Как найти точку пересечения высот через координаты

Решение

Найдём уравнение прямой BC по двум точкам:

$displaystyle {frac{y-(-8)}{-4-(-8)}}$ = $displaystyle {frac{x-4}{-4-4}}$, или y = – $displaystyle {textstylefrac{1}{2}}$x – 6.

Тогда её угловой коэффициент k1 = – $ {frac{1}{2}}$. Если k2 — угловой коэффициент прямой, содержащей высоту AP, то k1 . k2 = – 1. Поэтому

k2 = – $displaystyle {frac{1}{k_{1}}}$ = 2.

Уравнение прямой, содержащей высоту AP треугольника ABC, найдём по точке A(5; – 1) и угловому коэффициенту k2 = 2:

y + 1 = 2(x – 5), или y = 2x – 11.

Найдём уравнение прямой AC по двум точкам:

$displaystyle {frac{y-(-1)}{-4-(-1)}}$ = $displaystyle {frac{x-5}{-4-5}}$, или y = $displaystyle {textstylefrac{1}{3}}$x$displaystyle {textstylefrac{8}{3}}$.

Тогда её угловой коэффициент k3 = $ {frac{1}{3}}$. Если k4 — угловой коэффициент прямой, содержащей высоту BQ, то k4 . k3 = – 1. Поэтому

k4 = – $displaystyle {frac{1}{k_{3}}}$ = – 3.

Уравнение прямой, содержащей высоту BQ треугольника ABC, найдём по точке B(4; – 8) и угловому коэффициенту k4 = – 3:

y + 8 = – 3(x – 4), или y = – 3x + 4.

Координаты точки H пересечения высот треугольника ABC найдём, решив систему уравнений, задающих прямые AP и BQ:

$displaystyle left{vphantom{ begin{array}{lll} y=2x-11\ y = -3x+4.\ end{array} }right.$$displaystyle begin{array}{lll} y=2x-11\ y = -3x+4.\ end{array}$

Получим: x = 3, y = – 5.


Ответ

(3; – 5).

Уравнение высоты треугольника

Как составить уравнение высоты треугольника по координатам его вершин?

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.

Следовательно, для составления уравнения высоты треугольника нужно:

  1. Найти уравнение стороны треугольника.
  2. Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.

Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).

Написать уравнения высот треугольника.

1) Составим уравнение стороны BC треугольника ABC.

Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:

Таким образом, уравнение прямой BC —

Угловой коэффициент прямой, перпендикулярной BC,

Значит, уравнение высоты, проведённой к стороне BC, имеет вид

Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:

Итак, уравнение высоты, проведённой к стороне BC:

2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):

Уравнение прямой AB:

Угловой коэффициент перпендикулярной ей прямой

Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):

Угловой коэффициент прямой, перпендикулярной AC,

Таким образом, уравнение перпендикулярной AC прямой имеет вид

Подставив в него координаты точки B(5;-3), найдём b:

Итак, уравнение высоты треугольника ABC, опущенной из вершины B:

Точка пересечения высот треугольника

Средняя оценка: 4.2

Всего получено оценок: 317.

Средняя оценка: 4.2

Всего получено оценок: 317.

Точка пересечения высот треугольника относится к одной из трех замечательных точек треугольника. Замечательными эти точки зовутся не за красоту, а за отношение к золотому сечению треугольника, которое характеризует данную фигуру.

Высота

Что такое высота? Высота это перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противоположную сторону треугольника (может получиться, что высота будет падать на продолжение стороны, как это бывает с тупоугольными треугольниками).

Рис. 1. Высота в треугольнике.

Точка пересечения высот

У любого треугольника есть три высоты, и они всегда пересекаются в одной точке. Эта точка является одним из 3 центров треугольника и зовется ортоцентром.

Еще со времен Древней Греции приставкой «орто» обозначали перпендикуляр. Ортогоналями звались перпендикулярные прямые.

Ортоцентр имеет три варианта расположения в зависимости от вида треугольника:

  • Внутри фигуры. В остроугольных треугольниках точка пересечения высот всегда находится внутри фигуры. Это обусловлено тем, что все высоты в таком треугольнике внутренние.
  • Совпадает с вершиной. Этот случай характерен для прямоугольных треугольников. В таких треугольниках две из трех высот будут совпадать со сторонами. Если быть точнее, то совпадающие стороны это катеты. Остается одна высота, которая будет опускаться из вершины при остром угле. Именно эта вершина и будет ортоцентром треугольника.
  • Вне фигуры. Внешнее расположение ортоцентра возможно только в тупоугольном треугольнике. Для того, чтобы получить ортоцентр такого треугольника, иногда потребуется продлить высоты до пересечения с внешней высотой. Почему?

