Голосование за лучший ответ
Mikhail Levin
Искусственный Интеллект
(614570)
9 лет назад
это точка пересечения серединных перпендикуляров сторон. она же – центр описанной окружности
Ветер переменПросветленный (21839)
4 года назад
Здравствуйте. Правильно я поняла, что это ортоцентр – центр пересечения высот треугольника?
праора
Мудрец
(10512)
9 лет назад
это будет центр описанной вокруг этого треугольника окружности. Этот центр является точкой пересечения серединных перпендикуляров. Короче, найди середины 2 сторон треугольника и от этой середины проведи перпендикуляры, где они пересекутся – там и точка равноудаленная от вершин треугольника
Рустам Искендеров
Искусственный Интеллект
(133392)
9 лет назад
Надо поднять перпендикуляр к плоскости треугольника из точки, указанной тт. Левиным и Ага. Любая точка этого перпендикуляра – ответ.
Кучин Дмитрий
Профи
(647)
5 лет назад
Центр описанной окружности. Пересечение срединных перпендикуляров.
поделиться знаниями или
запомнить страничку
- Все категории
-
экономические
43,655 -
гуманитарные
33,653 -
юридические
17,917 -
школьный раздел
611,939 -
разное
16,901
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Ход урока
И. Проверка домашнего задания
1. Проверить решение задачи № 24 по записям (с пробелами), сделанными на доске до начала урока.
Решение задачи № 24 Пусть АВα (рис. 166).
1) ВС = 40 см, BD =. ; пусть AD = х см, тогда АС=. С ΔАВ D : АВ2 = х2 -122 = х2 – 144. Из ΔАВС АВ2. Тогда х2 – 144 = (х + 26)2 – 402; 52х=. ; х =15. Следовательно, AD=. AC = 41 см.
2) BD=. BC=7 см; пусть А D =. тогда AC = 2х см.
С ΔАВ D AB2=. Из Δ АВС АВ2 = 4х2 – 49.
Тогда х2 – 1 = . ; 3х2 = . ; х2 = 16. Отсюда х = . ; следовательно, AD =. AC = 2·4 = 8 (см).
Ответ. 1) 15 см и 41 см; 2) 4 см и 8 см.
2. Математический диктант.
МО – перпендикуляр к плоскости ОАВ; AOB = 90° (рис. 167); МА и МВ – наклонные.
Вариант 1 – МО = 1 см, ОА = 3 см, MB = см;
вариант 2 – МЕ = 1 см, ОВ = 4 см, МА = см. Пользуясь рисунком, найдите:
1) длину неизвестной наклонной; (2 балла)
2) длину неизвестной проекции наклонной; (2 балла)
3) длину отрезка АВ; (2 балла)
4) расстояние от точки В до середины отрезка АВ; (2 балла)
5) расстояние от точки М до середины отрезка АВ; (2 балла)
6) расстояние от точки А до плоскости ЯЗЫКОВ. (2 балла)
Ответ. Вариант 1.1) см; 2) см; 3) см; 4) см; 5) см; 6) 3 см.
Вариант 2. 1) см; 2) 3 см; 3) 5 см; 4) 2,5 см; 5) см; 6) 3 см.
II. Восприятие и осознание нового материала
Свойство точки, равноудаленной от вершины многоугольника
Если через центр окружности, описанной вокруг многоугольника, проведено прямую, перпендикулярную к плоскости многоугольника, то каждая точка этой прямой равноудалена от вершин многоугольника.
Доведение
Пусть ABCD – четырехугольник, вокруг которого описана окружность с центром в точке О, и OS(ABC). Докажем, что SA = SB = SC = SD (рис. 168).
ΔASO = ΔBSO = ΔCSO = ΔDSO (за двумя катетами: SO – общая, АО = BO = CO = DO).
Из равенства треугольников следует, что SA = SB = SC = SD.
Если некоторая точка равноудалена от вершин многоугольника, то основание перпендикуляра, опущенного из данной точки на плоскость многоугольника, совпадает с центром окружности, описанной вокруг многоугольника.
Доведение
Пусть ABCD – данный четырехугольник, для точки S пространства SA = SB = SC = SD и SOАВС. Докажем, что точка О – центр окружности, описанной вокруг ABCD (рис. 168). ΔASO = ΔBSО = ΔCSO = ΔDSO (по гипотенузой и катетом: SO – совместный, AS = BS = CS = DS – по условию). Из равенства треугольников следует, что АО = BO = CO = DO, т.е. точка О – центр окружности, описанной вокруг четырехугольника ABCD.
Далее следует напомнить формулы для нахождения радиуса круга, описанного вокруг некоторых многоугольников, с помощью данной настенной таблицы.
1. ABC = 90°; МА = MB = МС (рис. 169). Опустите из точки М перпендикуляр на плоскость АВС.
2. ABCD – квадрат, АВ = 4 см, МА = MB = MC = MD = 5 см (рис. 170). Найдите расстояние от точки М до плоскости АВС.
3. АВ = ВС = АС = 5 см; МА = MB = MC = 13 см (рис. 171). Найдите расстояние от точки М до плоскости АВС.
4. ABCD – квадрат, SO( ABC ), SO = 2см, АВ = 4 см (рис. 172). Найдите расстояние от точки S до вершин квадрата.
5. Δ АВС – правильный; точка О – центр треугольника; АВ = 3см; SO(АВС); SO = см (рис. 173). Найдите расстояние от точки 5 до вершин треугольника АВС.
6. Задача 21 из учебника (с. 35).
7. Задача 20* из учебника (с. 35).
III. Домашнее задание
Задачи № 6, 17-19 (с. 34-35).
IV. Подведение итога урока
Вопрос к классу
1) Какое свойство имеют точки, которые лежат на перпендикуляре, проведенном к плоскости многоугольника через центр окружности, описанной вокруг многоугольника?
2) Где находятся точки, равноудаленные от вершин некоторого многоугольника?
3) Через центр О правильного шестиугольника ABCDEF проведем перпендикуляр SO к плоскости АВС (рис. 174). Укажите, какие из приведенных утверждений правильные, а какие – неправильные:
а) расстояния от точки S до вершин шестиугольника ABCDEF разные;
б) угол OAS равен углу OCS;
в) если ОА = 1 cm, SO = 1 см, то SA = cm;
г) если SO = OB, то OSB = 60°.
4) Расстояния от точки S до всех вершин прямоугольника ABCD равны, точка О – точка пересечения диагоналей АС и BD прямоугольника ABCD. Укажите, какие из приведенных утверждений правильные, а какие – неправильные:
а) прямая SO перпендикулярна к прямой АС;
б) прямая SO не перпендикулярна к прямой BD;
в) прямая SO перпендикулярна к плоскости АВС;
г) если АВ = 6 см, ВС = 8 см и AS = 13 см, то SO = 12 см.
Четырехугольник, вписанный в окружность
Определение 1. Четырехугольник называют вписанным в окружность, если все вершины четырехугольника лежат на окружности.
На рисунке 1 четырехугольник ABCD вписан в окружность. В этом случае говорят также, что окружность описан около четырехугольника.
Теорема 1. Если четырехугольник вписан в окружность, то сумма противолежащих углов четырехугольника равна 180°.
Доказательство. Пусть четырехугольник ABCD вписан в окружность (Рис.1). Докажем, что .
Углы A и C являются вписанными. Следовательно:
Но Следовательно
Аналогично можно показать, что .
Заметим, что из следует , поскольку сумма углов четырехугольника равна 360°.
Как известно, вокруг любого треугольника можно описать окружность (см. статью Окружность, описанная около треугольника). Однако вокруг не каждого четырехугольника можно описать окружность. Например, если параллелограмм не является прямоугольником, то вокруг него не возможно описать окружность. Следующая теорема позволяет распознать четрехугольники, вокруг которых можно описать окружность.
Теорема 2. Если в четырехугольнике сумма противолежащих углов равна 180°, то около него можно описать окружность.
Доказательство. Пусть задан четырехугольник ABCD и пусть . Докажем, что около него можно описать окружность.
Предположим, что около этого четырехугольника невозможно описать окружность. Рассмотрим треугольник ABD и опишем окружность около этого треугольника (как отметили выше около любого треугольника можно описать окружность). Поскольку мы предположили, что у этого четырехугольника невозможно описать окружность, то точка C не принадлежит этой окружности. Поэтому эта точка лежит вне окружности или находится внутри окружности.
Случай 1. Точка C лежит вне описанной окружности (Рис.2).
Тогда сторона BC пересекает этот окружность. Обозначим эту точку C1. Четырехугольник ABC1D вписан в окружность. Тогда по теореме 1 имеем: . Но по условию теоремы . Следовательно . С другой стороны, угол BC1D является внешним углом треугольника DC1C, т.е. выполняется равенство . Получили противоречие, следовательно точка C не может лежать вне окружности.
Случай 2. Точка C лежит внутри описанной окружности (Рис.3).
Проведем прямую BC и точку пересечения прямой и окружности обозначим C1. Получили четырехугольник ABC1D вписанный в окружность. Тогда по теореме 1 имеем: . Но по условию данной теоремы. Следовательно, .
С другой стороны, угол C (т.е. угол BCD) является внешним углом треугольника DC1C, т.е. выполняется равенство . Получили противоречие, следовательно точка C не может лежать внутри окружности.
Следовательно точка C лежит на окружности.
