Как найти точку поворота отрезка

Поворот плоской фигуры вокруг ее горизонтали. Для определения формы и размеров плоской фигуры можно ее повернуть вокруг принадлежащей ей горизонтали так, чтобы в результате вращения фигура расположилась параллельно плоскости π1.

Рассмотрим сначала поворот точки (рис. 226). Точка В вращается вокруг некоторой горизонтально расположенной оси ON”, описывая дугу окружности, лежащую в пл. α. Эта плоскость перпендикулярна к оси вращения и, следовательно, является горизонтально-проецирующей; поэтому горизонтальная проекция окружности, описываемой точкой В, должна находиться на α’.

Если радиус ОВ займет положение, параллельное пл. π1 то проекция О’B‘ окажется равной ОВ, т. е. равной натуральной величине радиуса ОВ.

Теперь рассмотрим рис. 227. На нем показан поворот треугольника АВС. В качестве оси вращения взята горизонталь AD. Точка А, расположенная на оси

Рис 226-228.Вращение точки, отрезка прямой, плоскости вокруг оси, параллельной плоскости проекций, и вокруг следа плоскости

1) Получающаяся при этом проекция куба на пл. π2 (рис. 225) совпадает с изображением куба в прямоугольной изометрической проекции, изучаемой в курсе черчения средней школы.

вращения, останется на месте. Следовательно, для изображения горизонтальной проекции треугольника после поворота надо найти положение проекций других двух его вершин. Опуская из точки В’ перпендикуляр на A’D’, находим горизонтальную проекцию центра вращения — точку О’ и горизонтальную проекцию радиуса вращения точки В — отрезок О’В’, а затем фронтальную проекцию центра вращения — точку О” и фронтальную проекцию радиуса вращения точки В — отрезок 0″В”. Теперь надо определить натуральную величину радиуса вращения точки В. Для этого применен способ, указанный в § 13, т. е. построение прямоугольного треугольника. По катетам О’В’ и В’В* = В”1″ строим прямоугольный треугольник О’В’В*, гипотенуза его равна радиусу вращения точки В.

Теперь можно найти положение точки B‘, а затем точки С‘, причем не определять радиус вращения точки С, а найти положение точки С‘ в пересечении двух прямых, из которых одна является перпендикуляром, проведенным из точки С’ к прямой A’D’, а другая проходит через найденную точку B‘ и точку D’ (горю зонтальную проекцию точки D, принадлежащей стороне ВС и расположенной на оси вращения).

Проекция А’BС‘ выражает натуральную величину ΔАВС, так как после поворота плоскость треугольника параллельна пл. π1. Фронтальная же проекция треугольника совпадает с фронтальной проекцией горизонтали, т. е. представляет собой прямую линию.

На рис. 227 дано построение для случая, когда горизонталь проведена вне проекций треугольника. Это позволяет избежать наложения проекций одной на другую, но чертеж занимает большую площадь.

Если требуется повернуть плоскую фигуру до положения параллельного пл. π2, то за ось вращения надо выбрать фронталь.

Обратим внимание на то, что в построении, показанном на рис. 226, фронтальная проекция радиуса вращения точки В не участвует. Очевидно, поняв сущность построения, можно не строить этой проекции. Пример дан на рис. 228, где показан поворот плоскости, заданной точкой К и прямой АВ, до положения, параллельного пл. π1. Поворот совершен вокруг горизонтали KD. Горизонталь проведена через точку К, которая, следовательно, останется «неподвижной». Остается повернуть прямую АВ вокруг KD, точнее, повернуть, например, только точку А, так как точка D на прямой АВ также «неподвижна»: она принадлежит оси вращения. Проведя А’О’⊥ K’D’, т. е. наметив положение горизонтального следа той горизонтально-проецирующей плоскости, в которой находится и поворачивается точка А, получаем точку О’ — горизонтальную проекцию центра вращения точки А и О’А’ — горизонтальную проекцию радиуса вращения точки А. Теперь находим натуральную величину радиуса вращения RA как гипотенузу треугольника О’А’А*, в котором катет А’А*_= А”С”. Найдя точку А’ — горизонтальную проекцию точки А после поворота, проводим А’В’ — горизонтальную проекцию прямой АВ после поворота, пользуясь точкой D’. Итак, мы обошлись без фронтальных проекций центра вращения и радиуса вращения.

Поворот плоскости вокруг ее следа до совмещения с соответствующей плоскостью проекций 1). Если плоскость вращать вокруг ее следа до совмещения с плоскостью проекций, в которой расположен этот след, то отрезки линий и фигуры, расположенные в плоскости, изобразятся без искажения. Очевидно, это построение аналогично по своему содержанию повороту плоскости вокруг ее горизонтали или фронтали до параллельности соответствующей плоскости проекций: следы плоскости можно рассматривать — горизонтальный след как «нулевую» горизонталь плоскости, фронтальный — как «нулевую» фронталь.

На рис. 229 показано совмещение плоскости общего положения α с плоскостью π1 причем поворот произведен вокруг h’ в направлении от плоскости π2 к зрителю.

В положении совмещения с пл. π1 на пл. α окажутся две пересекающиеся прямые — след h’ и прямая f которая представляет собой след f”, совмещенный с пл. π1.

1) Этот случай известен также под названием «способ совмещения».

Рис 229.Вращение точки, отрезка прямой, плоскости вокруг оси, параллельной плоскости проекций, и вокруг следа плоскости

След h’ как ось вращениπ1 не меняет своего положения; точка пересечения следов также не меняет своего положения, а потому, если бы требовалось указать совмещенное положение следа f” то достаточно было бы найти еще одну точку этого следа (кроме точки Xα) в положении совмещения в пл. π1. Найдем совмещенное положение какой-нибудь точки N, лежащей на следе f”. Эта точка опишет дугу окружности в пл. β, перпендикулярной к оси вращения; центр этой дуги лежит в точке М пересечения пл. β со следом h’. Описывая из точки М дугу радиусом MN в пл. β мы получаем в пересечении этой дуги с β’ точку N’ на пл. π1. Проведя через Xα, и N‘ прямую, получим f. Так как отрезок XαN не изменяет своей величины при вращении плоскости, то, очевидно, точку N‘ можно получить в пересечении β’ с дугой, описанной в пл. π1, из Хα радиусом XαN.

На чертеже (рис. 230) на следе f” выбрана произвольная точка N (она совпадает со своей проекцией N”); через ее проекцию N’ проведена прямая N’M, перпендикулярная к оси вращения — следу h’. На этой прямой должна лежать точка N после совмещения с пл. π1 на расстоянии от точки М, равном радиусу вращения точки N, или на расстоянии XαN” от точки Хα. Длину радиуса вращения можно определить как гипотенузу прямоугольного треугольника с катетами MN’ и N’N* (N’N* = N”N’). Проводя из точки М дугу радиуса MN* или из точки Xα дугу радиуса ХαN”, получаем на прямой N’M совмещенное с пл. π1 положение точки N — точку N’. Проведя через точки Хα и N‘ прямую, получим совмещенное положение следа f” – прямую f’.

Рис 230-231.Вращение точки, отрезка прямой, плоскости вокруг оси, параллельной плоскости проекций, и вокруг следа плоскости

Вернемся к рис. 229 и рассмотрим на нем совмещение точки С с пл. π1

Нахождение совмещенного положения точки С с пл. π1 показано на рис. 231 слева. Через точку С’ проведена прямая С’М, перпендикулярная к h’. Радиус вращения МС* найден как гипотенуза прямоугольного треугольника, у которого один катет СМ, а другой катет С’С* = С”1. Радиусом МС* проводим из точки М дугу и засекаем на продолжении прямой СМ точку С‘ — положение точки С в пл. π1.

Это построение можно выполнить и так, как показано на рис. 231 справа. Установив положение точки С в пл. α при помощи фронтали и проведя прямую С’М перпендикулярно к h’, засекаем эту прямую из точки L’, как из центра, дугой, радиус которой равен отрезку С”L”, т. е. натуральной величине отрезка CL в пл. α. В совмещении эта величина сохраняется: C‘L’ = СL

Если в плоскости дан отрезок прямой, то, найдя совмещенное положение концов этого отрезка, мы получаем натуральную величину отрезка.

Как известно, каждая горизонталь, взятая в пл. α, располагается параллельно h’, а фронталь — параллельно f” поэтому, если придется находить совмещенное положение горизонтали или фронтали, достаточно будет найти совмещенное положение их следа, через который и провести прямую, параллельную соответственно h’ или f (если пл. α совмещена с пл. π1)

Этим мы воспользуемся для обратного построения. Пусть задана точка С‘ — совмещенное с пл. π1 положение точки С; требуется найти проекции точки С, если она должна_лежать в пл. α, заданной следами (см. также рис. 229).

Когда точку С‘ «поднимают в пространство», то горизонтальная ее проекция — точка С’ — перемещается по прямой СN’ (рис. 232), перпендикулярной к h’ т. е.

Рис 232-233.Вращение точки, отрезка прямой, плоскости вокруг оси, параллельной плоскости проекций, и вокруг следа плоскости

по следу β’ плоскости вращения β. Точка С в пространстве должна лежать на линии пересечения плоскости α с плоскостью вращения (рис. 229) на расстоянии МС‘ от точки М.

Построим на пл. π1 прямоугольный треугольник MN’N*, у которого сторона N’N* = N”N’ (рис. 232) и который, следовательно, равен треугольнику MN’N” в пространстве.