Золотое сечение треугольника

Золотое сечение треугольника это маленький треугольник внутри фигуры, который определяется как пересечение трех центров треугольника.

Три центра треугольника это:

  • Точка пересечения биссектрис
  • Точка пересечения высот
  • Точка пересечения медиан.

Золотое сечение иногда может вырождаться в прямую или даже точку. В равнобедренном треугольнике точка пересечения высот и медиан совпадает, в результате для построения золотого сечения понадобится только 2 точки и золотое сечение выродится в отрезок.

О центрах треугольника существует целая онлайн энциклопедия. Список центров треугольника и свойств каждого из них был начат Карлом Кемберлингом в 1994 году. Онлайн ресурс пополняется все новыми и новыми данными по мере их открытия в высшей математике. В школьном курсе рассматривается только 3 центра треугольника.

В правильном треугольнике и вовсе каждая высота будет совпадать с соответствующей медианой, биссектрисой и высотой. Значит, все три центра треугольника совпадут, и золотым сечением треугольника будет – точка.

Обратите внимание, что нельзя составить уравнение точки пересечения высот треугольника. Можно составить только уравнение прямой. Например, составить два уравнения высот, затем приравнять их и найти координату точки пересечения.

Что мы узнали?

Мы узнали, в каких построениях участвует точка пересечения высот треугольника. Поговорили о случаях, когда эта точка совпадает с другими центрами треугольника, выяснили особенности расположения ортоцентра в разных видах треугольников.

Даны точки A(5; – 1), B(4; – 8), C(- 4; – 4). Найдите координаты точки пересечения высот треугольника ABC.

Найдём уравнение прямой BC по двум точкам:

= , или y = – x – 6.

Тогда её угловой коэффициент k1 = – . Если k2 — угловой коэффициент прямой, содержащей высоту AP, то k1 . k2 = – 1. Поэтому

k2 = – = 2.

Уравнение прямой, содержащей высоту AP треугольника ABC, найдём по точке A(5; – 1) и угловому коэффициенту k2 = 2:

Найдём уравнение прямой AC по двум точкам:

= , или y = x – .

Тогда её угловой коэффициент k3 = . Если k4 — угловой коэффициент прямой, содержащей высоту BQ, то k4 . k3 = – 1. Поэтому

k4 = – = – 3.

Уравнение прямой, содержащей высоту BQ треугольника ABC, найдём по точке B(4; – 8) и угловому коэффициенту k4 = – 3:

Координаты точки H пересечения высот треугольника ABC найдём, решив систему уравнений, задающих прямые AP и BQ:

Ответ

[spoiler title=”источники:”]

http://obrazovaka.ru/geometriya/tochka-peresecheniya-vysot-treugolnika.html

http://gitun.com/q/18151

[/spoiler]

Чтобы найти ортоцентр треугольника, можно воспользоваться калькулятором, где следует внести координаты. В автоматическом режиме с помощью формул произведется расчет. Можно также все расчеты произвести самостоятельно.

Например, имеются следующие данные точек:
А – 4,3;
В – 0,5;
С – 3,-6.

Первое , что необходимо найти наклон сторон, который обозначается – m , используется формула :

формула Ортоцентр — точка пересечения высот треугольника

Из этого следует:
формула Ортоцентр — точка пересечения высот треугольника

Далее необходимо найти наклон перпендикулярных сторон, для этого используется формула:

формула Ортоцентр — точка пересечения высот треугольника

Имеем:
формула Ортоцентр — точка пересечения высот треугольника
Когда найден наклон перпендикуляров, можно использовать уравнение линий, например, для линии AD, где точка 4,3, а наклон равен 3/11:

y-y1 = m(x-x1) y-3 = 3/11(x-4)

С помощью упрощения, имеем: 3х – 11у=-21
Для линии ВЕ, где точка 0,5, а наклон -1/9, имеем формула Ортоцентр — точка пересечения высот треугольника

Упрощение дает: х+9у=45.
И последние линии CF, где точка 3, -6, а наклон 2, имеем уравнение y+6 = 2(x-3).
И упрощение, 2x — y = 12.
Если решить два из трех уравнений будут найдены значения х и у. Для данного примера:
Значение х = 8,05263;
Значение у = 4,10526.
Которые в данном случае являются координатами искомого Ортоцентра.