Теорема 2 можно рассматривать метод определения принадлежности четырех точек одной окружности. Если четырехугольник вписан в окружность, то существует точка, равноудаленная от всех вершин четырехугольника (это центр окружности). Чтобы найти эту точку достаточно построить серединные перпендикуляры двух соседних сторон четырехугольника и найти точку их пересечения.
Четырехугольник и его элементы – определение и вычисление с доказательствами и примерами решения
Содержание:
Четырехугольником называют фигуру, состоящую из четырех точек и четырех последовательно соединяющих их отрезков.
Никакие три из этих точек не должны лежать на одной прямой, а соединяющие их отрезки не должны иметь никаких других общих точек, кроме данных.
Любой четырехугольник ограничивает некоторую часть плоскости, являющуюся внутренней областью четырехугольника.
На рисунке 1 изображен четырехугольник
Вершины четырехугольника, являющиеся концами его стороны, называют соседними, несоседние вершины называют противолежащими. На рисунке 1 вершины и – соседние, и – противолежащие.
Стороны четырехугольника, имеющие общую вершину, называют соседними, а не имеющие общей вершины – противолежащими. На рис. 1 стороны и – соседние, и – противолежащие.
Сумму длин всех сторон четырехугольника называют его периметром. Периметр обозначают буквой Например, периметр четырехугольника можно обозначить как
Отрезки, соединяющие противолежащие вершины четырехугольника, называют диагоналями четырехугольника.
На рисунке 2 отрезки и – диагонали четырехугольника Каждый четырехугольник имеет две диагонали.
Углами четырехугольника называют углы и (рис. 1). Углы четырехугольника называют противолежащими, если их вершины – противолежащие вершины четырехугольника, и соседними, если их вершины — соседние вершины четырехугольника. На рисунке 1 углы и – противолежащие, и – соседние.
Один из углов четырехугольника может быть больше развернутого угла. Например, на рисунке 3 в четырехугольнике угол больше развернутого. Такой четырехугольник называют невыпуклым. Если все углы четырехугольника меньше 180°, его называют выпуклым. Диагонали выпуклого четырехугольника пересекаются (рис. 2), а невыпуклого не пересекаются (рис. 4).
Теорема (о сумме углов четырехугольника). Сумма углов четырехугольника равна 360°.
Доказательство:
Пусть – некоторый четырехугольник. Проведем в нем диагональ (рис. 5). Тогда Учитывая, что (как сумма углов (как сумма углов будем иметь:
Пример:
Найдите углы четырехугольника, если их градусные меры относятся как 3 : 10 : 4 : 1. Выпуклым или невыпуклым является этот четырехугольник?
Решение:
Пусть углы четырехугольника равны и Имеем уравнение откуда Следовательно, углы четырехугольника равны и Так как один из углов четырехугольника больше 180°, то этот четырехугольник — невыпуклый.
Ответ. 60°, 200°, 80°, 20°; невыпуклый.
Четырехугольник и его элементы
На рисунке 1 отрезки АВ и ВС имеют только одну общую точку В, которая является концом каждого из них. Такие отрезки называют соседними. На рисунке 2 каждые два отрезка являются соседними.
Отрезки АВ и CD на рисунке 3 не являются соседними.
Рассмотрим фигуру, состоящую из четырех точек А, В, С, D и четырех отрезков АВ, ВС, CD, DA таких, что никакие два соседних отрезка не лежат на одной прямой и никакие два несоседних отрезка не имеют общих точек (рис. 4, а).
Фигура, образованная этими отрезками, ограничивает часть плоскости, выделенную на рисунке 4, б зеленым цветом. Эту часть плоскости вместе с отрезками АВ, ВС, CD и DA называют четырехугольником. Точки А, В, С, D называют вершинами четырехугольника, а отрезки АВ, ВС, CD, DA — сторонами четырехугольника.
На рисунке 5 изображены фигуры, состоящие из четырех отрезков АВ, ВС, CD, DA и части плоскости, которую они ограничивают. Однако эти фигуры не являются четырехугольниками. Поясните почему.
Стороны четырехугольника, являющиеся соседними отрезками, называют соседними сторонами четырехугольника. Вершины, являющиеся концами одной стороны, называют соседними вершинами многоугольника. Стороны, не являющиеся соседними, называют противолежащими сторонами четырехугольника. Несоседние вершины называют противолежащими вершинами четырехугольника.
На рисунке 6 изображен четырехугольник, в котором, например, стороны MQ и MN являются соседними, а стороны NP и MQ — противолежащими. Вершины Q и Р — соседние, а вершины М и Р — противолежащие.
Четырехугольник называют и обозначают по его вершинам. Например, на рисунке 4, б изображен четырехугольник ABCD, а на рисунке 6 — четырехугольник MNPQ. В обозначении четырехугольника буквы, стоящие рядом, соответствуют соседним вершинам четырехугольника. Например, четырехугольник, изображенный на рисунке 6, можно обозначить еще и так: PQMN, или MQPN, или NPQM и т. д.
Сумму длин всех сторон четырехугольника называют периметром четырехугольника.
Отрезок, соединяющий противолежащие вершины четырехугольника, называют диагональю. На рисунке 7 отрезки АС и BD — диагонали четырехугольника АВСD.
Углы ABC, BCD, CDA, DAB (рис. 8) называют углами четырехугольника ABCD. В этом четырехугольнике каждый из них меньше развернутого угла. Такой четырехугольник называют выпуклым. Однако существуют четырехугольники, в которых не все углы меньше развернутого. Например, на рисунке 9 угол В четырехугольника ABCD больше 180°. Такой четырехугольник называют невыпуклым 1 .
Углы АВС и ADC называют противолежащими углами четырехугольника ABCD (рис. 8, 9). Также противолежащими являются углы BAD и BCD.
Теорема 1.1. Сумма углов четырехугольника равна 360°.
Доказательство. Проведем в четырехугольнике диагональ, разбивающую его на два треугольника. Например, на рисунке 10
1 Более подробно с понятием «выпуклость» вы ознакомитесь в п. 19.
это диагональ BD. Тогда сумма углов четырехугольника ABCD равна сумме углов треугольников ABD и CBD. Поскольку сумма углов треугольника равна 180°, то сумма углов четырехугольника равна 360°.
Следствие. В четырехугольнике только один из углов может быть больше развернутого.
Докажите это свойство самостоятельно.
Пример:
Докажите, что длина любой стороны четырехугольника меньше суммы длин трех остальных его сторон.
Решение:
Рассмотрим произвольный четырехугольник ABCD (рис. 11). Покажем, например, что АВ 1 В учебнике задачи на построение не обязательны для рассмотрения.
В треугольнике АВС известны две стороны АВ и ВС и угол В между ними. Следовательно, этот треугольник можно построить. Теперь можем от лучей АВ и СВ отложить углы, равные углам четырехугольника при вершинах А и С.
Проведенный анализ показывает, как строить искомый четырехугольник.
Строим треугольник по двум данным сторонам четырехугольника и углу между ними. На рисунке 12 это треугольник АВС. Далее от лучей АВ и СВ откладываем два известных угла четырехугольника. Два построенных луча пересекаются в точке D. Четырехугольник ABCD — искомый.
Параллелограмм. Свойства параллелограмма
Определение. Параллелограммом называют четырехугольник, у которого каждые две противолежащие стороны параллельны.
На рисунке 19 изображен параллелограмм ABCD. По определению параллелограмма имеем:
Рассмотрим некоторые свойства параллелограмма.
Теорема 2.1. Противолежащие стороны параллелограмма равны.
Доказательство. На рисунке 19 изображен параллелограмм ABCD. Докажем, что АВ = CD и ВС = AD.
Проведем диагональ АС. Докажем, что треугольники АВС и CDA равны (рис. 20).
В этих треугольниках сторона АС — общая, углы 1 и 2 равны как накрест лежащие при параллельных прямых ВС и AD и секущей АС, углы 3 и 4 равны как накрест лежащие при параллельных прямых АВ и CD и секущей АС. Следовательно, треугольники АВС и CDA равны по второму признаку равенства треугольников. Отсюда АВ = CD и ВС = AD.
Теорема 2.2. Противолежащие углы параллелограмма равны.
Доказательство. На рисунке 19 изображен параллелограмм ABCD. Докажем, что
При доказательстве предыдущей теоремы было установлено, что (рис. 20). Отсюда Из равенства углов 1 и 2 и равенства углов 3 и 4 следует, что Следовательно,
Теорема 2.3. Диагонали параллелограмма точкой пересечения делятся пополам.
Доказательство. На рисунке 21 изображен параллелограмм ABCD, диагонали которого пересекаются в точке О. Докажем, что АО = ОС и ВО = OD.
Рассмотрим треугольники AOD и СОВ.
Имеем: равны как накрест лежащие при параллельных прямых AD и ВС и секущих АС и BD соответственно. Из теоремы 2.1 получаем: AD = ВС.
Следовательно, треугольники AOD и СОВ равны по второму признаку равенства треугольников. Отсюда АО = ОС, ВО = OD.
Определение. Высотой параллелограмма называют перпендикуляр, опущенный из любой точки прямой, содержащей сторону параллелограмма, на прямую, содержащую противолежащую сторону.
На рисунке 22 каждый из отрезков AF, QE, ВМ, PN, СК является высотой параллелограмма ABCD.