Откладывая на гипотенузе MN* от точки М отрезок МС‘ (радиус вращения), получаем точку С*. Проведя через нее прямую, перпендикулярную к MN’, получим точку С’ — искомое положение горизонтальной проекции точки С.

Точка С” должна находиться на перпендикуляре, проведенном из точки С’ к оси х на расстоянии С”1, равном С’С*.

Если надо «поднять в пространство» отрезок прямой линии, то следует в общем случае поднять две его точки так, как это только что было указано, или использовать так называемую «неподвижную» точку. Это показано на рис. 233, где надо было «поднять в пространство» (т. е. на пл. α) отрезок АВ, заданный в совмещенном с пл. положении (AB‘). Построение несколько усложнено тем, что точка пересечения следов f” и h’ считается недоступной.

Рис 234.Вращение точки, отрезка прямой, плоскости вокруг оси, параллельной плоскости проекций, и вокруг следа плоскости

Построена вспомогательная пл. β||α, и найден след f совмещении с пл. π1. Так как β||α то f определяет направление фронталей как пл. β, так и пл. α в совмещенном с пл. π1 положении. Поэтому, проведя B‘N’||f, получаем в совмещении с пл. π1 фронталь пл. α, на которой расположена в пространстве точка В. Построив проекции этой фронтали, находим на них проекции В’ и В”. Если же теперь продолжить прямую AB‘ до пересечения в точке М’ со следом h’, то на прямой, проходящей через эту «неподвижную» точку М’ и через построенную проекцию В’, расположится горизонтальная проекция А’В’. Проекция А”В” получится на прямой, проходящей через точки М” и В”.

Нами рассмотрено совмещение плоскости с горизонтальной плоскостью проекций, причем вращение плоскости производилось вокруг горизонтального следа. Если требуется совместить ее с фронтальной плоскостью проекций, то следует вращать плоскость вокруг ее фронтального следа.

Если горизонтально-проецирующую плоскость вращать вокруг ее фронтального следа до совмещения с пл. π2, то горизонтальный след плоскости после Совмещения расположится на оси проекций. Также, если фронтально-проецирующую плоскость вращать вокруг ее горизонтального следа до совмещения с пл. π1 то фронтальный след плоскости расположится на оси проекций.

На рис. 234 изображена плоскость с тупым углом между следами f” и h’ в совмещении с пл. π1 при «вращении на зрителя» и при вращении в обратном направлении.

Вопросы к §§ 36-37

  1. Можно ли показать на чертеже поворот, например, прямой вокруг оси, перпендикулярной к пл. π1, или пл. π2, не изображая самой оси? На чем основан такой прием?
  2. Какое название встречается для вращения без изображения оси?
  3. Как располагается плоскость вращения точки, если ось вращения последней лишь параллельна пл. π1 или пл. π2, но не перпендикулярна ни к π1 ни к π2? Почему при этом приходится определять натуральную величину радиуса вращения?
  4. Что служит признаком достижения горизонтального положения плоскости, заданной горизонталью и точкой, при повороте вокруг этой горизонтали и где получается фронтальная проекция точки после поворота?
  5. Что понимается под названием «способ совмещения»?
  6. Что понимается под названием «подъем в пространство»?

Цели урока:

Образовательные

  • ввести понятие поворота и доказать, что поворот
    есть движение;
  • рассмотреть поворот отрезка, в зависимости от
    центра поворота (центр поворота лежит вне
    отрезка, на отрезке и является одним из концов
    отрезка);
  • научить построению отрезка при повороте его на
    данный угол;
  • проверить усвоение материала, изученного на
    предыдущих уроках и материала, пройденного на
    этом уроке.

Развивающие

  • развивать умение анализировать условие задачи,
    строить логическую цепочку при решении задач,
    обоснованно делать выводы;
  • развивать мыслительный процесс, познавательный
    интерес, математическую речь учащихся;

Воспитательные

  • воспитывать внимательность, наблюдательность,
    положительное отношение к обучению.

Содержание темы: урок по геометрии
разработан для учащихся 9 класса.

Тип урока: урок изучения нового
материала и промежуточного контроля усвоения
учащимися пройденного на этом уроке и изученного
ранее материала.

Организационные формы общения: коллективная,
индивидуальная, фронтальная, в парах.

Структура занятия:

  1. Мотивационная беседа с учащимися с последующей
    постановкой целей;
  2. Проверка домашнего задания;
  3. Актуализация опорных знаний;
  4. Обогащение знаний;
  5. Закрепление изученного материала;
  6. Проверка усвоения изученного материала
    (тестирование с последующей взаимопроверкой);
  7. Подведение итога занятия (рефлексия);
  8. Домашнее задание.

 Оформление: мультимедийный
проектор, экран, ноутбук, компьютерная
презентация, сигнальные карточки.

Мотивационная беседа.

Без движения — жизнь только
летаргический сон.

Жан Жак Руссо

I. Сообщение темы, целей и хода урока.
(СЛАЙД 2)

– Ребята, Вы знаете какую важную роль имеет
движение в жизни человека, общества, науки.
Большую роль играет движение и в математике:
преобразование графиков, отображение точек,
фигур, плоскостей – всё это движение. На
предыдущих уроках мы с Вами рассмотрели
несколько видов движения. Сегодня мы
познакомимся ещё с одним видом движения:
поворотом. Тема урока: поворот.

И наш урок тоже является примером движения,
только движения не с физической точки зрения, а
движением в умственном развитии, познании нового
и приобретения новых знаний. В течение всего
урока Вы будете выполнять различные задачи,
тесты. Поэтому будьте активны, продвигайтесь в
своих знаниях вперёд на протяжении всего урока и
улучшайте свои результаты от одного этапа к
другому!

В течение всего урока, как мою речь, так и вашу
будет сопровождать презентация, которая поможет
проверить правильность выполнения Вами домашней
работы, предложенных тестов и самостоятельно
решённых задач.

II. Проверка домашнего задания.

С помощью СЛАЙДОВ 3-5 проверить решение № 1165.

III. Актуализация опорных знаний.

Тест №1. (СЛАЙДЫ 6-13)

Приложение 1

После выполнения теста ребята обмениваются
тетрадями и выполняют взаимопроверку.

IV. Изучение нового материала.
(обогащение знаний)

(СЛАЙД 14) Отметим на плоскости точку О
(неподвижная точка), и зададим угол a – угол
поворота. Поворотом плоскости вокруг точки О на
угол a называется отображение плоскости на
себя, при котором каждая точка M отображается в
такую точку M1, что OM =OM1 и угол MOM1
= a.

(СЛАЙД 15) При этом точка O остаётся на месте, т.е.
отображается сама в себя, а все остальные точки
поворачиваются вокруг точки O в одном и том же
направлении на угол a по часовой стрелки или
против часовой стрелки.

(СЛАЙД 16) Точка О называется центром поворота, a
– угол поворота. Обозначается Роa.

(СЛАЙД 17) Если поворот выполняется по часовой
стрелке, то угол поворота a считается
отрицательным. Если поворот выполняется против
часовой стрелки, то угол поворота –
положительный.

– Ребята, давайте вспомним понятие движения. Как
Вы думаете, является ли поворот движением?
(высказывают предположения)

– Поворот – является движением, т.е.
отображением плоскости на себя. Докажем это.

Рис.1

(СЛАЙД 18 или СЛАЙД 19)

(Доказательство может выполнить сильный ученик
по СЛАЙДУ 18. В этом случае можно сразу после
доказательства перейти к СЛАЙДУ 20.
Доказательство может выполнить учитель вместе с
классом по СЛАЙДУ 19, на котором отображаются
этапы доказательства.)

V. Закрепление изученного материала.

Задание. Построить точку M1,
которая получается из точки M поворотом на угол 60o.
Поэтапно с помощью слайда 20 прорабатывается
построение точки M1.

(СЛАЙД 20)

– Какие инструменты нам понадобятся для того,
чтобы выполнить поворот? (линейка, циркуль,
транспортир)

– Ребята, что сначала нужно отметить? (точку M и
центр поворота – точку O)

– Как задаём центр поворота? Отмечаем в
определённом месте? (нет, произвольно)

– Как будем выполнять поворот по часовой или
против часовой стрелки? Почему? (против, т.к. угол
положительный)

– Что нужно построить, чтобы отложить угол 60o?
(луч OM)

– Как найти на второй стороне угла точку M1?
(с помощью циркуля отложить отрезок OM1=OM)

– Рассмотрим, как выполняется поворот отрезка в
зависимости от расположения центра поворота.

– Рассмотрим случай, когда центр поворота лежит
вне отрезка. Решим № 1166 (а). (Если класс сильный, то
можно вместе с детьми составить план решения
задачи, дать задание решить № 1166 (а)
самостоятельно. Решение проверить с помощью
СЛАЙДА 21. Если ребята затрудняются с выполнением
задания, то решать коллективно, опираясь на СЛАЙД
21)

Работа в парах.

Задание. Построить фигуру, которая
получится при повороте отрезка AB на угол – 100o
вокруг точки А.

(наводящие вопросы)

– Какая точка является центром поворота? Что
можно о ней сказать? (это один из концов отрезка –
точка А, она будет неподвижной, оставаться на
месте)

– Как будем выполнять поворот по часовой
стрелки или против часовой? (по часовой, т.к. угол
отрицательный)

– Составьте план решения задачи.

