Как найти точку пересечения двух прямых онлайн

Онлайн калькулятор. Точка пересечения прямых

Предлагаю вам воспользоваться онлайн калькулятором для вычисления координат точки пересечения прямых.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление координат точки пересечения двух прямых и закрепить пройденный материал.

Найти точку пересечения прямых

Точка пересечения прямых

Уравнение 1-ой прямой:

y = x +

Уравнение 2-ой прямой:

y = x +

Вводить можно числа или дроби (-2.4, 5/7, …). Более подробно читайте в правилах ввода чисел.

Как найти точку пересечения двух прямых на плоскости?

Пусть даны две прямые, заданные уравнениями a_1x + b_1y = c_1 и a_2x + b_2y = c_2. Найдём точку пересечения этих прямых.

Если наши прямые не параллельны, то они пересекаются в точке, координаты которой должны удовлетворять уравнениям обеих прямых. Поэтому чтобы найти точку пересечения прямых, надо решить систему уравнений

    [left{  begin{cases} a_1x + b_1y = c_1\ a_2x + b_2y = c_2 end{cases}]

Эта система имеет единственное решение, если a_1cdot b_2 ne a_2cdot b_1. Если же a_1cdot b_2 = a_2cdot b_1, то прямые параллельны и не пересекаются.

Пример

Найти точку пересечения прямых 2x + 3y = 1 и y = x + 2.
Решение: Решаем систему уравнений

    [left{  begin{cases} 2x + 3y = 1\ y = x + 2 end{cases}]

Подставляем в первое уравнение системы y = x + 2, получаем: 2x + 3(x+2) = 1. Отсюда x = -1. Поэтому y = x + 2 = -1 + 2 = 1.

Ответ: прямые пересекаются в точке (-1, 1).

Найти точку пересечения прямых онлайн

Калькулятор поможет быстро вычислить точку пересечения двух прямых на плоскости онлайн. Необходимо просто ввести уравнения двух прямых в произвольном виде.

Точка пересечения прямых на плоскости онлайн

С помощю этого онлайн калькулятора можно найти точку пересечения прямых на плоскости. Дается подробное решение с пояснениями. Для нахождения координат точки пересечения прямых задайте вид уравнения прямых (“канонический”, “параметрический” или “общий”), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку “Решить”. Теоретическую часть и численные примеры смотрите ниже.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Точка пересечения прямых на плоскости − теория, примеры и решения

  • Содержание
  • 1. Точка пересечения прямых, заданных в общем виде.
  • 2. Точка пересечения прямых, заданных в каноническом виде.
  • 3. Точка пересечения прямых, заданных в параметрическом виде.
  • 4. Точка пересечения прямых, заданных в разных видах.
  • 5. Примеры нахождения точки пересечения прямых на плоскости.

1. Точка пересечения прямых, заданных в общем виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

где n1={A1, B1} и n2={A2, B2} − нормальные векторы прямых L1 и L2, соответственно.

Для нахождения точки пересечения прямых (1) и (2) нужно решить систему линейных уравнений (1) и (2) относительно переменных x,y. Для этого запишем систему (1),(2) в матричном виде:

Построим расширенную матрицу:

Приведем (4) к верхнему диагональному виду. Пусть A1≠0 . Тогда сложим строку 2 со строкой 1, умноженной на −A2/A1:

где

Если B’2=0 и С’2=0, то система линейных уравнений имеет множество решений. Следовательно прямые L1 и L2 совпадают. Если B’2=0 и С’2≠0, то система несовместна и, следовательно прямые параллельны и не имеют общей точки. Если же B’2≠0, то система линейных уравнений имеет единственное решение. Из второго уравнения находим y: y=С’2/B’2 и подставляя полученное значение в первое уравнение находим x: x=(−С1B1y)/A1. Получили точку пересечения прямых L1 и L2: M(x, y).

Подробнее о решении систем линейных уравнений посмотрите на странице метод Гаусса онлайн.

2. Точка пересечения прямых, заданных в каноническом виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

где M1(x1, y1) и M2(x2, y2) − точки, лежащие на прямых L1 и L2, соответственно, а q1={m1, p1} и q2={m2, p2} − направляющие векторы прямых L1 и L2, соответственно.

Приведем уравнение L1 к общему виду. Сделаем перекрестное умножение в уравнении (6):

Откроем скобки и сделаем преобразования:

Обозначив A1=p1, B1=−m1, C1=−p1x1+m1y1, получим общее уравнение прямой (6):

Аналогичным методом получим общее уравнение прямой (7):

Терерь можно найти точку пересечения прямых L1 и L2 методом, описанным в параграфе 1.

3. Точка пересечения прямых, заданных в параметрическом виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2 в параметрическом виде:

где M1(x1, y1) и M2(x2, y2) − точки, лежащие на прямых L1 и L2, соответственно, а q1={m1, p1} и q2={m2, p2} − направляющие векторы прямых L1 и L2, соответственно.

Приведем уравнение прямой L1 к каноническому виду. Для этого из уравнений (10) найдем параметр t:

Из уравнений (12) следует:

Аналогичным образом можно найти каноническое уравнение прямой L2:

Как найти точку пересечения прямых, заданных в каноническом виде описано выше.