Из курса геометрии 7 класса вы знаете, что все точки одной из двух параллельных прямых равноудалены от другой прямой. Поэтому AF = QE и ВМ = PN = СК.
Говорят, что высоты ВМ, СК, PN проведены к сторонам ВС и AD, а высоты AF, QE — к сторонам АВ и CD.
Пример №1
Докажите, что прямые, содержащие высоты треугольника, переcекаются в одной точке.
Решение:
Через каждую вершину данного треугольника АВС проведем прямую, параллельную противолежащей стороне. Получим треугольник (рис. 23).
Из построения следует, что четырехугольники — параллелограммы. Отсюда Следовательно, точка А является серединой отрезка
Поскольку прямые параллельны, то высота АН треугольника АВС перпендикулярна отрезку Таким образом, прямая АН — серединный перпендикуляр стороны треугольника Аналогично можно доказать, что прямые, содержащие две другие высоты треугольника АВС, являются серединными перпендикулярами сторон треугольника
Так как серединные перпендикуляры сторон треугольника пересекаются в одной точке, то утверждение теоремы доказано.
Пример №2
Биссектриса тупого угла параллелограмма делит его сторону в отношении 2 : 1, считая от вершины острого угла. Найдите стороны параллелограмма, если его периметр равен 60 см.
Решение:
Пусть биссектриса тупого угла В параллелограмма ABCD (рис. 24) пересекает сторону AD в точке М. По условию AM : MD = 2 : 1.
Углы ABM и CBM равны по условию.
Углы СВМ и AM В равны как накрест лежащие при параллельных прямых ВС и AD и секущей ВМ.
Тогда Следовательно, треугольник ВАМ равнобедренный, отсюда АВ = AM.
Пусть MD = х см, тогда АВ =АМ = 2х см, AD = Зх см. Поскольку противолежащие стороны параллелограмма равны, то его периметр равен 2 (АВ + AD). Учитывая, что по условию периметр параллелограмма равен 60 см, получаем:
2 (2х + Зх) = 60;
х = 6.
Следовательно, АВ = 12 см, AD = 18 см.
Ответ: 12 см, 18 см.
Признаки параллелограмма
Определение параллелограмма позволяет среди четырехугольников распознавать параллелограммы. Этой же цели служат следующие три теоремы, которые называют признаками параллелограмма.
Теорема 3.1 (обратная теореме 2.1). Если в четырехугольнике каждые две противолежащие стороны равны, то этот четырехугольник — параллелограмм.
Доказательство. На рисунке 29 изображен четырехугольник ABCD, в котором АВ = CD и ВС = AD. Докажем, что четырехугольник ABCD — параллелограмм.
Проведем диагональ АС. Треугольники АВС и CDA равны по третьему признаку равенства треугольников. Отсюда и Углы 1 и 3 являются накрест лежащими при прямых ВС и AD и секущей АС. Следовательно, Аналогично из равенства следует, что
Таким образом, в четырехугольнике ABCD каждые две противолежащие стороны параллельны, поэтому этот четырехугольник — параллелограмм.
Теорема 3.2. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Доказательство. На рисунке 30 изображен четырехугольник ABCD, в котором ВС = AD и Докажем, что четырехугольник ABCD — параллелограмм.
Проведем диагональ АС. В треугольниках АВС и CDA имеем: ВС = AD по условию, углы 1 и 2 равны как накрест лежащие при параллельных прямых ВС и AD и секущей АС, а сторона АС общая. Следовательно, треугольники АВС и CDA равны по первому признаку равенства треугольников. Отсюда АВ = CD. Значит, в четырехугольнике ABCD каждые две противолежащие стороны равны. Поэтому по теореме 3.1 четырехугольник ABCD — параллелограмм.
Теорема 3.3 (обратная теореме 2.3). Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Доказательство. На рисунке 31 изображен четырехугольник ABCD, в котором диагонали АС и BD пересекаются в точке О, причем АО = ОС и ВО = OD. Докажем, что четырехугольник ABCD — параллелограмм.
Поскольку углы ВОС и DOA равны как вертикальные, АО = ОС и ВО = OD, то треугольники ВОС и DOA равны по первому признаку равенства треугольников. Отсюда ВС = AD и Углы 1 и 2 являются накрест лежащими при прямых ВС и AD и секущей АС. Следовательно,
Таким образом, в четырехугольнике ABCD две противолежащие стороны равны и параллельны. По теореме 3.2 четырехугольник ABCD — параллелограмм.
Вы знаете, что треугольник можно однозначно задать его сторонами, то есть задача построения треугольника по трем сторонам имеет единственное решение. Иначе обстоит дело с параллелограммом. На рисунке 32 изображены параллелограммы стороны которых равны, то есть Однако очевидно, что сами параллелограммы не равны.
Сказанное означает, что если четыре рейки скрепить так, чтобы образовался параллелограмм, то полученная конструкция не будет жесткой.
Это свойство параллелограмма широко используют на практике. Благодаря его подвижности лампу можно устанавливать в удобное для работы положение, а раздвижную решетку — отодвигать на нужное расстояние в дверном проеме (рис. 33).
На рисунке 34 изображена схема механизма, являющегося частью паровой машины. При увеличении скорости вращения оси шары отдаляются от нее под действием центробежной силы, тем самым поднимая заслонку, регулирующую количество пара. Механизм назван параллелограммом Уатта в честь изобретателя первой универсальной паровой машины.
Пример №3
Докажите, что если в четырехугольнике каждые два противолежащих угла равны, то этот четырехугольник — параллелограмм.
Решение:
На рисунке 35 изображен четырехугольник ABCD, в котором Докажем, что четырехугольник ABCD — параллелограмм.
По теореме о сумме углов четырехугольника (теорема 1.1) Учитывая, что получим:
Поскольку углы А и В — односторонние углы при прямых AD и ВС и секущей АВ, а их сумма равна 180°, то
Аналогично доказываем, что
Следовательно, четырехугольник ABCD — параллелограмм.
Необходимо и достаточно
Из курса геометрии 7 класса вы узнали, что большинство теорем состоят из двух частей: условия (то, что дано) и заключения (то, что требуется доказать).
Если утверждение, выражающее условие, обозначить буквой А, а утверждение, выражающее заключение, — буквой В, то формулировку теоремы можно изобразить следующей схемой: если А, то В.
Например, теорему 2.3 можно сформулировать так:
Тогда теорему 3.3, обратную теореме 2.3, можно сформулировать так:
Часто в повседневной жизни в своих высказываниях мы пользуемся словами «необходимо», «достаточно». Приведем несколько примеров.
- Для того чтобы уметь решать задачи, необходимо знать теоремы.
- Если вы на математической олимпиаде правильно решили все предложенные задачи, то этого достаточно для того, чтобы занять первое место.
Употребление слов «необходимо» и «достаточно» тесно связано с теоремами.
Условие А является достаточным для заключения В. Вместе с тем делимость числа нацело на 5 (утверждение В) необходима для делимости числа нацело на 10 (утверждение А).
Приведем еще один пример:
В этой теореме утверждение А является достаточным условием для утверждения В, то есть для того, чтобы два угла были равны, достаточно, чтобы они были вертикальными. В этой же теореме утверждение В является необходимым условием для утверждения А, то есть для того, чтобы два угла были вертикальными, необходимо, чтобы они были равны. Отметим, что утверждение В не является достаточным условием для утверждения А. Действительно, если два угла равны, то это совсем не означает, что они вертикальные.
Итак, в любой теореме вида если А, то В утверждение А является достаточным для утверждения В, а утверждение В — необходимым для утверждения А.
Если справедлива не только теорема если А, то В, но и обратная теорема если В, то А, то А является необходимым и достаточным условием для В, а В — необходимым и достаточным условием для А.
Например, теоремы 3.3 и 2.3 являются взаимно обратными. На языке «необходимо — достаточно» этот факт можно сформулировать так: для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его диагонали точкой пересечения делились пополам.
Подчеркнем, что если в теореме есть слова «необходимо и достаточно», то она объединяет две теоремы: прямую и обратную (прямой теоремой может быть любая из двух теорем, тогда другая будет обратной). Следовательно, доказательство такой теоремы должно состоять из двух частей: доказательств прямой и обратной теорем. Теорему, объединяющую прямую и обратную теоремы, называют критерием.
Иногда вместо «необходимо и достаточно» говорят «тогда и только тогда». Например, взаимно обратные теоремы 2.1 и 3.1 можно объединить в следующий критерий:
- четырехугольник является параллелограммом тогда и только тогда, когда каждые две его противолежащие стороны равны.
Сформулируйте самостоятельно теорему 2.2 и ключевую задачу п. 3 в виде теоремы-критерия.
Прямоугольник
Параллелограмм — это четырехугольник, однако очевидно, что не каждый четырехугольник является параллелограммом. В этом случае говорят, что параллелограмм — это отдельный вид четырехугольника. Рисунок 42 иллюстрирует этот факт.
Существуют также отдельные виды параллелограммов.
Определение. Прямоугольником называют параллелограмм, у которого все углы прямые.
На рисунке 43 изображен прямоугольник ABCD.
Из определения следует, что прямоугольник имеет все свойства параллелограмма. В прямоугольнике:
- противолежащие стороны равны;
- диагонали точкой пересечения делятся пополам.
Однако прямоугольник имеет свои особые свойства, которыми не обладает параллелограмм, отличный от прямоугольника. Так, из определения следует, что все углы прямоугольника равны. Еще одно свойство прямоугольника выражает следующая теорема.