Задание выполняют по парам. Проверяют решение с
помощью СЛАЙДА 22.

Индивидуальная работа.

Задание. Построить фигуру, в которую
переходит отрезок AB при повороте на угол – 100o
вокруг точки О – середины отрезка AB.

– Составьте план решения задачи. Задание
выполняют самостоятельно, решение проверяем с
помощью СЛАЙДА 23.

– Сегодня на уроке мы рассмотрели поворот
отрезка в зависимости от расположения центра
поворота. На следующих уроках мы рассмотрим
повороты других фигур. (продемонстрировать
СЛАЙДЫ 24-25)

VI. Проверка усвоения изученного материала.

Тест №2. (СЛАЙДЫ 26-30)

Приложение 2

Самопроверка.

VII. Подведение итога урока. (рефлексия)

– Ребята, давайте выделим тех, кто был лучшим на
каждом этапе. (подводится итог, выставляются
оценки)

– Поднимите руки, кому понравился урок.
Отметьте, что интересного было на уроке?

VII. Домашнее задание.

  • № 1166 (б), № 1167 – для тех, кто получил оценку “3”.
  • № 1167 (рассмотреть три случая расположения
    центра поворота: центр – вершина А, центр
    расположен вне треугольника, центр лежит на
    стороне АВ треугольника) – для тех, кто получил
    оценку “4” и “5”.

Содержание:

Геометрические преобразования:

В этой лекции вы узнаете, что такое преобразование фигуры. Ознакомитесь с такими видами преобразований, как параллельный перенос, центральная симметрия, осевая симметрия, поворот, гомотетия, подобие.

Вы научитесь применять свойства преобразований при решении задач и доказательстве теорем.

Движение (перемещение) фигуры. Параллельный перенос

Пример:

На рисунке 17.1 изображены отрезок Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Мы указали правило, с помощью которого каждой точке Геометрические преобразования в геометрии с примерами решения отрезка Геометрические преобразования в геометрии с примерами решения поставлена в соответствие единственная точка Геометрические преобразования в геометрии с примерами решения отрезка Геометрические преобразования в геометрии с примерами решения В этом случае говорят, что отрезок Геометрические преобразования в геометрии с примерами решенияполучен в результате преобразования отрезка Геометрические преобразования в геометрии с примерами решения

Пример:

На рисунке 17.2 изображены полуокружность Геометрические преобразования в геометрии с примерами решения и прямая Геометрические преобразования в геометрии с примерами решения параллельная диаметру Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения полуокружности поставим в соответствие точку Геометрические преобразования в геометрии с примерами решения прямой а так, чтобы прямая Геометрические преобразования в геометрии с примерами решения была перпендикулярна прямой Геометрические преобразования в геометрии с примерами решения Понятно, что все такие точки Геометрические преобразования в геометрии с примерами решения образуют отрезок Геометрические преобразования в геометрии с примерами решения В этом случае говорят, что отрезок Геометрические преобразования в геометрии с примерами решения получен в результате преобразования полуокружности Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример:

Пусть даны некоторая фигура Геометрические преобразования в геометрии с примерами решения и вектор Геометрические преобразования в геометрии с примерами решения (рис. 17.3). Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие точку Геометрические преобразования в геометрии с примерами решения такую, что Геометрические преобразования в геометрии с примерами решения В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 17.3). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют параллельным переносом на вектор Геометрические преобразования в геометрии с примерами решения

Обобщим приведенные примеры.

Пусть задана некоторая фигура Геометрические преобразования в геометрии с примерами решения Каждой точке фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие (сопоставим) по определенному правилу некоторую точку. Все полученные сопоставленные точки образуют фигуру Геометрические преобразования в геометрии с примерами решения Говорят, что фигура Геометрические преобразования в геометрии с примерами решенияполучена в результате преобразования фигуры Геометрические преобразования в геометрии с примерами решения При этом фигуру Геометрические преобразования в геометрии с примерами решения называют образом фигуры Геометрические преобразования в геометрии с примерами решения а фигуру Геометрические преобразования в геометрии с примерами решенияпрообразом фигуры Геометрические преобразования в геометрии с примерами решения

Так, в примере 1 отрезок Геометрические преобразования в геометрии с примерами решения является образом отрезка Геометрические преобразования в геометрии с примерами решения Точка Геометрические преобразования в геометрии с примерами решения является образом точки Геометрические преобразования в геометрии с примерами решения Отрезок Геометрические преобразования в геометрии с примерами решения — это прообраз отрезка Геометрические преобразования в геометрии с примерами решения

Обратим внимание на то, что в примере 3 фигура Геометрические преобразования в геометрии с примерами решения равна своему образу Геометрические преобразования в геометрии с примерами решения Преобразования, описанные в примерах 1 и 2, таким свойством не обладают.

Какими же свойствами должно обладать преобразование, чтобы образ и прообраз были равными фигурами? Оказывается, что достаточно лишь одного свойства: преобразование должно сохранять расстояние между точками, то есть если Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения а точки Геометрические преобразования в геометрии с примерами решения — их образы, то должно выполняться равенство Геометрические преобразования в геометрии с примерами решения

Что такое преобразование фигур

Определение. Преобразование фигуры Геометрические преобразования в геометрии с примерами решения сохраняющее расстояние между точками, называют движением (перемещением) фигуры Геометрические преобразования в геометрии с примерами решения

Если каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставлена в соответствие эта же точка Геометрические преобразования в геометрии с примерами решения то такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют тождественным. При тождественном преобразовании образом фигуры Геометрические преобразования в геометрии с примерами решения является сама фигура Геометрические преобразования в геометрии с примерами решения. Очевидно, что тождественное преобразование является движением.

Мы давно используем понятие «равенство фигур», хотя не давали ему строгого определения.

На то, что движение связано с равенством фигур, указывают следующие свойства движения.

Если преобразование является движением, то:

  • образом прямой является прямая,
  • образом отрезка является отрезок, равный данному;
  • образом угла является угол, равный данному,
  • образом треугольника является треугольник, равный данному.

Доказательство этих свойств выходит за рамки рассматриваемого курса геометрии.

Свойства движения подсказывают следующее определение.

Определение. Две фигуры называют равными, если существует движение, при котором одна из данных фигур является образом другой.

Запись Геометрические преобразования в геометрии с примерами решения означает, что фигуры Геометрические преобразования в геометрии с примерами решения равны.

Если существует движение, при котором фигура Геометрические преобразования в геометрии с примерами решения является образом фигуры Геометрические преобразования в геометрии с примерами решения то обязательно существует движение, при котором фигура Геометрические преобразования в геометрии с примерами решения является образом фигуры Геометрические преобразования в геометрии с примерами решения Такие движения называют взаимно обратными.

Замечание. Ранее равными фигурами мы называли такие фигуры, которые совпадали при наложении. Термин «наложение» интуитивно понятен, и в нашем представлении он связывается с наложением реальных тел. Но геометрические фигуры нельзя наложить в буквальном смысле этого слова. Теперь наложение фигуры Геометрические преобразования в геометрии с примерами решения на фигуру Геометрические преобразования в геометрии с примерами решения можно рассматривать как движение фигуры Геометрические преобразования в геометрии с примерами решения при котором ее образом будет фигура Геометрические преобразования в геометрии с примерами решения

Термин «движение» также ассоциируется с определенным физическим действием: изменением положения тела без деформации.

Именно с этим связано появление этого термина в математике. Однако в геометрии предметом исследования является не процесс, происходящий во времени, а лишь свойства фигуры и ее образа.

То, что изображенные на рисунке 17.3 фигуры Геометрические преобразования в геометрии с примерами решения равны, понятно из наглядных соображений. Строгое обоснование этого факта дает следующая теорема.

Теорема 17.1 (свойство параллельного переноса). Параллельный перенос является движением.

Геометрические преобразования в геометрии с примерами решения

Доказательство: Пусть Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения (рис. 17.4), точки Геометрические преобразования в геометрии с примерами решения — их соответствующие образы при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения Докажем, что Геометрические преобразования в геометрии с примерами решения

Имеем: Геометрические преобразования в геометрии с примерами решения Векторы Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения имеют координаты Геометрические преобразования в геометрии с примерами решенияСледовательно, координатами точек Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения являются соответственно пары чисел Геометрические преобразования в геометрии с примерами решения

Найдем расстояние между точками Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Найдем расстояние между точками Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Следовательно, мы показали, что Геометрические преобразования в геометрии с примерами решения то есть параллельный перенос сохраняет расстояние между точками. Геометрические преобразования в геометрии с примерами решения

Следствие. Если фигура Геометрические преобразования в геометрии с примерами решения — образ фигуры Геометрические преобразования в геометрии с примерами решения при параллельном переносе, то Геометрические преобразования в геометрии с примерами решения

Это свойство используется при создании рисунков на тканях, обоях, покрытиях для пола и т. п. (рис. 17.5). Геометрические преобразования в геометрии с примерами решения

Если фигура Геометрические преобразования в геометрии с примерами решения является образом фигуры Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения то фигура Геометрические преобразования в геометрии с примерами решения является образом фигуры Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения (рис. 17.6).

Геометрические преобразования в геометрии с примерами решения

Параллельные переносы на векторы Геометрические преобразования в геометрии с примерами решенияявляются взаимно обратными движениями.

