Как найти точку пересечения графиков функций онлайн

Точки пересечения функций

Примеры кривых

Указанные выше примеры содержат также:

  • модуль или абсолютное значение: absolute(x) или |x|
  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
    арккотангенс acot(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x),
    гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
    гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
  • другие тригонометрические и гиперболические функции:
    секанс sec(x), косеканс csc(x), арксеканс asec(x),
    арккосеканс acsc(x), гиперболический секанс sech(x),
    гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
    гиперболический арккосеканс acsch(x)
  • функции округления:
    в меньшую сторону floor(x), в большую сторону ceiling(x)
  • знак числа:
    sign(x)
  • для теории вероятности:
    функция ошибок erf(x) (интеграл вероятности),
    функция Лапласа laplace(x)
  • Факториал от x:
    x! или factorial(x)
  • Гамма-функция gamma(x)
  • Функция Ламберта LambertW(x)
  • Тригонометрические интегралы: Si(x),
    Ci(x),
    Shi(x),
    Chi(x)

Правила ввода

Можно делать следующие операции

2*x
– умножение
3/x
– деление
x^2
– возведение в квадрат
x^3
– возведение в куб
x^5
– возведение в степень
x + 7
– сложение
x – 6
– вычитание
Действительные числа
вводить в виде 7.5, не 7,5

Постоянные

pi
– число Пи
e
– основание натурального логарифма
i
– комплексное число
oo
– символ бесконечности
bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • перехватывает:y=frac{x^2+x+1}{x}

  • перехватывает:f(x)=x^3

  • перехватывает:f(x)=ln (x-5)

  • перехватывает:f(x)=frac{1}{x^2}

  • перехватывает:y=frac{x}{x^2-6x+8}

  • перехватывает:f(x)=sqrt{x+3}

  • перехватывает:f(x)=cos(2x+5)

  • перехватывает:f(x)=sin(3x)

  • Показать больше

Описание

Шаг за шагом найти пересечения осей функций

function-intercepts-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • Functions

    A function basically relates an input to an output, there’s an input, a relationship and an output. For every input…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Данный калькулятор предназначен для определения точек пересечения графика функции с осями координат.
    В точке пересечения функции с осью Ox координата y всегда равна нулю, а в точке пересечения с осью Oy координата x=0.
    Для того чтобы найти точки пересечения графика функции с осью ординат (Oy), необходимо подставить в уравнения функции x=0 , тем самым, найти y. Аналогично, чтобы найти точки пересечения графика функции с осью абсцисс (Ox), необходимо подставить в уравнение функции y=0 и найти x.

    Нахождение координат точек пересечения функции с осями используется для анализа функции и построения ее графика.
    Для того чтобы получить ответ, введите функцию в ячейку. Основные примеры ввода функций для данного калькулятора указаны ниже.

    Для получения полного хода решения нажимаем в ответе Step-by-step.

    ×

    Пожалуйста напишите с чем связна такая низкая оценка:

    ×

    Для установки калькулятора на iPhone – просто добавьте страницу
    «На главный экран»

    Для установки калькулятора на Android – просто добавьте страницу
    «На главный экран»

    Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha, предназначен для решения задачи нахождения точек
    пересечения графика функции с осями координат.

    При проведении исследования функции, возникает задача нахождения точек пересечения этой функции с осями координат. Рассмотрим на конкретном примере алгоритм решения такой задачи. Для простоты будем работать с функцией одной переменной:

    График данной функции представлен на рисунке:

    график функции y=x^2-2*x-5

    Как следует из рисунка, наша функция пересекает ось

    в двух точках, а ось

    – в одной.

    Сначала найдём точки пересечения функции

    с осью
    . Сразу отметим, что в этих точках координата
    . Поэтому для их поиска, нам нужно
    решить уравнение:

    Это
    квадратное уравнение
    имеет два корня:

    Таким образом, мы нашли две точки пересечения нашей функции с осью абсцисс:

    и
    . Стоит отметить, что задача поиска пересечений функции с осью

    эквивалентна задаче нахождения
    нулей функции.

    Теперь найдём точку пересечения с осью ординат. В этой точке координата
    . Поэтому для их поиска, просто подставляем значение

    в нашу функцию:

    Таким образом, мы нашли точку пересечения нашей функции с осью ординат
    .

    Main Menu

    Undo

    x

    y

    z

    π

    7

    8

    9

    ×

    ÷

    Square

    Power

    Square Root

    e

    4

    5

    6

    +

    <

    >

    1

    2

    3

    =

    Backspace

    (

    )

    Absolute Value

    ,

    0

    .

    Left Arrow

    Right Arrow

    Enter

    Добавить комментарий