Теорема 4.1. Диагонали прямоугольника равны.
Доказательство. На рисунке 44 изображен прямоугольник ABCD. Докажем, что его диагонали АС и BD равны.
В прямоугольных треугольниках ABD и DCA катеты АВ и DC равны, а катет AD общий. Поэтому треугольники ABD и DCA равны по двум катетам. Отсюда BD = АС.
Определение прямоугольника позволяет среди параллелограммов распознавать прямоугольники. Этой же цели служат следующие две теоремы, которые называют признаками прямоугольника.
Теорема 4.2. Если один из углов параллелограмма прямой, то этот параллелограмм — прямоугольник.
Докажите эту теорему самостоятельно.
Теорема 4.3. Если диагонали параллелограмма равны, то этот параллелограмм — прямоугольник.
Доказательство. На рисунке 45 изображен параллелограмм ABCD, диагонали АС и BD которого равны. Докажем, что параллелограмм ABCD — прямоугольник.
Рассмотрим треугольники ABD и DCА. У них АВ = CD, BD =АС, AD — общая сторона. Следовательно, эти треугольники равны по третьему признаку равенства треугольников. Отсюда Эти углы являются односторонними при параллельных прямых АВ и DC и секущей AD. Таким образом, Тогда Поэтому по теореме 4.2 параллелограмм ABCD — прямоугольник.
Ромб
Вы уже знаете, что прямоугольник — это отдельный вид параллелограмма. Познакомимся еще с одним видом параллелограмма — ромбом.
Определение. Ромбом называют параллелограмм, у которого все стороны равны.
На рисунке 47 изображен ромб ABCD.
Из определения следует, что ромб имеет все свойства параллелограмма. В ромбе:
- противолежащие углы равны;
- диагонали точкой пересечения делятся пополам.
Однако ромб имеет и свои особые свойства.
Теорема 5.1. Диагонали ромба перпендикулярны и являются биссектрисами его углов.
Доказательство. На рисунке 48 изображен ромб ABCD, диагонали которого пересекаются в точке О. Докажем, что и
Поскольку по определению ромба все его стороны равны, то треугольник АВС равнобедренный (АВ = ВС). По свойству диагоналей параллелограмма АО = ОС. Тогда отрезок ВО является медианой треугольника АВС, а значит, и высотой и биссектрисой этого треугольника. Следовательно,
Распознавать ромбы среди параллелограммов позволяют не только определение ромба, но и следующие две теоремы, которые называют признаками ромба.
Теорема 5.2. Если диагонали параллелограмма перпендикулярны, то этот параллелограмм — ромб.
Теорема 5.3. Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм — ромб.
Докажите эти теоремы самостоятельно.
Квадрат
Определение. Квадратом называют прямоугольник, у которого все стороны равны.
На рисунке 50 изображен квадрат ABCD.
Из приведенного определения следует, что квадрат — это ромб, у которого все углы равны. Значит, квадрат является отдельным видом и прямоугольника, и ромба. Это иллюстрирует рисунок 51. Поэтому квадрат обладает всеми свойствами прямоугольника и ромба. Отсюда следует, что:
- все углы квадрата прямые;
- диагонали квадрата равны, перпендикулярны и являются биссектрисами его углов.
Средняя линия треугольника
Определение. Средней линией треугольника называют отрезок, соединяющий середины двух его сторон.
На рисунке 56 отрезки MN, NE, ЕМ — средние линии треугольника АВС.
Теорема 7.1. Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине.
Доказательство. Пусть MN — средняя линия треугольника АВС (рис. 57). Докажем, что
На прямой MN отметим точку Е так, что MN = NE (рис. 57). Соединим отрезком точки Е и С. Поскольку точка N является серединой отрезка ВС, то BN = NC. Углы 1 и 2 равны как вертикальные. Следовательно, треугольники MBN и ECN равны по первому признаку равенства треугольников. Отсюда Учитывая, что AM = ВМ, получим: ЕС = AM. Углы 3 и 4 являются накрест лежащими при прямых АВ и ЕС и секущей ВС. Тогда
Таким образом, в четырехугольнике АМЕС стороны AM и ЕС параллельны и равны. Следовательно, по теореме 3.2 четырехугольник АМЕС является параллелограммом. Отсюда то есть
Также ME = АС. Поскольку
Пример №4
Докажите, что середины сторон четырехугольника являются вершинами параллелограмма.
Решение:
В четырехугольнике ABCD точки М, N, К и Р — середины сторон АВ, ВС, CD и AD соответственно (рис. 58).
Отрезок MN — средняя линия треугольника АВС. По свойству средней линии треугольника
Отрезок РК — средняя линия треугольника ADC. По свойству средней линии треугольника
Поскольку то
Из равенств и получаем:
Следовательно, в четырехугольнике MNKP стороны MN и РК равны и параллельны, поэтому четырехугольник MNKP — параллелограмм.
Трапеция
Определение. Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.
Каждый из четырехугольников, изображенных на рисунке 62, является трапецией.
Параллельные стороны трапеции называют основаниями, а непараллельные — боковыми сторонами (рис. 63).
В трапеции ABCD углы Аи D называют углами при основании AD, а углы В и С — углами при основании ВС.
Определение. Высотой трапеции называют перпендикуляр, опущенный из любой точки прямой, содержащей одно из оснований, на прямую, содержащую другое основание.
На рисунке 64 каждый из отрезков ВМ, EF, DK, PQ является высотой трапеции ABCD. Длины этих отрезков равны расстоянию между параллельными прямыми ВС и AD. Поэтому ВМ = EF = DK = PQ.
На рисунке 65 изображена трапеция ABCD, у которой боковые стороны АВ и CD равны. Такую трапецию называют равнобокой или равнобедренной.
Если боковая сторона трапеции является ее высотой, то такую трапецию называют прямоугольной (рис. 66).
Трапеция — это отдельный вид четырехугольника. Связь между четырехугольниками и их отдельными видами показана на рисунке 67.
Определение. Средней линией трапеции называют отрезок, соединяющий середины ее боковых сторон.
На рисунке 68 отрезок MN — средняя линия трапеции ABCD.
Теорема 8.1. Средняя линия трапеции параллельна основаниям и равна половине их суммы.
Доказательство. Пусть MN — средняя линия трапеции ABCD (рис. 69). Докажем, что
Проведем прямую BN и точку ее пересечения с прямой AD обозначим буквой Е.
Поскольку точка N — середина отрезка CD, то CN = ND. Углы 1 и 2 равны как вертикальные, а углы 3 и 4 равны как накрест лежащие при параллельных прямых ВС и АЕ и секущей CD. Следовательно, треугольники BCN и EDN равны по второму признаку равенства треугольников. Отсюда ВС = DE и BN = NE. Тогда отрезок MN — средняя линия треугольника АВЕ. Из этого следует, что то есть и Имеем:
Пример №5 (свойства равнобокой трапеции)
Докажите, что в равнобокой трапеции:
- углы при каждом основании равны;
- диагонали равны;
- высота трапеции, проведенная из вершины тупого угла, делит основание трапеции на два отрезка, меньший из которых равен половине разности оснований, а больший — половине суммы оснований (средней линии трапеции).
Решение:
Рассмотрим равнобокую трапецию ABCD (АВ = CD).
1) Проведем высоты ВМ и СК (рис. 70). Поскольку АВ = CD и ВМ = СК, то прямоугольные треугольники АМВ и DKC равны по катету и гипотенузе. Тогда
Имеем: Следовательно,
2) Рассмотрим треугольники ACD и DBA (рис. 71).
Имеем: АВ = CD, AD — общая сторона, углы BAD и CDA равны как углы при основании равнобокой трапеции. Следовательно, треугольники ACD и DBA равны по двум сторонам и углу между ними. Тогда АС = BD.
3) В четырехугольнике ВМКС (рис. 70) угол ВМК прямой. Следовательно, этот четырехугольник является прямоугольником. Отсюда МК = ВС.
Из равенства треугольников АМВ и DKC следует, что Тогда
Центральные и вписанные углы
Определение. Центральным углом окружности называют угол с вершиной в центре окружности.
На рисунке 76 угол АОВ — центральный. Стороны этого угла пересекают окружность в точках А и В. Эти точки делят окружность на две дуги, выделенные на рисунке 76 разным цветом.
Точки А и В называют концами дуги, они принадлежат каждой из выделенных дуг. Каждую из этих дуг можно обозначить так: (читают: «дуга АВ»).
Однако по записи невозможно отличить дуги на рисунке 76. Если на какой-нибудь из двух дуг отметить точку (на рисунке 77 это точка М), то понятно, что обозначение относится к «синей» дуге. Если на одной из двух дуг АВ отмечена точка, то договоримся, что обозначение относится к дуге, которой эта точка не принадлежит (на рисунке 77 это «зеленая» дуга).
Дуга АВ принадлежит центральному углу АОВ (рис. 77). В этом случае говорят, что центральный угол АОВ опирается на дугу АВ.
Каждая дуга окружности, как и вся окружность, имеет градусную меру. Градусную меру всей окружности считают равной 360°. Если центральный угол MON опирается на дугу MN (рис. 78), то градусную меру дуги MN считают равной градусной мере угла MON и записывают: (читают: «градусная мера дуги MN равна градусной мере угла MON). Градусную меру дуги MEN (рис. 78) считают равной 360° –
На рисунке 79 изображена окружность, в которой проведены два перпендикулярных диаметра АВ и CD.