Пример №1

Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения ставится в соответствие точка Геометрические преобразования в геометрии с примерами решения — заданные числа. Докажите, что такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения является параллельным переносом на вектор Геометрические преобразования в геометрии с примерами решения

Решение:

Рассмотрим вектор Геометрические преобразования в геометрии с примерами решения Заметим, что координаты вектора Геометрические преобразования в геометрии с примерами решенияравны Геометрические преобразования в геометрии с примерами решения то есть Геометрические преобразования в геометрии с примерами решения Следовательно, описанное преобразование фигуры Геометрические преобразования в геометрии с примерами решения — параллельный перенос на вектор Геометрические преобразования в геометрии с примерами решения

Пример №2

Точка Геометрические преобразования в геометрии с примерами решения является образом точки Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения Найдите координаты вектора Геометрические преобразования в геометрии с примерами решения и координаты образа точки Геометрические преобразования в геометрии с примерами решения

Решение:

Из условия следует, что Геометрические преобразования в геометрии с примерами решения Отсюда Геометрические преобразования в геометрии с примерами решения

Пусть Геометрические преобразования в геометрии с примерами решения — образ точки Геометрические преобразования в геометрии с примерами решения Тогда Геометрические преобразования в геометрии с примерами решения то есть Геометрические преобразования в геометрии с примерами решения Отсюда Геометрические преобразования в геометрии с примерами решения

Ответ: Геометрические преобразования в геометрии с примерами решения

Пример №3

Даны угол Геометрические преобразования в геометрии с примерами решения и прямая Геометрические преобразования в геометрии с примерами решения не параллельная ни одной из сторон этого угла (рис. 17.7). Постройте прямую Геометрические преобразования в геометрии с примерами решения параллельную прямой Геометрические преобразования в геометрии с примерами решения так, чтобы стороны угла отсекали на ней отрезок заданной длины Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Решение:

Рассмотрим вектор Геометрические преобразования в геометрии с примерами решениятакой, что Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения (рис. 17.8). Построим луч Геометрические преобразования в геометрии с примерами решения являющийся образом луча Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения Обозначим точку пересечения лучей Геометрические преобразования в геометрии с примерами решения буквой Геометрические преобразования в геометрии с примерами решения Пусть Геометрические преобразования в геометрии с примерами решения — прообраз точки Геометрические преобразования в геометрии с примерами решения при рассматриваемом параллельном переносе. Тогда Геометрические преобразования в геометрии с примерами решения

Приведенные рассуждения подсказывают следующий алгоритм построения:

  1. найти образ луча Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения
  2. отметить точку пересечения луча Геометрические преобразования в геометрии с примерами решения с построенным образом;
  3. через найденную точку провести прямую Геометрические преобразования в геометрии с примерами решения параллельную прямой Геометрические преобразования в геометрии с примерами решения Прямая Геометрические преобразования в геометрии с примерами решения будет искомой.

Осевая симметрия

Определение. Точки Геометрические преобразования в геометрии с примерами решения называют симметричными относительно прямой Геометрические преобразования в геометрии с примерами решения если прямая Геометрические преобразования в геометрии с примерами решения является серединным перпендикуляром отрезка Геометрические преобразования в геометрии с примерами решения (рис. 18.1). Если точка Геометрические преобразования в геометрии с примерами решения принадлежит прямой Геометрические преобразования в геометрии с примерами решения то ее считают симметричной самой себе относительно прямой Геометрические преобразования в геометрии с примерами решения

Например, точки Геометрические преобразования в геометрии с примерами решения у которых ординаты равны, а абсциссы — противоположные числа, симметричны относительно оси ординат (рис. 18.2).

Рассмотрим фигуру Геометрические преобразования в геометрии с примерами решения и прямую Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие симметричную ей относительно прямой Геометрические преобразования в геометрии с примерами решения точку Геометрические преобразования в геометрии с примерами решения

В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 18.3). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют осевой симметрией относительно прямой Геометрические преобразования в геометрии с примерами решения Прямую Геометрические преобразования в геометрии с примерами решения называют осью симметрии. Говорят, что фигуры Геометрические преобразования в геометрии с примерами решения симметричны относительно прямой Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Теорема 18.1 (свойство осевой симметрии). Осевая симметрия является движением.

Доказательство: Выберем систему координат так, чтобы ось симметрии совпала с осью ординат. Пусть Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения Тогда точки Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — их соответствующие образы при осевой симметрии относительно оси ординат. Имеем:

Геометрические преобразования в геометрии с примерами решения

Мы получили, что Геометрические преобразования в геометрии с примерами решения то есть осевая симметрия сохраняет расстояние между точками. Следовательно, осевая симметрия является движением. Геометрические преобразования в геометрии с примерами решения

Следствие. Если фигуры Геометрические преобразования в геометрии с примерами решения симметричны относительно прямой, то Геометрические преобразования в геометрии с примерами решения

Определение. Фигуру называют симметричной относительно прямой Геометрические преобразования в геометрии с примерами решения если для каждой точки данной фигуры точка, симметричная ей относительно прямой Геометрические преобразования в геометрии с примерами решения также принадлежит этой фигуре.

Прямую Геометрические преобразования в геометрии с примерами решения называют осью симметрии фигуры. Также говорят, что фигура имеет ось симметрии.

Геометрические преобразования в геометрии с примерами решения

Приведем примеры фигур, имеющих ось симметрии. На рисунке 18.4 изображен равнобедренный треугольник. Прямая, содержащая его высоту, проведенную к основанию, является осью симметрии треугольника.

Любой угол имеет ось симметрии — это пря-Рис. 18.5 мая, содержащая его биссектрису (рис. 18.5). Геометрические преобразования в геометрии с примерами решения

Равносторонний треугольник имеет три оси симметрии (рис. 18.6). Две оси симметрии имеет отрезок: это его серединный перпендикуляр и прямая, содержащая этот отрезок (рис. 18.7).

Геометрические преобразования в геометрии с примерами решения

Квадрат имеет четыре оси симметрии (рис. 18.8).

Существуют фигуры, имеющие бесконечно много осей симметрии, например окружность. Любая прямая, проходящая через центр окружности, является ее осью симметрии (рис. 18.9).

Бесконечно много осей симметрии имеет и прямая: сама прямая и любая прямая, ей перпендикулярная, являются ее осями симметрии.

Пример №4

Начертили неравнобедренный треугольник Геометрические преобразования в геометрии с примерами решения Провели прямую Геометрические преобразования в геометрии с примерами решениясодержащую биссектрису угла Геометрические преобразования в геометрии с примерами решения Потом рисунок стерли, оставив только точки Геометрические преобразования в геометрии с примерами решения и прямую Геометрические преобразования в геометрии с примерами решения Восстановите треугольник Геометрические преобразования в геометрии с примерами решения

Решение:

Поскольку прямая Геометрические преобразования в геометрии с примерами решения является осью симметрии угла Геометрические преобразования в геометрии с примерами решения то точка Геометрические преобразования в геометрии с примерами решения— образ точки Геометрические преобразования в геометрии с примерами решения при симметрии относительно прямой Геометрические преобразования в геометрии с примерами решения — принадлежит лучу Геометрические преобразования в геометрии с примерами решения Тогда пересечением прямых Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения является вершина Геометрические преобразования в геометрии с примерами решения искомого треугольника Геометрические преобразования в геометрии с примерами решения (рис. 18.10).

Эти соображения подсказывают, как построить искомый треугольник: строим точку Геометрические преобразования в геометрии с примерами решения симметричную точке Геометрические преобразования в геометрии с примерами решения относительно прямой Геометрические преобразования в геометрии с примерами решения Находим вершину Геометрические преобразования в геометрии с примерами решения как точку пересечения прямых Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример №5

Точка Геометрические преобразования в геометрии с примерами решения принадлежит острому углу Геометрические преобразования в геометрии с примерами решения (рис. 18.11). На сторонах Геометрические преобразования в геометрии с примерами решения угла найдите такие точки Геометрические преобразования в геометрии с примерами решения чтобы периметр треугольника Геометрические преобразования в геометрии с примерами решения был наименьшим.

Решение:

Пусть точки Геометрические преобразования в геометрии с примерами решения — образы точки Геометрические преобразования в геометрии с примерами решения при симметриях относительно прямых Геометрические преобразования в геометрии с примерами решения соответственно (рис. 18.12), а прямая Геометрические преобразования в геометрии с примерами решения пересекает стороны Геометрические преобразования в геометрии с примерами решения в точках Геометрические преобразования в геометрии с примерами решения соответственно. Докажем, что точки Геометрические преобразования в геометрии с примерами решения — искомые.

Геометрические преобразования в геометрии с примерами решения

Заметим, что отрезки Геометрические преобразования в геометрии с примерами решения симметричны относительно прямой Геометрические преобразования в геометрии с примерами решенияСледовательно, Геометрические преобразования в геометрии с примерами решения Аналогично Геометрические преобразования в геометрии с примерами решения Тогда периметр треугольника Геометрические преобразования в геометрии с примерами решения равен длине отрезка Геометрические преобразования в геометрии с примерами решения

Покажем, что построенный треугольник имеет наименьший периметр из возможных.