Как найти координаты пересечения высот в треугольнике

Линия, проведенная из вершины треугольника перпендикулярно к противоположной стороне, называется его высотой. Зная координаты вершин треугольника, можно найти его ортоцентр — точку пересечения высот.

Как найти координаты пересечения высот в треугольнике

Инструкция

Рассмотрите треугольник с вершинами A, B, C, координаты которых, соответственно (xa, ya), (xb, yb), (xc, yc). Проведите высоты из вершин треугольника и обозначьте точку пересечения высот как точку О с координатами (x, y), которые и необходимо найти.

Составьте уравнение сторон треугольника. Сторона AB выражается уравнением (x−xa)/(xb−xa)=(y−ya)/(yb−ya). Приведите уравнение к виду y=k×x+b: x×yb−x×ya−xa×yb+xa×ya=y×xb−y×xa−ya×xb+ya×xa, что равносильно y=((yb−ya)/(xb−xa))×x+xa×(ya−yb)/(xb−xa)+ya. Обозначьте угловой коэффициент k1=(yb−ya)/(xb−xa). Аналогичным образом найдите уравнение любой другой стороны треугольника. Сторона AC задается формулой (x−xc)/(xa−xc)=(y−yc)/(ya−yc), y=((ya−yc)/(xa−xc))×x+xc×(ya−yc)/(xc−xa)+ya. Угловой коэффициент k2=(yc−yb)/(xc−xb).

Запишите уранение высот треугольника, проведенных из вершин B и C. Так как высота, выходящая из вершины B, будет перпендикулярна стороне AС, то ее уравнение будет иметь вид y−ya=(-1/k2)×(x−xa). А высота, проходящая перпендикулярно стороне AB и выходящая из точки C, будет выражаться в виде y−yc=(-1/k1)×(x−xc).

Найдите точку пересечения двух высот треугольника, решив систему из двух уравнений с двумя неизвестными: y−ya=(-1/k2)×(x−xa) и y−yb=(-1/k1)×(x−xb). Выразите переменную y из обоих уравнений, приравняйте эти выражения и решите уравнение относительно x. А затем подставьте полученное значение x в одно из уравнений и найдите y.

Рассмотрите для наилучшего понимания вопроса пример. Пусть дан треугольник с вершинами A (-3, 3), B (5, -1) и C (5, 5). Составьте уравнение сторон треугольника. Сторона AB выражается по формуле (x+3)/(5+3)=(y−3)/(-1−3) или y=(-1/2)×x+3/2, то есть k1=-1/2. Сторона AC задается уравнением (x+3)/(5+3)=(y−3)/(5−3), то есть y=(1/4)×x+15/4. Угловой коэффициент k2=1/4. Уравнение высоты, выходящей из вершины C: y−5=2×(x−5) или y=2×x−5, а высоты, выходящей из вершины B: y−5=-4×(x+1), что есть y=-4×x+19. Решите систему из этих двух уравнений. Получается, что ортоцентр имеет координаты (4, 3).

Источники:

  • Основные линии треугольника
  • найти координаты точки на стороне треугольника

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Раздел V.
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

И В ПРОСТРАНСТВЕ

В раздел включены
задачи, которые рассматриваются в теме
«Аналитическая геометрия на плоскости
и в пространстве»: составление различных
уравнений прямых на плоскости и в
пространстве; определение взаимного
расположения прямых на плоскости,
прямых, прямой и плоскости, плоскостей
в пространстве; изображение кривых
второго порядка. Необходимо отметить,
что в данном разделе представлены задачи
экономического содержания, при решении
которых применяются сведения из
аналитической геометрии на плоскости.

При решении задач
аналитической геометрии целесообразно
воспользоваться учебными пособиями
следующих авторов: Д.В. Клетеника, Н. Ш.
Кремера, Д.Т. Письменного В.И. Малыхина,
т.к. в данной литературе рассматривается
более широкий круг задач, которые можно
использовать для самостоятельной
подготовки по данной теме. Применение
анали­тической геометрии к решению
экономических задач изложено в учебных
изда­ниях М.С. Красса и В.И. Ермакова.