Тогда Каждую из дуг АСВ и ADB называют полуокружностью. На рисунке 79 полуокружностями являются также дуги CAD и CBD.
О хорде, соединяющей концы дуги, говорят, что хорда стягивает дугу. На рисунке 80 хорда АВ стягивает каждую из дуг АВ и АКВ.
Любая хорда стягивает две дуги, сумма градусных мер которых равна 360°.
Определение. Вписанным углом окружности называют угол, вершина которого принадлежит окружности, а стороны пересекают окружность.
На рисунке 81 угол АВС — вписанный. Дуга АС принадлежит этому углу, а дуга АВС — не принадлежит. В таком случае говорят, что вписанный угол АВС опирается на дугу АС. Также можно сказать, что вписанный угол АВС опирается на хорду АС.
Теорема 9.1. Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.
Доказательство. О На рисунке 81 угол АВС вписанный.
Докажем, что
Рассмотрим три случая расположения центра О окружности относительно вписанного угла АВС.
Случай 1. Центр О принадлежит одной из сторон угла, например стороне ВС (рис. 82).
Проведем радиус ОА. Центральный угол АОС — внешний угол равнобедренного треугольника АВО (стороны ОА и ОВ равны как радиусы). Тогда Однако Отсюда
Случай 2. Центр О принадлежит углу, однако не принадлежит ни одной из его сторон (рис. 83).
Проведем диаметр ВК. Согласно доказанному
Имеем:
Случай 3. Центр О не принадлежит углу (рис. 84).
Для третьего случая проведите доказательство самостоятельно.
Следствие 1. Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 85).
Следствие 2. Вписанный угол, опирающийся на диаметр (полуокружность), — прямой (рис. 86).
Докажите эти свойства самостоятельно.
Пример №6 (свойство угла между касательной и хордой).
Отрезок АВ — хорда окружности с центром О (рис. 87). Через точку А проведена касательная MN. Докажите, что
Решение:
Проведем диаметр AD (рис. 87). Тогда угол В равен 90° как вписанный, опирающийся на диаметр AD. В прямоугольном треугольнике ABD Поскольку MN — касательная, то Тогда Получаем, что
Следовательно,
Имеем:
Пример №7
Постройте касательную к данной окружности, проходящую через данную точку, лежащую вне окружности.
Решение:
На рисунке 88 изображены окружность с центром О и точка М, лежащая вне этой окружности.
Пусть X — такая точка окружности, что прямая MX является касательной (рис. 88). Тогда угол МХО прямой. Следовательно, его можно рассматривать как вписанный в окружность с диаметром МО.
Проведенный анализ показывает, как провести построение.
Построим отрезок МО и разделим его пополам (рис. 89). Пусть точка К — его середина. Построим окружность радиуса КО с центром К. Обозначим точки пересечения построенной и данной окружностей буквами Е и F. Тогда каждая из прямых ME и MF является искомой касательной.
Действительно, угол МЕО равен 90° как вписанный угол, опирающийся на диаметр МО. Отрезок ОЕ — радиус данной окружности. Тогда по признаку касательной прямая ME — искомая касательная.
Описанная и вписанная окружности четырехугольника
Определение. Окружность называют описанной около четырехугольника, если она проходит через все его вершины.
На рисунке 103 изображена окружность, описанная около четырехугольника ABCD. В этом случае также говорят, что четырехугольник вписан в окружность.
Теорема 10.1. Если четырехугольник является вписанным в окружность, то сумма его противолежащих углов равна 180°.
Доказательство. Пусть четырехугольник ABCD вписан в окружность (рис. 103). Докажем, что
Поскольку углы А и С являются вписанными, то
Имеем:
Аналогично можно показать, что
Вы знаете, что около любого треугольника можно описать окружность. Однако не всякий четырехугольник обладает таким свойством. Например, нельзя описать окружность около параллелограмма, отличного от прямоугольника. Распознавать четырехугольники, около которых можно описать окружность, позволяет следующая теорема.
Теорема 10.2 (обратная теореме 10.1). Если в четырехугольнике сумма противолежащих углов равна 180°, то около него можно описать окружность.
Доказательство. Рассмотрим четырехугольник ABCD, в котором Докажем, что около него можно описать окружность.
Предположим, что около этого четырехугольника нельзя описать окружность. Опишем окружность около треугольника ABD. По предположению точка С не принадлежит этой окружности. Поэтому возможны два случая.
Случай 1. Точка С лежит вне описанной окружности треугольника ABD (рис. 104).
Пусть сторона ВС пересекает окружность в точке Четырехугольник вписан в окружность. Тогда по теореме 10.1 получаем, что Но по условию Отсюда Однако это равенство выполняться не может, так как по свойству внешнего угла треугольника
Итак, точка С не может лежать вне окружности, описанной около треугольника ABD.
Случай 2. Точка С лежит внутри описанной окружности треугольника ABD (рис. 105). Рассуждая аналогично, можно показать, что точка С не может лежать внутри рассматриваемой окружности. Убедитесь в этом самостоятельно.
Таким образом, предположив, что точка С не принадлежит окружности, описанной около треугольника ABD, мы получили противоречие.
Теорему 10.2 можно рассматривать как признак принадлежности четырех точек одной окружности.
Если четырехугольник вписан в окружность, то существует точка, равноудаленная от всех его вершин (центр описанной окружности). Чтобы найти эту точку, достаточно найти точку пересечения серединных перпендикуляров двух соседних сторон четырехугольника.
Определение. Окружность называют вписанной в четырехугольник, если она касается всех его сторон.
На рисунке 106 изображена окружность, вписанная в четырехугольник ABCD. В этом случае также говорят, что четырехугольник описан около окружности.
Теорема 10.3. Если четырехугольник является описанным около окружности, то суммы его противолежащих сторон равны.
Доказательство. Пусть четырехугольник ABCD описан около окружности (рис. 107). Докажем, что АВ + CD = ВС + AD.
Точки М, N, Р, К — точки касания окружности со сторонами четырехугольника.
Поскольку отрезки касательных, проведенных к окружности через одну точку, равны, то АК =АМ, ВМ = BN, CN = СР, DP = DK. Пусть АК = а, ВМ = b, CN = с, DP = d.
Тогда АВ + CD = a + b + c + d,
ВС + AD = b + c + a + d.
Следовательно, АВ + CD = ВС + AD.
Вы знаете, что в любой треугольник можно вписать окружность. Однако не всякий четырехугольник обладает таким свойством. Например, нельзя вписать окружность в прямоугольник, отличный от квадрата. Распознавать четырехугольники, в которые можно вписать окружность, позволяет следующая теорема.
Теорема 10.4. Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность.
Доказательство. Рассмотрим выпуклый четырехугольник ABCD, в котором АВ + CD = ВС + AD. Докажем, что в него можно вписать окружность.
Пусть биссектрисы углов А и В пересекаются в точке О (рис. 108). Тогда точка О равноудалена от сторон АВ, ВС и AD. Следовательно, существует окружность с центром в точке О, которая касается этих трех сторон.
Предположим, что эта окружность не касается стороны CD. Тогда возможны два случая.
Случай 1. Сторона CD не имеет общих точек с построенной окружностью.
Проведем касательную параллельно стороне CD (рис. 108). Четырехугольник описан около окружности. Тогда по теореме 10.3 получаем, что
Однако по условию
Вычтем из равенства (2) равенство (1):
Отсюда имеем:
Это равенство противоречит утверждению, доказанному в ключевой задаче п. 1.
Итак, сторона CD должна иметь общие точки с рассматриваемой окружностью.
Случай 2. Сторона CD имеет две общие точки с построенной окружностью.
Рассуждая аналогично, можно показать, что сторона CD не может иметь две общие точки с построенной окружностью. Убедитесь в этом самостоятельно.
Таким образом, предположив, что построенная окружность не касается стороны CD, мы получили противоречие.
Если четырехугольник описан около окружности, то существует точка, равноудаленная от всех его сторон (центр вписанной окружности). Чтобы найти эту точку, достаточно найти точку пересечения биссектрис двух соседних углов этого четырехугольника.
Пример №8 (признак принадлежности четырех точек одной окружности).
Точки А, М, N, В таковы, что причем точки M и N лежат в одной полуплоскости относительно прямой АВ. Докажите, что точки А, М, N, В лежат на одной окружности.
Решение:
Пусть Около треугольника АМВ опишем окружность (рис. 109). Пусть С — произвольная точка окружности, не принадлежащая дуге АМВ. Тогда четырехугольник АСВМ вписан в окружность. Отсюда Имеем: Следовательно, по теореме 10.2 около четырехугольника ACBN можно описать окружность. Поскольку около треугольника АВС можно описать только одну окружность, то этой окружности принадлежат как точка М, так и точка N.
Сумма углов четырехугольника
- Сумма углов четырехугольника равна 360°.
Параллелограмм
- Параллелограммом называют четырехугольник, у которого каждые две противолежащие стороны параллельны.
Свойства параллелограмма
- Противолежащие стороны параллелограмма равны.
- Противолежащие углы параллелограмма равны.
- Диагонали параллелограмма точкой пересечения делятся пополам.
Высота параллелограмма
- Высотой параллелограмма называют перпендикуляр, опущенный из любой точки прямой, содержащей сторону параллелограмма, на прямую, содержащую противолежащую сторону.
Признаки параллелограмма
- Если в четырехугольнике каждые две противолежащие стороны равны, то этот четырехугольник — параллелограмм.
- Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.
- Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Прямоугольник
- Прямоугольником называют параллелограмм, у которого все углы прямые.
Особое свойство прямоугольника
- Диагонали прямоугольника равны.
Признаки прямоугольника
- Если один из углов параллелограмма прямой, то этот параллелограмм — прямоугольник.
- Если диагонали параллелограмма равны, то этот параллелограмм — прямоугольник.
Ромб
- Ромбом называют параллелограмм, у которого все стороны равны.
Особое свойство ромба
- Диагонали ромба перпендикулярны и являются биссектрисами его углов.
Признаки ромба
- Если диагонали параллелограмма перпендикулярны, то этот параллелограмм — ромб.
- Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм — ромб.
Квадрат
- Квадратом называют прямоугольник, у которого все стороны равны.
Средняя линия треугольника
- Средней линией треугольника называют отрезок, соединяющий середины двух его сторон.
Свойство средней линии треугольника
- Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине.
Трапеция
- Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.
Высота трапеции
- Высотой трапеции называют перпендикуляр, опущенный из любой точки прямой, содержащей одно из оснований, на прямую, содержащую другое основание.
Средняя линия трапеции
- Средней линией трапеции называют отрезок, соединяющий середины ее боковых сторон.
Свойство средней линии трапеции
- Средняя линия трапеции параллельна основаниям и равна половине их суммы.
Центральный угол окружности
- Центральным углом окружности называют угол с вершиной в центре окружности.
Вписанный угол окружности
- Вписанным углом окружности называют угол, вершина которого принадлежит окружности, а стороны пересекают окружность.
Градусная мера вписанного угла окружности
- Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.
Свойства вписанных углов
- Вписанные углы, опирающиеся на одну и ту же дугу, равны.
- Вписанный угол, опирающийся на диаметр (полуокружность), — прямой.
Окружность, описанная около четырехугольника
- Окружность называют описанной около четырехугольника, если она проходит через все его вершины.
Свойство четырехугольника, вписанного в окружность
- Если четырехугольник является вписанным в окружность, то сумма его противолежащих углов равна 180°.
Признак четырехугольника, около которого можно описать окружность
- Если в четырехугольнике сумма противолежащих углов равна 180°, то около него можно описать окружность.
Окружность, вписанная в четырехугольник
- Окружность называют вписанной в четырехугольник, если она касается всех его сторон.
Свойство окружности, описанной около четырехугольника
- Если четырехугольник является описанным около окружности, то суммы его противолежащих сторон равны.
Признак четырехугольника, в который можно вписать окружность
- Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность.
Вписанные и описанные четырехугольники
Четырехугольник называют вписанным в окружность, если все его вершины лежат на окружности. Окружность при этом называют описанной около четырехугольника (рис. 92).
Теорема 1 (свойство углов вписанного четырехугольника). Сумма противолежащих углов вписанного четырехугольника равна 180°.
Доказательство:
Пусть в окружность с центром вписан четырехугольник (рис. 92). Тогда (по теореме о вписанном угле).
Поэтому Тогда
Следствие 1. Если около трапеции можно описать окружность, то трапеция равнобокая.
Доказательство:
Пусть трапеция вписана в окружность, (рис. 93). Тогда Но в трапеции Поэтому Следовательно, – равнобокая трапеция (по признаку равнобокой трапеции).
Как известно из курса геометрии 7 класса, около любого треугольника можно описать окружность. Для четырехугольников это не так.
Теорема 2 (признак вписанного четырехугольника). Если в четырехугольнике сумма двух противолежащих углов равна 180°, то около него можно описать окружность.
Доказательство:
Пусть в четырехугольнике Проведем через точки и окружность. Докажем (методом от противного), что вершина четырехугольника также будет лежать на этой окружности.
1) Допустим, что вершина лежит внутри круга (рис. 94). Продолжим до пересечения с окружностью в точке Тогда (по условию) и (по свойству углов вписанного четырехугольника). Тогда Но – внешний, a – не смежный с ним внутренний угол треугольника Поэтому должен быть больше, чем
Пришли к противоречию, значит, наше предположение ошибочно, и точка не может лежать внутри круга.
2) Аналогично можно доказать, что вершина не может лежать вне круга.
3) Следовательно, точка лежит на окружности, ограничивающей круг (рис. 92), а значит около четырехугольника можно описать окружность.
Следствие 1. Около любого прямоугольника можно описать окружность.
Следствие 2. Около равнобокой трапеции можно описать окружность.
Заметим, что, как и в треугольнике, центром описанной около четырехугольника окружности является точка пересечения серединных перпендикуляров к его сторонам, поскольку она равноудалена от всех его вершин. Например, в прямоугольнике такой точкой является точка пересечения диагоналей.
Четырехугольник называют описанным около окружности, если все его стороны касаются окружности. Окружность при этом называют вписанной в четырехугольник (рис. 95).
Теорема 3 (свойство сторон описанного четырехугольника). В описанном четырехугольнике суммы противолежащих сторон равны.
Доказательство:
Пусть четырехугольник – описанный, – точки касания (рис. 96). По свойству отрезков касательных, проведенных из одной точки к окружности,
Ha рисунке 96 равные отрезки обозначены одинаковым цветом.
Тогда
Следовательно,
Как известно из курса геометрии 7 класса, в любой треугольник можно вписать окружность. Для четырехугольников это не так.
Теорема 4 (признак описанного четырехугольника). Если в четырехугольнике суммы противолежащих сторон равны, то в этот четырехугольник можно вписать окружность.
Доказательство этой теоремы является достаточно громоздким, поэтому его не приводим.
Следствие. В любой ромб можно вписать окружность.
Как и в треугольнике, центром окружности, вписанной в четырехугольник, является точка пересечения биссектрис его углов. Так как диагонали ромба являются биссектрисами его углов, то центр вписанной в ромб окружности – точка пересечения диагоналей.
Теорема Фалеса
Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.
Доказательство:
Пусть параллельные прямые пересекают стороны угла с вершиной (рис. 101), при этом Докажем, что
1) Проведем через точки и прямые и параллельные прямой (по условию), (как соответственные углы при параллельных прямых и (как соответственные углы при параллельных прямых и Поэтому
(по стороне и двум прилежащим к ней углам), а значит, (как соответственные стороны равных треугольников).
2) Четырехугольник – параллелограмм (по построению). Поэтому Аналогично -параллелограмм, поэтому
Таким образом, следовательно что и требовалось доказать.
Следствие. Параллельные прямые, пересекающие две данные прямые и отсекающие на одной из них равные отрезки, отсекают равные отрезки и на другой прямой.
С помощью линейки без делений по теореме Фалеса возможно разделить отрезок на любое количество равных частей.
Пример №9
Разделите отрезок на б равных частей.
Решение:
1) Пусть – данный отрезок (рис. 102). Проведем произвольный луч и отложим на нем циркулем последовательно 6 отрезков:
2) Через точки и проведем прямую.
3) Через точки – с помощью угольника и линейки проведем прямые, параллельные прямой Тогда по теореме Фалеса эти прямые разделят отрезок АВ на 6 равных частей:
Фалес Милетский – древнегреческий математик и астроном. По давней традиции его считают одним из так называемых семи мудрецов света, ведь он был одним из самых выдающихся математиков своего времени.
В молодые годы любознательный юноша отправился путешествовать по Египту с целью познакомиться с египетской культурой и Фалес не только быстро изучил то, что в то время уже было известно египетским ученым, но и сделал ряд собственных научных открытий. Он самостоятельно определил высоту египетских пирамид по длине их тени, чем очень удивил египетского фараона Амазиса, а вернувшись на родину, создал в Милети философскую школу.
По мнению историков Фалес был первым, кто познакомил греков с геометрией и стал первым греческим астрономом. Он предсказал солнечное затмение, произошедшее 28 мая 585 года до н. э.
На гробнице Фалеса высечена надпись: «Насколько мала эта гробница, настолько велика слава этого царя астрономов в области звезд».
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Четырехугольники и окружность
- Параллелограмм, его свойства и признаки
- Площадь параллелограмма
- Прямоугольник и его свойства
- Сумма углов треугольника
- Внешний угол треугольника
- Свойство точек биссектрисы угла
- Свойство катета прямоугольного треугольника, лежащего против угла в 30°
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
[spoiler title=”источники:”]
http://matworld.ru/geometry/vpisannyj-chetyrekhugolnik.php
http://www.evkova.org/chetyirehugolnik-i-ego-elementyi
[/spoiler]
§ 21. Описанная и вписанная окружности треугольника
Определение
Окружность называют описанной около треугольника, если она проходит через все вершины этого треугольника.
Рис. 299 |
На рисунке 299 изображена окружность, описанная около треугольника. В этом случае также говорят, что треугольник вписан в окружность.
Центр описанной окружности треугольника равноудалён от всех его вершин. На рисунке 299 точка O — центр окружности, описанной около треугольника ABC, поэтому OA = OB = OC.
Теорема 21.1
Около любого треугольника можно описать окружность.
Доказательство
Для доказательства достаточно показать, что для любого треугольника ABC существует точка O, равноудалённая от всех его вершин. Тогда точка O будет центром описанной окружности, а отрезки OA, OB и OC — её радиусами.