Рассмотрим треугольник Геометрические преобразования в геометрии с примерами решения где Геометрические преобразования в геометрии с примерами решения — произвольные точки соответственно лучей Геометрические преобразования в геометрии с примерами решения причем точка Геометрические преобразования в геометрии с примерами решения не совпадает с точкой Геометрические преобразования в геометрии с примерами решения или точка Геометрические преобразования в геометрии с примерами решения не совпадает с точкой Геометрические преобразования в геометрии с примерами решения

Понятно, что Геометрические преобразования в геометрии с примерами решения

Тогда периметр треугольника Геометрические преобразования в геометрии с примерами решения равен сумме Геометрические преобразования в геометрии с примерами решения Однако Геометрические преобразования в геометрии с примерами решения

Центральная симметрия. Поворот

Определение. Точки Геометрические преобразования в геометрии с примерами решения называют симметричными относительно точки Геометрические преобразования в геометрии с примерами решения если точка Геометрические преобразования в геометрии с примерами решения является серединой отрезка Геометрические преобразования в геометрии с примерами решения (рис. 19.1). Точку Геометрические преобразования в геометрии с примерами решения считают симметричной самой себе.

Геометрические преобразования в геометрии с примерами решения Например, точки Геометрические преобразования в геометрии с примерами решения у которых как абсциссы, так и ординаты — противоположные числа, симметричны относительно начала координат (рис. 19.2).

Рассмотрим фигуру Геометрические преобразования в геометрии с примерами решения и точку Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие симметричную ей относительно точки Геометрические преобразования в геометрии с примерами решения точку Геометрические преобразования в геометрии с примерами решения В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 19.3). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют центральной симметрией относительно точки Геометрические преобразования в геометрии с примерами решения Точку Геометрические преобразования в геометрии с примерами решения называют центром симметрии. Также говорят, что фигуры Геометрические преобразования в геометрии с примерами решения симметричны относительно точки Геометрические преобразования в геометрии с примерами решения

Теорема 19.1 (свойство центральной симметрии). Центральная симметрия является движением.

Доказательство: Выберем систему координат так, чтобы центр симметрии совпал с началом координат. Пусть Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения Точки Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — соответственно их образы при центральной симметрии относительно начала координат. Имеем: Геометрические преобразования в геометрии с примерами решения

Мы получили, что Геометрические преобразования в геометрии с примерами решения то есть центральная симметрия сохраняет расстояние между точками. Следовательно, центральная симметрия является движением. Геометрические преобразования в геометрии с примерами решения

Следствие. Если фигуры Геометрические преобразования в геометрии с примерами решения симметричны относительно точки, то Геометрические преобразования в геометрии с примерами решения

Определение. Фигуру называют симметричной относительно точки Геометрические преобразования в геометрии с примерами решения если для каждой точки данной фигуры точка, симметричная ей относительно точки Геометрические преобразования в геометрии с примерами решениятакже принадлежит этой фигуре.

Точку Геометрические преобразования в геометрии с примерами решения называют центром симметрии фигуры. Также говорят, что фигура имеет центр симметрии.

Приведем примеры фигур, имеющих центр симметрии.

Центром симметрии отрезка является его середина (рис. 19.4).

Точка пересечения диагоналей параллелограмма является его центром симметрии (рис. 19.5).

Существуют фигуры, имеющие бесконечно много центров симметрии. Например, каждая точка прямой является ее центром симметрии.

Также бесконечно много центров симметрии имеет фигура, состоящая из двух параллельных прямых. Любая точка прямой, равноудаленной от двух данных, является центром симметрии рассматриваемой фигуры (рис. 19.6).

Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример №6

Докажите, что образом данной прямой Геометрические преобразования в геометрии с примерами решения при симметрии относительно точки Геометрические преобразования в геометрии с примерами решения не принадлежащей прямой Геометрические преобразования в геометрии с примерами решения является прямая, параллельная данной.

Решение:

Поскольку центральная симметрия — это движение, то образом прямой Геометрические преобразования в геометрии с примерами решения будет прямая. Для построения прямой достаточно найти две любые ее точки.

Выберем на прямой Геометрические преобразования в геометрии с примерами решения произвольные точки Геометрические преобразования в геометрии с примерами решения (рис. 19.7). Пусть точки Геометрические преобразования в геометрии с примерами решения — их образы при центральной симметрии относительно точки Геометрические преобразования в геометрии с примерами решения Тогда прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения

Поскольку Геометрические преобразования в геометрии с примерами решения углы Геометрические преобразования в геометрии с примерами решения равны как вертикальные, то треугольники Геометрические преобразования в геометрии с примерами решения равны по первому признаку равенства треугольников. Отсюда Геометрические преобразования в геометрии с примерами решения (рис. 19.7). Следовательно, по признаку параллельных прямых Геометрические преобразования в геометрии с примерами решения

Пример №7

Точка Геометрические преобразования в геометрии с примерами решения принадлежит углу Геометрические преобразования в геометрии с примерами решения (рис. 19.8). На сторонах Геометрические преобразования в геометрии с примерами решения угла постройте такие точки Геометрические преобразования в геометрии с примерами решения чтобы точка Геометрические преобразования в геометрии с примерами решения была серединой отрезка Геометрические преобразования в геометрии с примерами решения

Решение:

Пусть прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения при центральной симметрии относительно точки Геометрические преобразования в геометрии с примерами решения (рис. 19.9). Обозначим буквой Геометрические преобразования в геометрии с примерами решения точку пересечения прямых Геометрические преобразования в геометрии с примерами решения

Найдем прообраз точки Геометрические преобразования в геометрии с примерами решения Очевидно, что он лежит на прямой Геометрические преобразования в геометрии с примерами решения Поэтому достаточно найти точку пересечения прямых Геометрические преобразования в геометрии с примерами решения

Обозначим эту точку буквой Геометрические преобразования в геометрии с примерами решения Тогда Геометрические преобразования в геометрии с примерами решения — искомые точки.Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Изучая окружающий мир, мы часто видим примеры проявления симметрии в природе (рис. 19.10). Объекты, имеющие ось или центр симметрии, легко воспринимаются и радуют взгляд. Недаром в Древней Греции слово «симметрия» служило синонимом слов «гармония», «красота». Геометрические преобразования в геометрии с примерами решения

Идея симметрии широко используется в изобразительном искусстве, архитектуре и технике (рис. 19.11).

Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

На рисунке 19.12 изображены точки Геометрические преобразования в геометрии с примерами решения такие, что Геометрические преобразования в геометрии с примерами решения

Говорят, что точка Геометрические преобразования в геометрии с примерами решения является образом точки Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения

Так же говорят, что точка Геометрические преобразования в геометрии с примерами решения — это образ точки Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения по часовой стрелке на угол Геометрические преобразования в геометрии с примерами решения

Точку Геометрические преобразования в геометрии с примерами решения называют центром поворота, угол Геометрические преобразования в геометрии с примерами решенияуглом поворота.

Рассмотрим фигуру Геометрические преобразования в геометрии с примерами решения точку Геометрические преобразования в геометрии с примерами решения и угол Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие точку Геометрические преобразования в геометрии с примерами решения являющуюся образом точки Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения (если точка Геометрические преобразования в геометрии с примерами решения принадлежит фигуре Геометрические преобразования в геометрии с примерами решения то ей сопоставляется она сама). В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 19.13). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют поворотом вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения Точку Геометрические преобразования в геометрии с примерами решения называют центром поворота. Геометрические преобразования в геометрии с примерами решения

Аналогично определяют преобразование поворота фигуры Геометрические преобразования в геометрии с примерами решения по часовой стрелке на угол Геометрические преобразования в геометрии с примерами решения (рис. 19.14).

Заметим, что центральная симметрия является поворотом вокруг центра симметрии на угол Геометрические преобразования в геометрии с примерами решения

Теорема 19.2 (свойство поворота). Поворот является движением.

Докажите эту теорему самостоятельно.

Следствие. Если фигура Геометрические преобразования в геометрии с примерами решения — образ фигуры Геометрические преобразования в геометрии с примерами решения при повороте, то Геометрические преобразования в геометрии с примерами решения

Пример №8

Даны прямая Геометрические преобразования в геометрии с примерами решения и точка Геометрические преобразования в геометрии с примерами решения вне ее. Постройте образ прямой Геометрические преобразования в геометрии с примерами решения при повороте вокруг точки Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Решение:

Поскольку поворот — это движение, то образом прямой Геометрические преобразования в геометрии с примерами решения будет прямая. Для построения прямой достаточно найти две любые ее точки. Выберем на прямой Геометрические преобразования в геометрии с примерами решения произвольные точки Геометрические преобразования в геометрии с примерами решения (рис. 19.15). Построим точки Геометрические преобразования в геометрии с примерами решения — их образы при повороте вокруг точки Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения Тогда прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения

Пример №9

Точка Геометрические преобразования в геометрии с примерами решения принадлежит углу Геометрические преобразования в геометрии с примерами решения но не принадлежит его сторонам. Постройте равносторонний треугольник, одна вершина которого является точкой Геометрические преобразования в геометрии с примерами решения а две другие принадлежат сторонам Геометрические преобразования в геометрии с примерами решения

Решение:

Пусть прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения (рис. 19.16). Обозначим буквой Геометрические преобразования в геометрии с примерами решения точку пересечения прямых Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пусть точка Геометрические преобразования в геометрии с примерами решения — прообраз точки Геометрические преобразования в геометрии с примерами решения при рассматриваемом повороте. Точка Геометрические преобразования в геометрии с примерами решения принадлежит стороне Геометрические преобразования в геометрии с примерами решения угла Геометрические преобразования в геометрии с примерами решения

Эти соображения подсказывают, как построить искомый треугольник.