Задача 5.1. Даны
координаты вершин треугольника
АВС.
Необходимо

а) написать
уравнения сторон треугольника;

б) написать
уравнение высоты треугольника проведенной
из вершины
С
к стороне
АВ
и найти ее длину;

в) написать
уравнение медианы треугольника,
проведенной из вершины
В
к стороне
АС;

г) найти углы
треугольника и установить его вид
(прямоугольный, остроугольный,
тупоугольный);

д) найти длины
сторон треугольника и определить его
тип (разносторонний, равнобедренный,
равносторонний);

е) найти координаты
центра тяжести (точка пересечения
медиан) треугольника
АВС;

ж) найти координаты
ортоцентра (точка пересечения высот)
треугольника
АВС.

К каждому из
пунктов а) – в) решения сделать рисунки
в системе координат. На рисунках
обозначить соответствующие пунктам
задачи линии и точки.

Данные к условию
задачи, соответствующие вариантам:

1)
;

2)
;

3)
;

7)
;

8)
;

9)
;

10)
;

11)
;

12)
;

13)
;

14)
;

15)
;

16)
;

17)
;

18)

;

4)
;

5)
;

6)
;

19)
;

20)
;

21)
;

22)
;

23)
;

24)
;

25)
;

26)
;

27)
;

28)
;

29)
;

30).

Пример 5.1

Даны координаты
вершин треугольника
АВС:

.
Необходимо а) написать уравнения сторон
треугольника; б) написать уравнение
высоты треугольника проведенной из
вершины
С
к стороне
АВ
и найти ее длину; в) написать уравнение
медианы треугольника, проведенной из
вершины
В
к стороне
АС;
г) найти длины сторон треугольника и
определить его тип (разносторонний,
равнобедренный, равносторонний); д)
найти углы треугольника и установить
его вид (прямоугольный, остроугольный,
тупоугольный); е) найти координаты центра
тяжести (точка пересечения медиан)
треугольника
АВС;
ж) найти координаты ортоцентра (точка
пересечения высот) треугольника
АВС.

Решение

а)
Для каждой стороны треугольника известны
координаты двух точек, которые лежат
на искомых линиях, значит уравнения
сторон треугольника – уравнения прямых,
проходящих через две заданные точки

,

(5.1)

где

и

соответствующие координаты точек.

Таким образом,
подставляя в формулу (5.1) координаты
соответствующих прямым точек получаем

,
,
,

откуда после
преобразований записываем уравнения
сторон

,

,

.

На рис. 7 изобразим
соответствующие сторонам треугольника

прямые.

Ответ:

,
,
.

Рис. 7

б)
Пусть

– высота, проведенная из вершины

к стороне
.
Поскольку

проходит через точку

перпендикулярно вектору
,
то составим уравнение прямой по следующей
формуле

,

(5.2)

где

– координаты вектора перпендикулярного
искомой прямой,

– координаты точки, принадлежащей этой
прямой. Найдем координаты вектора,
перпендикулярного прямой
,
и подставим в формулу (5.2)

,
,

,

,

.

Найдем длину высоты
CH
как расстояние от точки

до прямой

,

(5.3)

где

– уравнение прямой
,

– координаты точки
.

В предыдущем пункте
было найдено

.

Подставив данные
в формулу (5.3), получим

,

На рис. 8 изобразим
треугольник и найденную высоту СН.

Ответ:

.

Рис.
8

в)
медиана

треугольника

делит сторону

на две равные части, т.е. точка

является серединой отрезка
.
Исходя из этого, можно найти координаты

точки

,
,

(5.4)

где

и

– координаты соответственно точек

и
,
подставив которые в формулы (5.4), получим

;
.

Уравнение медианы

треугольника

составим как уравнение прямой, проходящей
через точки

и

по формуле (5.1)

,

.

Ответ:

(рис. 9).

Рис.
9

г)
Длины сторон треугольника найдем как
длины соответствующих векторов, т.е.

,
,
.

Стороны

и

треугольника

равны, значит, треугольник является
равнобедренным с основанием
.

Ответ:
треугольник

равнобедренный с основанием
;

,
.

д)
Углы треугольника

найдем как углы между векторами,
исходящими из соответствующих вершин
данного треугольника, т.е.