4. Точка пересечения прямых, заданных в разных видах.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

где n={A1, B1} нормальный вектор прямой L1, q={m, p} − направляющий вектор прямой L2 .

Найдем точку пересечения прямых L1 и L2. Для этого подставим x=x2+mt, y=y2+pt в (13):

Найдем t:

Если числитель и знаменатель в (16) одновременно равны нулю, то любое значение t удовлетворяет уравнению (15), следовательно прямые L1 и L2 совпадают. Если знаменатель равен нулю а числитель отличен от нуля, то прямые L1 и L2 не пересекаются, т.е. они параллельны.

Пусть знаменатель не равен нулю. Подставляя полученное значение t в (14), получим координаты точки пересечения прямых L1 и L2.

5. Примеры нахождения точки пересечения прямых на плоскости.

Пример 1. Найти точку пересечения прямых L1 и L2:

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (17) и (18). Представим уравнения в матричном виде:

Решим систему линейных уравнений отностительно x, y. Для этого воспользуемся методом Гаусса. Получим:

Ответ. Точка пересечения прямых L1 и L2 имеет следующие координаты:

Пример 2. Найти точку пересечения прямых L1 и L2:

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (20) и (21). Представим уравнения в матричном виде:

Для решения (22) воспользуемся методом Гаусса. Получим:

где λ− произвольное действительное число.

Имеем больше одного решения. Это означает, что прямые L1 и L2 совпадают.

Ответ. Прямые L1 и L2 совпадают.

Пример 3. Найти точку пересечения прямых L1 и L2:

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (23) и (24). Представим уравнения в матричном виде:

Применив метод Гаусса получим, что система (25) несовместна. Следовательно эти прямые не пересекаются, т.е. они параллельны.

Ответ. Прямые L1 и L2 не имеют общую точку, т.е. они параллельны.

Пример 4. Найти точку пересечения прямых L1 и L2:

Приведем, сначала, уравнение прямой (26) к общему виду:

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (28) и (27). Представим уравнения в матричном виде:

Решим систему линейных уравнений отностительно x, y:

Ответ. Точка пересечения прямых L1 и L2 имеет следующие координаты:

A simple online Intersecting Lines Calculator to find the value of intersection points x and y using the given two expressions. Finding the intersection points using expressions would be useful in algebraic calculations. Finding intersection points can be used to draw venn diagrams and shapes. Use the below free online Intersection of Two Lines Calculator to find the intersection points (x,y) and the intersecting lines is shown in the graph.

Intersecting Lines Calculator

A simple online Intersecting Lines Calculator to find the value of intersection points x and y using the given two expressions. Finding the intersection points using expressions would be useful in algebraic calculations. Finding intersection points can be used to draw venn diagrams and shapes. Use the below free online Intersection of Two Lines Calculator to find the intersection points (x,y) and the intersecting lines is shown in the graph.

Code to add this calci to your website Expand embed code Minimize embed code

Example:

Intersection of Two Line Points for the expression 5x+3y+2 = 0 and 6x+4y+3 = 0.

Solution:

5x+3y+2 = 0 –> 1
6x+4y+3 = 0 –> 2
From (1) and (2)
= x : 0.4998 and y : -1.4997

Intersecting lines are those which intersect on a two-dimensional graph. They meet at only one point, with a set of x and y coordinates.

Пересечение прямых

Для разыскания точки пересечения прямых

[ А_{1} x + В_{1} y + С_{1} = 0 ]

и

[ А_{2} x + В_{2} y + С_{2} = 0 ]

надо решить систему уравнений

[

begin{cases}
A_{1} x + B_{1} y + C_{1} = 0 \
A_{1} x + B_{1} y + C_{1} = 0
end{cases}

]

Эта система, как правило, дает единственное решение, и мы получим искомую точку.

Исключение возможно лишь при равенстве отношений

[ frac{A_1}{A_2} = frac{B_1}{B_2} ]

т.е. в случае параллельности данных прямых.

Пересечение прямых, примеры

Пример 1.

Найти точки пересечения прямых

[

begin{cases}
y = 2x – 3 \
y = -3x + 2
end{cases}

]

Решая систему уравнений, находим

[ x = 1 qquad y = -1 ]

Прямые пересекаются в точке (1; -1).

Пример 2.

Прямые

[

begin{cases}
2x – 7y + 12 = 0 \
x – 3.5y + 10 = 0
end{cases}

]

параллельны и не совпадают, так как отношения 2:1 и (-7):(-3,5) равны между собой, но не равны отношению 12:10.

Данная система уравнений не имеет решения.

Пример 3.

Прямые

[

begin{cases}
3x + 2y – 6 = 0 \
6x + 4y – 12 = 0
end{cases}

]

совпадают, так как отношения 3:6, 2:4 и (-6):(-12) равны друг другу.

Второе уравнение получается из первого умножением на 2.

Данная система имеет бесчисленное множество решений.

Найти, вычислить пересечение прямых

Пересечение прямых

стр. 147

Добавить комментарий