Строим прямую Геометрические преобразования в геометрии с примерами решения как образ прямой Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения Пусть Геометрические преобразования в геометрии с примерами решения— точка пересечения прямых Геометрические преобразования в геометрии с примерами решения

Строим угол Геометрические преобразования в геометрии с примерами решения равный Геометрические преобразования в геометрии с примерами решения Пусть прямые Геометрические преобразования в геометрии с примерами решения пересекаются в точке Геометрические преобразования в геометрии с примерами решения Эта точка и является прообразом точки Геометрические преобразования в геометрии с примерами решения

Имеем: Геометрические преобразования в геометрии с примерами решения Следовательно, треугольник Геометрические преобразования в геометрии с примерами решения равносторонний. Геометрические преобразования в геометрии с примерами решения

Подобие фигур

На рисунке 20.1 изображены точки Геометрические преобразования в геометрии с примерами решения такие, что Геометрические преобразования в геометрии с примерами решения Говорят, что точка Геометрические преобразования в геометрии с примерами решения — это образ точки Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом 2. Геометрические преобразования в геометрии с примерами решения

На рисунке 20.2 изображены точки Геометрические преобразования в геометрии с примерами решения такие, что Геометрические преобразования в геометрии с примерами решения Говорят, что точка Геометрические преобразования в геометрии с примерами решения — это образ точки Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения

Вообще, если точки Геометрические преобразования в геометрии с примерами решения таковы, что Геометрические преобразования в геометрии с примерами решения то говорят, что точка Геометрические преобразования в геометрии с примерами решения — это образ точки Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения

Точку Геометрические преобразования в геометрии с примерами решения называют центром гомотетии, число Геометрические преобразования в геометрии с примерами решениякоэффициентом гомотетии, Геометрические преобразования в геометрии с примерами решения

Рассмотрим фигуру Геометрические преобразования в геометрии с примерами решения и точку Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие точку Геометрические преобразования в геометрии с примерами решения являющуюся образом точки Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения (если точка Геометрические преобразования в геометрии с примерами решения принадлежит фигуре Геометрические преобразования в геометрии с примерами решения то ей сопоставляется она сама). В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 20.3). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют гомотетией с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения Также говорят, что фигура Геометрические преобразования в геометрии с примерами решения гомотетична фигуре Геометрические преобразования в геометрии с примерами решения с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Например, на рисунке 20.4 треугольник Геометрические преобразования в геометрии с примерами решения гомотетичен треугольнику Геометрические преобразования в геометрии с примерами решения с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом, равным -3.

можно сказать, что треугольник Геометрические преобразования в геометрии с примерами решения гомотетичен треугольнику Геометрические преобразования в геометрии с примерами решения с тем же центром, но коэффициентом гомотетии, равным Геометрические преобразования в геометрии с примерами решения

Отметим, что при Геометрические преобразования в геометрии с примерами решения гомотетия с центром Геометрические преобразования в геометрии с примерами решения является центральной симметрией с центром Геометрические преобразования в геометрии с примерами решения (рис. 20.5). Если Геометрические преобразования в геометрии с примерами решения то гомотетия является тождественным преобразованием.

Очевидно, что при Геометрические преобразования в геометрии с примерами решения гомотетия не является движением.

Геометрические преобразования в геометрии с примерами решения

Теорема 20.1. При гомотетии фигуры Геометрические преобразования в геометрии с примерами решения с коэффициентом Геометрические преобразования в геометрии с примерами решения все расстояния между ее точками изменяются в Геометрические преобразования в геометрии с примерами решения раз, то есть если Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения а точки Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — их соответствующие образы при гомотетии с коэффициентом Геометрические преобразования в геометрии с примерами решения то Геометрические преобразования в геометрии с примерами решения

Доказательство: Пусть точка Геометрические преобразования в геометрии с примерами решения — центр гомотетии. Тогда Геометрические преобразования в геометрии с примерами решения Имеем: Геометрические преобразования в геометрии с примерами решенияГеометрические преобразования в геометрии с примерами решения

Следствие. Если треугольник Геометрические преобразования в геометрии с примерами решения гомотетичен треугольнику Геометрические преобразования в геометрии с примерами решения с коэффициентом гомотетии Геометрические преобразования в геометрии с примерами решения

Для доказательства этого утверждения достаточно воспользоваться теоремой 20.1 и третьим признаком подобия треугольников.

Гомотетия обладает целым рядом других свойств.

При гомотетии:

Эти свойства вы можете доказать на занятиях математического кружка.

Перечисленные свойства гомотетии указывают на то, что это преобразование может изменить размеры фигуры, но не меняет ее форму, то есть при гомотетии образ и прообраз являются подобными фигурами. Заметим, что в курсе геометрии 8 класса, говоря о подобии фигур, мы давали определение только подобных треугольников. Сейчас определим понятие подобия для произвольных фигур.

На рисунке 20.6 фигура Геометрические преобразования в геометрии с примерами решения гомотетична фигуре Геометрические преобразования в геометрии с примерами решения а фигура Геометрические преобразования в геометрии с примерами решения симметрична фигуре Геометрические преобразования в геометрии с примерами решения относительно прямой Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Говорят, что фигура Геометрические преобразования в геометрии с примерами решения получена из фигуры Геометрические преобразования в геометрии с примерами решения в результате композиции двух преобразований: гомотетии и осевой симметрии.

Поскольку Геометрические преобразования в геометрии с примерами решения то фигуры Геометрические преобразования в геометрии с примерами решения имеют одинаковые формы, но разные размеры, то есть они подобны. Говорят, что фигура Геометрические преобразования в геометрии с примерами решения получена из фигуры Геометрические преобразования в геометрии с примерами решения в результате преобразования подобия.

На рисунке 20.7 фигура Геометрические преобразования в геометрии с примерами решения гомотетична фигуре Геометрические преобразования в геометрии с примерами решения а фигура Геометрические преобразования в геометрии с примерами решения — образ фигуры Геометрические преобразования в геометрии с примерами решенияпри некотором движении. Здесь также можно утверждать, что фигуры Геометрические преобразования в геометрии с примерами решения подобны.

Геометрические преобразования в геометрии с примерами решения

Из сказанного следует, что целесообразно принять такое определение.

Определение. Две фигуры называют подобными, если одну из них можно получить из другой в результате композиции двух преобразований: гомотетии и движения.

Это определение иллюстрирует схема, изображенная на рисунке 20.8. Геометрические преобразования в геометрии с примерами решения

Запись Геометрические преобразования в геометрии с примерами решения означает, что фигуры Геометрические преобразования в геометрии с примерами решения подобны. Также говорят, что фигура Геометрические преобразования в геометрии с примерами решения — образ фигуры Геометрические преобразования в геометрии с примерами решения при преобразовании подобия.

Из приведенного определения следует, что при преобразовании подобия фигуры Геометрические преобразования в геометрии с примерами решения расстояния между ее точками изменяются в одно и то же количество раз.

Так как тождественное преобразование является движением, то из схемы, изображенной на рисунке 20.8, следует, что гомотетия — частный случай преобразования подобия.

Пусть Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения а точки Геометрические преобразования в геометрии с примерами решения — их образы при преобразовании подобия. Точки Геометрические преобразования в геометрии с примерами решения принадлежат фигуре Геометрические преобразования в геометрии с примерами решения которая подобна фигуре Геометрические преобразования в геометрии с примерами решения Число Геометрические преобразования в геометрии с примерами решения называют коэффициентом подобия. Говорят, что фигура Геометрические преобразования в геометрии с примерами решения подобна фигуре Геометрические преобразования в геометрии с примерами решения с коэффициентом подобия Геометрические преобразования в геометрии с примерами решения а фигура Геометрические преобразования в геометрии с примерами решения подобна фигуре Геометрические преобразования в геометрии с примерами решения с коэффициентом подобия Геометрические преобразования в геометрии с примерами решения

Заметим, что преобразование подобия с коэффициентом Геометрические преобразования в геометрии с примерами решения является движением. Отсюда следует, что движение — частный случай преобразования подобия.

С преобразованием подобия мы часто встречаемся в повседневной жизни (рис. 20.9). Например, в результате изменения масштаба карты получаем карту, подобную данной. Фотография — это преобразование негатива в подобное изображение на фотобумаге. Перенося в свою тетрадь рисунок, сделанный учителем на доске, вы также выполняете преобразование подобия. Геометрические преобразования в геометрии с примерами решения Теорема 20.2. Отношение площадей подобных многоугольников равно квадрату коэффициента подобия.

Доказательство этой теоремы выходит за рамки рассматриваемого курса геометрии. Мы докажем ее для частного случая, рассмотрев подобные треугольники.

Геометрические преобразования в геометрии с примерами решения

Доказательство: Пусть треугольник Геометрические преобразования в геометрии с примерами решения — образ треугольника Геометрические преобразования в геометрии с примерами решения при преобразовании подобия с коэффициентом Геометрические преобразования в геометрии с примерами решения (рис. 20.10). Сторона Геометрические преобразования в геометрии с примерами решения — образ стороны Геометрические преобразования в геометрии с примерами решения Тогда Геометрические преобразования в геометрии с примерами решения Проведем высоту Геометрические преобразования в геометрии с примерами решения Пусть точка Геометрические преобразования в геометрии с примерами решения — образ точки Геометрические преобразования в геометрии с примерами решения

Поскольку при преобразовании подобия сохраняются углы, то отрезок Геометрические преобразования в геометрии с примерами решения — высота треугольника Геометрические преобразования в геометрии с примерами решения

Тогда Геометрические преобразования в геометрии с примерами решения Имеем:

Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример №10

Докажите, что образом прямой Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения не принадлежащим прямой Геометрические преобразования в геометрии с примерами решения является прямая, параллельная данной.