,
,
.

Поскольку треугольник
равнобедренный с основанием
,
то

,

Углы между векторами
вычислим по формуле (4.4), для которой
потребуются скалярные произведения
векторов
,
.

Найдем координаты
и модули векторов, необходимых для
вычисления углов

,
;

,
,
.

Подставляя
найденные данные в формулу (4.4), получим

,

,

Поскольку значения
косинусов всех найденных углов
положительны, то треугольник

является остроугольным.

Ответ:
треугольник

остроугольный;

,
,
.

е)
Пусть

– центр тяжести треугольника
,
тогда координаты

точки

можно найти, по формулам (5.5)

,
,

(5.5)

где
,

и

– координаты соответственно точек
,

и
,
следовательно,

,
.

Ответ:

– центр тяжести треугольника
.

ж) Пусть

– ортоцентр треугольника
.
Найдем координаты точки

как координаты точки пересечения высот
треугольника. Уравнение высоты

было найдено в пункте б).
Найдем уравнение высоты
:

,
,

,

.

Поскольку
,
то решение системы

является координатами
точки
,
откуда находим
.

Ответ:

– ортоцентр треугольника
.

Задача 5.2.
Фиксированные издержки на предприятии
при выпуске некоторой продукции
составляют
F
руб. в месяц, переменные издержки –
V0
руб. за
единицу продукции, при этом выручка
составляет
R0
руб. за единицу изготовленной продукции.
Составить функцию прибыли
P(q)
(
q
– количество произведенной продукции);
построить ее график и определить точку
безубыточности.

Данные к условию
задачи, соответствующие вариантам:

1)
;

2)
;

3)
;

4)
;

5)
;

6)
;

7)
;

8)
;

9)
;

10)
;

11)
;

12)
;

13)
;

14)
;

15)
;

16)
;

17)
;

18)
;

19)
;

20)
;

21)
;

22)
;

23)
;

24)
;

25)
;

26)
;

27)
;

28)
;

29)
;

30)
.

Пример 5.2

Фиксированные
издержки на предприятии при выпуске
некоторой продукции составляют


руб. в месяц, переменные издержки –


руб. за единицу
продукции, при этом выручка составляет


руб. за единицу
изготовленной продукции. Составить
функцию прибыли
P(q)
(
q
– количество произведенной продукции);
построить ее график и определить точку
безубыточности.

Решение

Вычислим совокупные
издержки на производстве при выпуске
q
единиц некоторой продукции

.

Если будет продано
q
единиц продукции, то совокупный доход
составит

.

Исходя из полученных
функций совокупного дохода и совокупных
издержек, найдем функцию прибыли

,

,

.

Точка
безубыточности – точка, в которой
прибыль равна нулю, или точка, в которой
совокупные издержки равны совокупному
доходу

,

,

откуда находим


– точка безубыточности.

Для построения
графика (рис. 10) функции прибыли найдем
еще одну точку

.

Рис. 10

Ответ:
функция прибыли
,
точка безубыточности
.

Задача 5.3. Законы
спроса и предложения на некоторый товар
соответственно определяются уравнениями
p=pD(q),
p=pS(q),
где
p
– цена на товар,
q
– количество товара. Предполагается,
что спрос определяется только ценой
товара на рынке
pС,
а предложение – только ценой
pS,
получаемой поставщиками. Необходимо

а) определить
точку рыночного равновесия;

б) точку равновесия
после введения налога, равного
t.
Определить увеличение цены и уменьшение
равновесного объема продаж;

в) найти субсидию
s,
которая приведет к увеличению объема
продаж на
q0
ед. относительно изначального
(определенного в пункте а));

г) найти новую
точку равновесия и доход правительства
при введении налога, пропорционального
цене и равного
N%;

д) определить,
сколько денег будет израсходовано
правительством на скупку излишка при
установлении минимальной цены, равной
p0.

К каждому пункту
решения сделать рисунок в системе
координат. На рисунке обозначить
соответствующие пункту задачи линии и
точки.

Данные к условию
задачи, соответствующие вариантам:

1)
;

2)
;

3)
;

4)
;

5)
;

6)
;

7)
;

8)
;

9)
;

10)
;

11)
;

12)
;

13)
;

14)
;

15)
;

16)
;

17)
;

18)
;

19)
;

20)
;

21)
;

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий