1) Пусть M — середина отрезка AO, N — середина BO
(то есть AM=OM, BN=ON).
2) Соединим точки M, N, A1 и B1 отрезками.
Тогда MN — средняя линия треугольника AOB и
3) Так как AA1 и BB1 — медианы треугольника ABC, точка A1- середина отрезка BC, B1 — середина AC.
Следовательно, A1B1 — средняя линия треугольника ABC и
4) Имеем:
Значит, четырёхугольник MNA1B1 — параллелограмм (по признаку).
По свойству диагоналей параллелограмма
Таким образом,
из чего следует, что
5) Доказательство того факта, что все медианы треугольника пересекаются в одной точке, будем вести методом от противного.
Предположим, что третья медиана CC1 треугольника ABC пересекает медианы AA1 и BB1 в некоторой точке, отличной от точки O.
Тогда на каждой медиане есть две различные точки, делящие её в отношении 2:1, считая от вершины. Пришли к противоречию.
Таким образом, все три медианы треугольника пересекаются в одной точке и точка пересечения медиан делит каждую из их в отношении 2:1, считая от вершины:
Что и требовалось доказать.
Ортоцентр – это точка пересечения высот треугольника.
Рассмотрим остроугольный треугольник ABC:
O – ортоцентр,
∠ BAC = a,
∠ ABC = b,
∠ ACB = c.
Утверждения.
1. Треугольник ABC подобен треугольнику, образованному вершиной B и основанием двух высот:
Δ ABC ∼ Δ H3BH2,
коэффициент подобия:
H3B / AB = H2B / CB = H3H2 / AC = cos b.
2. Соотношение отрезков, на которые ортоцентр делит высоту, можно вычислить по формуле:
BO / OH1 = cos b / (cos a * cos c).
3. Высоты треугольника можно вычислить по формуле:
BH1 = AC * sin a * sin c / sin b.
4. Расстояние от ортоцентра до вершины треугольника:
OB = AC / tg b.
5. 1 / BH1 + 1 / CH2 + 1 / AH3 = 1 / r,
r – радиус вписанной окружности.
Докажем эти утверждения.
1.
В треугольнике ABC проведены высоты BD и CE.
Докажем, что треугольник ABC подобен треугольнику ADE.
Решение.
Рассмотрим Δ ABD:
cos A = AD / AB.
Рассмотрим Δ ACE:
cos A = AE / AC.
Таким образом,
cos A = AD / AB = AE / AC.
Значит, Δ ABC ∼ Δ ADE по двум сторонам и углу между ними.
2.
Диагонали трапеции ABCD пересекаются под прямым углом.
CH – высота, проведенная к большему основанию AD.
∠ CAD = a,
∠ ACD = c,
∠ ADC = d.
Найдем отношение, в котором диагональ трапеции делит высоту CH.
Решение.
Пусть K – точка пересечения диагоналей трапеции,
O – точка пересечения диагонали BD и высоты CH.
Найдем соотношение CO / OH.
Δ BOC подобен Δ DOH по двум углам,
так как ∠ BCO = ∠ DHO = 90,
∠ BOC = ∠ DOH как вертикальные.
Значит,
CO / OH = BC / DH. (*)
Рассмотрим Δ CKD:
KC = CD * cos c.
Рассмотрим Δ BCK:
BC = KC / cos a = (CD * cos c) / cos a.
Рассмотрим Δ CHD:
HD = CD * cos d.
Из (*) и последних трех равенств получаем:
CO / OH = BC / DH =
( (CD * cos c) / cos a ) : (CD * cos d) =
Таким образом, мы нашли соотношение отрезков, на которые ортоцентр O треугольника ABD делит высоту CH:
3.
Найдем расстояние от ортоцентра треугольника до его вершины, и высоту, проведенную из этой вершины, если известны углы треугольника и противолежащая сторона.
Решение.
Рассмотрим треугольник ABC.
O – ортоцентр.
∠ BAC = a,
∠ ABC = b,
∠ ACB = с,
также известна величина стороны AC.
Найдем BH и OB.
Обозначим AH за x, тогда HC = AC – x.
Рассмотрим Δ AHB:
BH = x * tg a.
Рассмотрим Δ CHB:
BH = (AC – x) * tg c.
Таким образом,
BH = x * tg a = (AC – x) * tg c.
Рассмотрим Δ AHB:
Таким образом высоту можно вычислить по формуле,
4.
Найдем теперь расстояние от вершины B до ортоцентра.
Так как BH = BO + OH, получаем:
Выражаем из уравнения (1) OH и подставляем в уравнение (2):
Значит, расстояние от ортоцентра до вершины можно вычислить по формуле:
5.
1 / BH1 + 1 / CH2 + 1 / AH3 = 1 / r.
Площадь треугольника ABC можно вычислить по формуле:
S = ½ * AC * BH1 = ½ * AB * CH2 = ½ * BC * AH3,
Значит,
BH1 = 2S / AC
CH2 = 2S / AB
AH3 = 2S / BC
1 / BH1 = AC / 2S
1 / CH2 = AB / 2S
1 / AH3 = BC / 2S
1 / BH1 + 1 / CH2 + 1 / AH3 = (AC + BC + AB) / 2S = p / S, (*)
где p – полупериметр.
Еще одна формула площади треугольника:
S = p * r,
откуда r = S / p
1 / r = p / S.
Из (*) и последнего равенства получаем нужное нам равенство.
Содержание 👉
Как найти точку пересечения диагоналей четырехугольника, если есть координаты вершин треугольника?
Владислав Кравченко
Ученик
(234),
на голосовании
9 лет назад
у четырехугольника все стороны разные. Если есть ответ, то напишите понятно и четко.
Спасибо.
Дополнен 9 лет назад
Ой, извиняюсь
вместо “треугольника” четырехугольник
Голосование за лучший ответ
Полосатый жираф Алик
Искусственный Интеллект
(310767)
9 лет назад
Так, четырехугольник или трех? Если есть все координаты четырехугольника, то по двум (противоположным) точкам уравнение одной диагонали и по двум другим – уравнение второй. Решая систему из двух линейных уравнений, получаем и икс, и игрек.
Вероятно, справа – ты
Оракул
(69070)
9 лет назад
http://dxdy.ru/topic68659.html
http://www.kakprosto.ru/kak-18137-kak-nayti-tochku-peresecheniya-otrezkov
Похожие вопросы