Решение:

Из свойств гомотетии следует, что образом прямой Геометрические преобразования в геометрии с примерами решения будет прямая. Для построения прямой достаточно найти две любые ее точки. Выберем на прямой Геометрические преобразования в геометрии с примерами решения произвольные точки Геометрические преобразования в геометрии с примерами решения (рис. 20.11). Пусть точки Геометрические преобразования в геометрии с примерами решения— их образы при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения (рисунок 20.11 соответствует случаю, когда Геометрические преобразования в геометрии с примерами решения Тогда прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения

При доказательстве теоремы 20.1 мы показали, что Геометрические преобразования в геометрии с примерами решения Следовательно, Геометрические преобразования в геометрии с примерами решения

Пример №11

В остроугольный треугольник Геометрические преобразования в геометрии с примерами решения впишите квадрат так, чтобы две его вершины лежали соответственно на сторонах Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения а две другие — на стороне Геометрические преобразования в геометрии с примерами решения

Решение:

Из произвольной точки Геометрические преобразования в геометрии с примерами решения стороны Геометрические преобразования в геометрии с примерами решения опустим перпендикуляр Геометрические преобразования в геометрии с примерами решения на сторону Геометрические преобразования в геометрии с примерами решения (рис. 20.12). Построим квадрат Геометрические преобразования в геометрии с примерами решения так, чтобы точка Геометрические преобразования в геометрии с примерами решения лежала на луче Геометрические преобразования в геометрии с примерами решения Пусть луч Геометрические преобразования в геометрии с примерами решения пересекает сторону Геометрические преобразования в геометрии с примерами решения в точке Геометрические преобразования в геометрии с примерами решения

Рассмотрим гомотетию с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения Тогда точка Геометрические преобразования в геометрии с примерами решения образ точки Геометрические преобразования в геометрии с примерами решения при этой гомотетии. Образом отрезка Геометрические преобразования в геометрии с примерами решения является отрезок Геометрические преобразования в геометрии с примерами решения где точка Геометрические преобразования в геометрии с примерами решения принадлежит лучу Геометрические преобразования в геометрии с примерами решения причем Геометрические преобразования в геометрии с примерами решения Аналогично отрезок Геометрические преобразования в геометрии с примерами решения такой, что точка Геометрические преобразования в геометрии с примерами решения принадлежит лучу Геометрические преобразования в геометрии с примерами решения является образом отрезка Геометрические преобразования в геометрии с примерами решения Следовательно, отрезки Геометрические преобразования в геометрии с примерами решения — соседние стороны искомого квадрата. Для завершения построения осталось опустить перпендикуляр Геометрические преобразования в геометрии с примерами решения на сторону Геометрические преобразования в геометрии с примерами решения

Пример №12

Отрезок Геометрические преобразования в геометрии с примерами решения — высота прямоугольного треугольника Геометрические преобразования в геометрии с примерами решения Найдите радиус Геометрические преобразования в геометрии с примерами решения вписанной окружности треугольника Геометрические преобразования в геометрии с примерами решения если радиусы окружностей, вписанных в треугольники Геометрические преобразования в геометрии с примерами решения соответственно равны Геометрические преобразования в геометрии с примерами решения

Решение:

Поскольку угол Геометрические преобразования в геометрии с примерами решения — общий для прямоугольных треугольников Геометрические преобразования в геометрии с примерами решения то эти треугольники подобны (рис. 20.13). Пусть коэффициент подобия равен Геометрические преобразования в геометрии с примерами решения Очевидно, что Геометрические преобразования в геометрии с примерами решения Аналогично Геометрические преобразования в геометрии с примерами решения с коэффициентом подобия Геометрические преобразования в геометрии с примерами решения

Обозначим площади треугольников Геометрические преобразования в геометрии с примерами решения соответственно Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения Имеем:

Геометрические преобразования в геометрии с примерами решения

Отсюда Геометрические преобразования в геометрии с примерами решения Получаем, что Геометрические преобразования в геометрии с примерами решения

Ответ: Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Применение преобразований фигур при решении задач

Преобразование фигур — эффективный метод решения целого ряда геометрических задач. Проиллюстрируем это на примерах.

Пример №13

На сторонах Геометрические преобразования в геометрии с примерами решения остроугольного треугольника Геометрические преобразования в геометрии с примерами решенияпостройте такие точки Геометрические преобразования в геометрии с примерами решения соответственно, чтобы периметр треугольника Геометрические преобразования в геометрии с примерами решения был наименьшим.

Решение:

Пусть Геометрические преобразования в геометрии с примерами решения — произвольная точка стороны Геометрические преобразования в геометрии с примерами решения треугольника Геометрические преобразования в геометрии с примерами решения точки Геометрические преобразования в геометрии с примерами решения — ее образы при симметрии относительно прямых Геометрические преобразования в геометрии с примерами решениясоответственно (рис. 20.34). Прямая Геометрические преобразования в геометрии с примерами решения пересекает стороны Геометрические преобразования в геометрии с примерами решения соответственно в точках Геометрические преобразования в геометрии с примерами решения Из решения задачи 2 п. 18 следует, что из периметров всех треугольников, для которых точка Геометрические преобразования в геометрии с примерами решения фиксирована, а точки Геометрические преобразования в геометрии с примерами решения принадлежат сторонам Геометрические преобразования в геометрии с примерами решения периметр треугольника Геометрические преобразования в геометрии с примерами решения является наименьшим. Этот периметр равен длине отрезка Геометрические преобразования в геометрии с примерами решения

Заметим, что отрезок Геометрические преобразования в геометрии с примерами решения — средняя линия треугольника Геометрические преобразования в геометрии с примерами решения

Тогда Геометрические преобразования в геометрии с примерами решения

Поскольку Геометрические преобразования в геометрии с примерами решения то точки Геометрические преобразования в геометрии с примерами решения лежат на одной окружности с диаметром Геометрические преобразования в геометрии с примерами решения Отсюда Геометрические преобразования в геометрии с примерами решения Следовательно, длина отрезка Геометрические преобразования в геометрии с примерами решения будет наименьшей при наименьшей длине отрезка Геометрические преобразования в геометрии с примерами решения то есть тогда, когда Геометрические преобразования в геометрии с примерами решения — высота треугольника Геометрические преобразования в геометрии с примерами решения

На рисунке 20.35 отрезок Геометрические преобразования в геометрии с примерами решения— высота треугольника Геометрические преобразования в геометрии с примерами решения Алгоритм построения точек Геометрические преобразования в геометрии с примерами решения понятен из рисунка.

Из построения следует, что периметр любого другого треугольника, вершины которого лежат на сторонах треугольника Геометрические преобразования в геометрии с примерами решения больше периметра треугольника Геометрические преобразования в геометрии с примерами решения Поэтому искомый треугольник является единственным — это построенный треугольник Геометрические преобразования в геометрии с примерами решения

Можно показать (сделайте это самостоятельно), что точки Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения являются основаниями высот, проведенных соответственно из вершин Геометрические преобразования в геометрии с примерами решения треугольника Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Следовательно, вершины искомого треугольника — это основания высот данного треугольника Геометрические преобразования в геометрии с примерами решения Такой треугольник называют ортоцентрическим.

Пример №14

Точка Геометрические преобразования в геометрии с примерами решения — центр правильного Геометрические преобразования в геометрии с примерами решенияугольника Геометрические преобразования в геометрии с примерами решения (рис. 20.36). Докажите, что Геометрические преобразования в геометрии с примерами решения

Решение:

Пусть Геометрические преобразования в геометрии с примерами решения Рассмотрим поворот с центром Геометрические преобразования в геометрии с примерами решения на угол Геометрические преобразования в геометрии с примерами решения например, против часовой стрелки. При таком преобразовании образом данного Геометрические преобразования в геометрии с примерами решения-угольника будет этот же Геометрические преобразования в геометрии с примерами решенияугольник. Следовательно, искомая сумма не изменится. А это возможно лишь тогда, когда Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример №15

Внутри треугольника Геометрические преобразования в геометрии с примерами решения все углы которого меньше Геометрические преобразования в геометрии с примерами решения найдите такую точку Геометрические преобразования в геометрии с примерами решения чтобы сумма Геометрические преобразования в геометрии с примерами решения была наименьшей.