На рисунке 300 изображён произвольный треугольник ABC. Проведём серединные перпендикуляры k и l сторон AB и AC соответственно. Пусть O — точка пересечения этих прямых. Так как точка O принадлежит серединному перпендикуляру k, то OA = OB. Поскольку точка O принадлежит серединному перпендикуляру l, то OA = OC. Значит, OA = OB = OC, т. е. точка O равноудалена от всех вершин треугольника.
Заметим, что около треугольника можно описать только одну окружность. Это следует из того, что серединные перпендикуляры k и l (см. рис. 300) имеют только одну точку пересечения. Следовательно, существует только одна точка, равноудалённая от всех вершин треугольника.
Следствие 1
Три серединных перпендикуляра сторон треугольника пересекаются в одной точке.
Следствие 2
Центр окружности, описанной около треугольника, — это точка пересечения серединных перпендикуляров его сторон.
Определение
Окружность называют вписанной в треугольник, если она касается всех его сторон.
На рисунке 301 изображена окружность, вписанная в треугольник. В этом случае также говорят, что треугольник описан около окружности.
Точка O (рис. 301) — центр вписанной окружности треугольника ABC, отрезки OM, ON, OP — радиусы, проведённые в точки касания, OM ⊥ AB, ON ⊥ BC, OP ⊥ AC. Поскольку OM = ON = OP, то центр вписанной окружности треугольника равноудалён от всех его сторон.
Рис. 300 |
Рис. 301 |
Рис. 302 |
Теорема 21.2
В любой треугольник можно вписать окружность.
Доказательство
Для доказательства достаточно показать, что для любого треугольника ABC существует точка O, удалённая от каждой его стороны на некоторое расстояние r. Тогда в силу следствия из теоремы 20.4 точка O будет центром окружности радиуса r, которая касается сторон AB, BC и AC.
На рисунке 302 изображён произвольный треугольник ABC. Проведём биссектрисы углов A и B, O — точка их пересечения. Так как точка O принадлежит биссектрисе угла A, то она равноудалена от сторон AB и AC (теорема 19.2). Аналогично, так как точка O принадлежит биссектрисе угла B, то она равноудалена от сторон BA и BC. Следовательно, точка O равноудалена от всех сторон треугольника.
Заметим, что в треугольник можно вписать только одну окружность. Это следует из того, что биссектрисы углов A и B (см. рис. 302) пересекаются только в одной точке. Следовательно, существует только одна точка, равноудалённая от сторон треугольника.
Следствие 1
Биссектрисы углов треугольника пересекаются в одной точке.
Следствие 2
Центр окружности, вписанной в треугольник, — это точка пересечения его биссектрис.
Задача. Докажите, что радиус окружности, вписанной в прямоугольный треугольник, определяется по формуле , где r — радиус вписанной окружности, a и b — катеты, c — гипотенуза.
Рис. 303 |
Решение. В треугольнике ABC ∠ACB = = 90°, BC = a, AC = b, AB = c, точка O — центр вписанной окружности, M, E и K — точки касания вписанной окружности со сторонами BC, AC и AB соответственно (рис. 303).
Отрезок OM — радиус окружности, проведённый в точку касания. Тогда OM ⊥ BC.
Так как точка O — центр вписанной окружности, то CO — биссектриса угла ACB, следовательно, ∠OCM = 45°. Тогда треугольник CMO — равнобедренный прямоугольный, CM = OM = r.
Используя свойство отрезков касательных, проведённых к окружности через одну точку, получаем: CE = CM. Поскольку CM = r, то CE = r. Получаем AK = AE = b – r; BK = BM = a – r.
Так как AK + BK = AB, то b – r + a – r = c, 2r = a + b – c, .
- Какую окружность называют описанной около треугольника?
- Какой треугольник называют вписанным в окружность?
- Около какого треугольника можно описать окружность?
- Какая точка является центром окружности, описанной около треугольника?
- Какую окружность называют вписанной в треугольник?
- Какой треугольник называют описанным около окружности?
- В какой треугольник можно вписать окружность?
- Какая точка является центром окружности, вписанной в треугольник?
Практические задания
540.Начертите разносторонний остроугольный треугольник.
1)Пользуясь линейкой со шкалой и угольником, найдите центр окружности, описанной около данного треугольника.
2)Опишите около треугольника окружность.
Выполните задания 1 и 2 для разносторонних прямоугольного и тупоугольного треугольников.
Рис. 304 |
541.Начертите:
1)равнобедренный остроугольный треугольник;
2)равнобедренный тупоугольный треугольник.
Выполните задания 1 и 2 из задания 540.
542.Перерисуйте в тетрадь рисунок 304. Проведите через точки A, B, C окружность, пользуясь линейкой со шкалой, угольником и циркулем.
543.Начертите разносторонний треугольник.
1)Пользуясь линейкой и транспортиром, найдите центр окружности, вписанной в данный треугольник.
2)Пользуясь угольником, найдите точки касания вписанной окружности со сторонами треугольника.
3)Впишите в данный треугольник окружность.
544.Начертите равнобедренный треугольник. Выполните задания 1, 2 и 3 из задания 543.
Упражнения
545.Докажите, что центр описанной окружности равнобедренного треугольника принадлежит прямой, которая содержит медиану, проведённую к его основанию.
546.Докажите, что центр вписанной окружности равнобедренного треугольника принадлежит высоте, проведённой к его основанию.
547.Докажите, что если центр вписанной окружности треугольника принадлежит его высоте, то этот треугольник — равнобедренный.
548.Докажите, что центр описанной окружности равностороннего треугольника является точкой пересечения его биссектрис.
549.На рисунке 305 в треугольники ABD и CBD вписаны окружности с центрами O1 и O2 соответственно. Докажите, что ∠O1DO2 — прямой.
550.На рисунке 306 в треугольники ABD и CBD вписаны окружности с центрами O1 и O2 соответственно, ∠ABC = 50°. Найдите угол O1BO2.
551.Через центр O окружности, описанной около треугольника ABC, провели прямую, перпендикулярную стороне AC и пересекающую сторону AB в точке M. Докажите, что AM = MC.
552.Окружность, вписанная в треугольник ABC (рис. 307), касается его сторон в точках M, K и E, BK = 2 см, KC = 4 см, AM = 8 см. Найдите периметр треугольника ABC.
553.Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и E, AM = 13 см, BK = 3 см, периметр треугольника ABC равен 46 см. Найдите длину стороны AC.
Рис. 305 |
Рис. 306 |
Рис. 307 |
554.Докажите, что если центр окружности, описанной около треугольника, принадлежит его высоте, то этот треугольник равнобедренный.
555.Докажите, что если центр окружности, вписанной в треугольник, принадлежит его медиане, то этот треугольник равнобедренный.
556.Докажите, что если центры вписанной и описанной окружностей треугольника совпадают, то этот треугольник равносторонний.
557.Боковая сторона равнобедренного треугольника делится точкой касания вписанной окружности в отношении 7 : 5, считая от вершины треугольника. Найдите стороны треугольника, если его периметр равен 68 см.
558.Периметр треугольника ABC, описанного около окружности, равен 52 см. Точка касания со стороной AB делит эту сторону в отношении 2 : 3, считая от вершины A. Точка касания со стороной BC удалена от вершины C на 6 см. Найдите стороны треугольника.
559.В треугольник с углами 30°, 70° и 80° вписана окружность. Найдите углы треугольника, вершины которого являются точками касания вписанной окружности со сторонами данного треугольника.
560.Окружность, вписанная в равнобедренный треугольник ABC, касается его боковых сторон AB и BC в точках M и N соответственно. Докажите, что MN ‖ AC.
561.Докажите, что если центр окружности, описанной около треугольника, принадлежит его стороне, то этот треугольник — прямоугольный.
562.В треугольник ABC вписана окружность, касающаяся стороны AB в точке M, BС = a. Докажите, что AM = p – a, где p — полупериметр треугольника ABC.
563.К окружности, вписанной в равносторонний треугольник со стороной a, провели касательную, пересекающую две его стороны. Найдите периметр треугольника, который эта касательная отсекает от данного.
564.В равнобедренный треугольник ABC (AB = BC) с основанием 10 см вписана окружность. К этой окружности проведены три касательные, отсекающие от данного треугольника треугольники ADK, BEF и CMN. Сумма периметров этих треугольников равна 42 см. Чему равна боковая сторона данного треугольника?
565.В треугольнике ABC отрезок BD — медиана, AB = 7 см, BC = 8 см. В треугольники ABD и BDC вписали окружности. Найдите расстояние между точками касания этих окружностей с отрезком BD.
566.Каждый из углов BAC и ACB треугольника ABC разделили на три равные части (рис. 308). Докажите, что ∠AMN = ∠CMN.
567.Пусть вершина угла B недоступна (рис. 309). С помощью транспортира и линейки без делений постройте прямую, содержащую биссектрису угла B.
Рис. 308 |
Рис. 309 |
568.Точки F и O — центры вписанной и описанной окружностей равнобедренного треугольника ABC соответственно (рис. 310). Они находятся на одинаковом расстоянии от его основания AC. Найдите углы треугольника ABC.
Упражнения для повторения
569.Биссектриса угла ABC образует с его стороной угол, равный углу, смежному с углом ABC. Найдите угол ABC.