Решение:

Пусть Геометрические преобразования в геометрии с примерами решения — произвольная точка данного треугольника Геометрические преобразования в геометрии с примерами решения (рис. 20.37). Рассмотрим поворот с центром Геометрические преобразования в геометрии с примерами решения на угол Геометрические преобразования в геометрии с примерами решения по часовой стрелке. Пусть точки Геометрические преобразования в геометрии с примерами решения — образы точек Геометрические преобразования в геометрии с примерами решения соответственно (рис. 20.37). Поскольку поворот является движением, то Геометрические преобразования в геометрии с примерами решения Очевидно, что треугольник Геометрические преобразования в геометрии с примерами решения равносторонний. Тогда Геометрические преобразования в геометрии с примерами решения

Имеем: Геометрические преобразования в геометрии с примерами решения

Понятно, что сумма Геометрические преобразования в геометрии с примерами решения будет наименьшей, если точки Геометрические преобразования в геометрии с примерами решения лежат на одной прямой. Поскольку Геометрические преобразования в геометрии с примерами решения то это условие будет выполнено тогда, когда Геометрические преобразования в геометрии с примерами решения

Так как угол Геометрические преобразования в геометрии с примерами решения — образ угла Геометрические преобразования в геометрии с примерами решения при указанном повороте, то должно выполняться равенство Геометрические преобразования в геометрии с примерами решения

Итак, точки Геометрические преобразования в геометрии с примерами решения будут принадлежать одной прямой тогда и только тогда, когда Геометрические преобразования в геометрии с примерами решения Отсюда Геометрические преобразования в геометрии с примерами решения

Таким образом, сумма Геометрические преобразования в геометрии с примерами решения будет наименьшей, если Геометрические преобразования в геометрии с примерами решения

Найти точку Геометрические преобразования в геометрии с примерами решения можно, например, построив ГМТ, из которых отрезки Геометрические преобразования в геометрии с примерами решения видны под углами Геометрические преобразования в геометрии с примерами решения (рис. 20.38).

Понятно, что если один из углов треугольника Геометрические преобразования в геометрии с примерами решения не меньше Геометрические преобразования в геометрии с примерами решения то точка пересечения построенных дуг не будет расположена внутри треугольника. Можно показать, что в треугольнике с углом, не меньшим Геометрические преобразования в геометрии с примерами решенияточка Геометрические преобразования в геометрии с примерами решения сумма расстояний от которой до вершин треугольника является наименьшей, совпадает с вершиной тупого угла. Геометрические преобразования в геометрии с примерами решения

Пример №16

Отрезки Геометрические преобразования в геометрии с примерами решения — высоты остроугольного треугольника Геометрические преобразования в геометрии с примерами решения Докажите, что радиус описанной окружности треугольника Геометрические преобразования в геометрии с примерами решения в два раза больше радиуса описанной окружности треугольника Геометрические преобразования в геометрии с примерами решения

Решение:

Пусть прямые Геометрические преобразования в геометрии с примерами решения пересекают описанную окружность треугольника Геометрические преобразования в геометрии с примерами решения соответственно в точках Геометрические преобразования в геометрии с примерами решения (рис. 20.39). Докажем, что Геометрические преобразования в геометрии с примерами решения где точка Геометрические преобразования в геометрии с примерами решения — ортоцентр треугольника Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Имеем: Геометрические преобразования в геометрии с примерами решения

Углы 2 и 3 равны как вписанные, опирающиеся на дугу Геометрические преобразования в геометрии с примерами решения Следовательно, Геометрические преобразования в геометрии с примерами решения

Тогда в треугольнике Геометрические преобразования в геометрии с примерами решения отрезок Геометрические преобразования в геометрии с примерами решения является биссектрисой и высотой, а следовательно, и медианой. Отсюда Геометрические преобразования в геометрии с примерами решения

Аналогично можно доказать, что Геометрические преобразования в геометрии с примерами решения

Теперь понятно, что треугольник Геометрические преобразования в геометрии с примерами решения гомотетичен треугольнику Геометрические преобразования в геометрии с примерами решения с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом 2. Тогда радиус описанной окружности треугольника Геометрические преобразования в геометрии с примерами решения в два раза больше радиуса описанной окружности треугольника Геометрические преобразования в геометрии с примерами решения Осталось заметить, что треугольники Геометрические преобразования в геометрии с примерами решения вписаны в одну и ту же окружность. 

  • Планиметрия – формулы, определение и вычисление
  • Стереометрия – формулы, определение и вычисление
  • Возникновение геометрии
  • Призма в геометрии
  • Перпендикулярность прямых и плоскостей в пространстве
  • Ортогональное проецирование
  • Декартовы координаты на плоскости
  • Декартовы координаты в пространстве

Поворот точек на произвольный угол онлайн

Координаты фигуры, разделенные через пробел
Угол поворота в градусах (если положительное то против часовой стрелки)
Точка относительно которой проводится поворот
Новые координаты полученные при повороте фигуры(точки) на заданный угол

Поворот – это движение фигуры  в пространстве вокруг неподвижной точки, принадлежащей этому же пространству.

Возникают задачи, как  определить новые координаты какой либо фигуры при повороте на произвольный угол, относительно произвольной точки.

поворот фигуры на плоскости

На данном рисунке отобразено поворот фигуры на угол в 70 градусов  против часовой стрелки  относительно точке Е.

Есть два представления  расчета  новых координат  при решении подобных задач.

Фигура ABCD имеет следующие координаты вершин A=(1.54:-2.24) B=(4.46:-1.82) C=(4.16:-2.84) D=(2.2:-4.48)

точка E=(1.12:0.54) вокруг которой и будет происходить вращение

Алгоритм  определения новых координат

Пример будем рассчитывать  только для одной точки, так как для остальных точек весь процесс одинаков

1. Приведем начало координат к точке E. То есть  точка E будет с координатами (0:0)  а точка A (1.54-1.12:-2.24-0.54)

A=(0.42:-2.78)

2. Высчитаем новые координаты точки A1 по следующим формулам

(x1=x*cos(phi)-y*sin(phi))

(y1=x*sin(phi)+y*cos(phi))

где f – угол поворота. Хотелось бы обратить Ваше внимание на то, что не надо высчитывать синус или косинус 70 градусов “в лоб”, как иногда захочется сделать.

Общепринятно, что все расчеты тригонометрических функций  осуществляются в радианах.

Поэтому сначала угол 70 градусов приводим к радианам по формуле (phi=70*(cfrac{pi}{180})=1.22173047639603)

А вот теперь считаем по выше указанным формулам, новые координаты.

3. получаем новые координаты точки A=(2.76:-0.56)

4. делаем обратные действия, которые делали в шаге первом, то есть возвращаем начало координат туда, куда  и положено

тогда окончательная точка А имеет координаты (2.76+1.12:-0.56+0.54) => (3.88:-0.02)

Преобразовываем таким образом все остальные точки фигуры.

Второе представление в виде умножения матриц.

Координаты точки A представляют в виде вектора 

(begin{pmatrix} x\y end{pmatrix})

и умножают на матрицу следующего вида

(begin{pmatrix}cos(phi)&-sin(phi)\sin(phi)&cos(phi)end{pmatrix})

которая называется матрицей  поворота

Результат – новые координаты точки.

(begin{pmatrix}x1\y1end{pmatrix}=begin{pmatrix}x\yend{pmatrix}*begin{pmatrix}cos(phi)&-sin(phi)\sin(phi)&cos(phi)end{pmatrix})

Используется в построении и моделировании. Развивает пространственное ориентирование, помогает решать сопутствующие задачи в геометрии, алгебре, физике.

Синтаксис

Для тех, кто пользуется XMPP клиентами:  rot <координаты>;<поворот в градусах>;<точка вращения>

Координаты  – строка, содержащая координаты  в виде x:y (где x – абсцисса координаты, y – ордината координаты), разделенные хотя бы одним пробелом

Точка вращения – точка, относительно которой будет осуществляться поворот, всех заданных координат.

Поворот в градусах – поворот фигуры на заданный угол. Если число положительное – то поворот производится ПРОТИВ часовой стрелке, если отрицательный, то ПО часовой стрелке.

Примеры

Пример: задан треугольник следующими координатами A(1:1) B (5:5) C(0:7)

Необходимо повернуть треугольник на 30 градусов против часовой стрелки относительно точки с координатами 3:3

Тогда запрос будет выглядеть так

rot 1:1 5:5 0:7;30;3:3

и получаем следующее

Новые координаты при повороте на угол 30

Относительно координаты 3:3

A  (2.2679491924311  :  0.26794919243112) 

B (3.7320508075689  :  5.7320508075689)

C (-1.5980762113533  :  4.9641016151378)

Самое приятное в том, что с помощью Построить график функции c помощью GeoGebra Вы можете сами нарисовать этот треугольник и повернуть его на тот же самый угол. И это будет отображено не только в численной виде, но и в графическом.

А это совсем другой уровень восприятия, и возможность использования этой графики в своих работах, дипломных или аттестационных не может не радовать.

x = отступ + sin(w) * 3,14
y = отступ + cos(w) * 3,14
Это формула построения окружности где W это градусы (0;359), вычисляеш для одной и второй точек отрезка координаты X и У, задавая для одной из них градусы + несколько, это расстояние между двумя точками будет.
Отступы в формулах для Х и У нужео задавать как отступ от левого края до точки вокруг которой вращение + отступ от самой точки до точки отрезка.

Примерно формула для Х и У одной прямой будет выглядеть так:
a , b – отступы от краёв до точки вокруг которой вращение.
с, n – отступы от точки вокруг которой вращение.
отступы расположены как горизонтальный, вертикальный(в условии выше этой строки), Х – горизонтальная координата, У – вертикальная.

повторение в цикле от 0 до 359 (0 = 360)
x1 = a + c + sin(w) * 3,14
y1 = b + n + cos(w) * 3,14

x2 = a + c + sin(w + 20) * 3,14
y2 = b + n + cos(w + 20) * 3,14

w = w + 1

Всё.

Добавить комментарий