570.В равнобедренном треугольнике из вершины одного угла при основании провели высоту треугольника, а из вершины другого угла при основании — биссектрису треугольника. Один из углов, образовавшихся при пересечении проведённых биссектрисы и высоты, равен 64°. Найдите углы данного треугольника.
571.На рисунке 311 BC ‖ AD, AB = 3 см, BC = 10 см. Биссектриса угла BAD пересекает отрезок BC в точке K. Найдите отрезки BK и KC.
Рис. 310 |
Рис. 311 |
572.В треугольнике ABC известно, что AB = BC, AM и CK — медианы этого треугольника. Докажите, что MK ‖ AC.
Наблюдайте, рисуйте, конструируйте, фантазируйте
Рис. 312 |
573.В квадрате ABCD вырезали заштрихованную фигуру (рис. 312). Разделите оставшуюся часть квадрата на четыре равные фигуры.
Четыре замечательные точки треугольника
Замечательные точки треугольника — это точки, расположение которых однозначно определяется треугольником и не зависит от того, в каком порядке рассматривать его стороны и углы.
Всего замечательных точек четыре. Две из них открыл Евклид, вписывая в треугольник окружности, третья, точка пересечения медиан, обнаружена Архимедом. Четвертая, в которой пересекаются высоты треугольника, не упоминалась в трудах Евклида, но описывалась в трудах его современников. Возможно, Евклид и Архимед просто упорядочили и записали доказательства теорем, известных задолго до них.
Особенность замечательных точек в том, что они в любом треугольнике являются пересечением трех линий, при этом их свойства не меняются:
- биссектрисы пересекаются в центре вписанного круга;
- перпендикуляры от середин сторон пересекаются в центре описанного круга;
- высоты пересекаются в ортоцентре, точки, симметричные ортоцентру относительно сторон треугольника, находятся на описанном круге;
- медианы пересекаются в барицентре (он же центроид, или геометрический центр).
В XVIII веке математик Леонард Эйлер, исследуя геометрию треугольников, доказал, что три из этих точек — ортоцентр, барицентр и центр описанного круга — всегда расположены на одной линии. Она называется прямой Эйлера. Точки стали называть «замечательными» или «особенными».
Четыре замечательные точки треугольника
Точка пересечения медиан треугольника
В ней находится центр тяжести однородной треугольной пластины, также она является средним арифметическим положений всех точек треугольника.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Медианы треугольника пересекаются в его геометрическом центре и делятся в этой точке в отношении 2:1, считая от вершин.
Доказательство
Обозначим точку пересечения медиан О и проведем среднюю линию треугольника (А^1В^1) .
Отрезок (А_1В_1) параллелен (АВ) , поэтому углы 1, 2, 3 и 4 равны друг другу. Таким образом, треугольники (АОВ) и (А_1ОВ_1) подобны по двум углам, и их стороны пропорциональны. (АВ = 2А_1В_1) , значит, (АО = 2А_1О) и (ВО = 2В_1О) , а точка О разделяет медианы на отрезки с отношением 2:1, считая от вершин. Аналогично она делит медиану (СС_1) .
Точка пересечения биссектрис треугольника
Точка пересечения трех биссектрис расположена на равном расстоянии от всех сторон треугольника и находится в центре вписанного в треугольник круга.
Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.
Биссектрисы треугольника пересекаются в одной точке.
Доказательство
Проведем из точки пересечения биссектрис (АА_1) и (ВВ_1) отрезки (ОК) , (ОL) и (ОМ) , перпендикулярные трем сторонам треугольника.
Согласно теореме о равной удаленности точек биссектрисы от сторон угла, ОК = ОМ и ОК = ОL. Соответственно, ОМ = ОL, точка О находится на равном расстоянии от сторон угла АСВ и расположена на биссектрисе. Таким образом, все три биссектрисы пересекутся в одной точке.
Точка пересечения серединных перпендикуляров треугольника
Линии, проходящие через середины сторон треугольника перпендикулярно к ним, пересекаются в центре круга, описанного вокруг треугольника. В остроугольном треугольнике точка пересечения перпендикуляров расположена внутри него, в тупоугольном — снаружи. Если треугольник прямоугольный, точка находится на гипотенузе.
Каждая точка серединного перпендикуляра равноудалена от концов отрезка, к которому он перпендикулярен.
Серединные перпендикуляры от сторон треугольника пересекаются в одной точке.
Доказательство
Изобразим внутри треугольника АВС перпендикуляры m и n, отметим точку их пересечения О.
Согласно теореме о равной удаленности серединных перпендикуляров от концов отрезка, ОВ = ОА и ОВ = ОС. Соответственно, ОА = ОС, и точка О находится на одинаковом расстоянии от точек А и С. Таким образом, серединный перпендикуляр р к отрезку АС тоже будет проходить через точку О, и все три перпендикуляра пересекутся в одной точке.
Точка пересечения высот треугольника
Высоты или их продолжения могут пересекаться как внутри треугольника, если он остроугольный, так и вне его, если он тупоугольный. Если треугольник прямоугольный, тогда ортоцентр совпадает с вершиной прямого угла.
Высоты треугольника или их продолжения пересекаются в одной точке.
Доказательство
Изобразим произвольный треугольник (АВС) и прямые (AA_1) , (BB_1) и (СС_1) , содержащие его высоты. Проведем через каждую вершину прямые, параллельные противоположным сторонам треугольника, получив треугольник ( A_2B_2C_2) . Точки А, В и С окажутся серединами его сторон. ( АВ = A_2C = В_2C) , так как эти отрезки являются противоположными сторонами параллелограммов (АВА_2С) и (АВСВ_2) . Соответственно, (С_2А = АВ_2) и (С_2В = ВА_2) .
Из построения следует, что отрезок (СС_1) перпендикулярен (А_2В_2) , (АА_1 perp В_2С_2) и (ВВ_1 perp А_2С_2) . Следовательно, прямые (АА_1) , (ВВ_1) и (СС_1) — серединные перпендикуляры сторон треугольника (А_2В_2С_2) , которые пересекутся в одной точке.
Примеры решения задач
Задача 1
Серединные перпендикуляры к сторонам АВ и АС треугольника АВС пересекаются в точке D, лежащей на стороне треугольника ВС. Докажите, что точка D — середина стороны ВС.
Решение
Изобразим треугольник АВС.
Все серединные перпендикуляры должны пересекаться в одной точке, если два из них уже пересеклись, третий тоже должен проходить через точку D. Таким образом, точка D является основанием третьего серединного перпендикуляра и расположена посередине стороны ВС.
Задача 2
Биссектрисы (AA_1) и (BB_1) треугольника АВС пересекаются в точке D. Найдите углы АСD и ВСD, если известно, что угол АDB составляет (136^circ) .
Решение
Поскольку биссектрисы пересекаются в точке D, луч СD является биссектрисой. Тогда
(angle АСD;=;angle BCD;=;136^circ;-;90^circ;=;46^circ)
Насколько полезной была для вас статья?
Рейтинг: 4.25 (Голосов: 12 )
Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»
Текст с ошибкой:
Расскажите, что не так
Комплексное число — это выражение вида x=a+bcdot i , где a и b — вещественные числа, а i — так называемая «мнимая единица». Если возвести ее в квадрат, получится отрицательное число. Таким образом, она определяется равенством i=sqrt или i^2=-1. Извлечение корня Определение Корнем со степенью n, извлеченным из комплексного числа z называют то число w, у которого n-ая степень равна z и обозначается как sqrt[n]z. Не существует однозначного извлечения корня из комплексного числа, так как он имеет то количество значений, которое равно его степени. Тригонометрическая форма Если число z представлено в тригонометрической форме z=left|zright|cdotleft(cosleft(фright)+isinleft(фright)right), то значения корня n-ой степени находятся по формуле: sqrt[n]z=sqrt[n]cdot(cosleft(fracnright)+isinleft(fracnright)). Где |z| — модуль комплексного числа, ф — аргумент, k — параметр, значения у которого 0,1,2…n-1. Если посмотреть на извлечение корня n-ой степени с точки зрения геометрии, центр окружности с радиусом sqrt[n]z расположен в точке О (0; 0), а все полученные значения, расположенные на ней, образуют правильный n-угольник (как это представлено на чертеже выше). Алгебраическая форма Если из данного числа z нужно извлечь корень n-ой степени, а он представлен в алгебраической или показательной форме, необходимо выполнить извлечение по пунктам: Представить число в тригонометрической форме: вычислить модуль left|zright| и аргумент (ф). Полученные значения применить в тригонометрической форме: z=left|zright|cdotleft(cosleft(фright)+isinleft(фright)right). Извлечь корни по формуле, приведенной выше. Алгоритм вычисления квадратного и кубического корня Задача на кубический корень Задача: Извлечь кубический корень sqrt[3]z, где z=frac12+frac12cdot i в алгебраической форме. Решение: Вспомним, что тригонометрическая форма записи комплексного числа выглядит так: z=left|zright|cdotleft(cosleft(фright)+isinleft(фright)right). По условию мы знаем, что a=frac12 и b=frac12. Можем вычислить исходное значение комплексного числа: r=sqrt=sqrt=sqrt=frac1. Теперь посчитаем аргумент исходного комплексного числа: ф=arg(z)=arctanleft(fracright)=arctanleft(1right)=fracpi4. Далее подставим значения в тригонометрическую форму записи и получим: z=frac2cdotleft(cosleft(fracpi4right)+isinleft(fracpi4right)right). Мы знаем, что корнем n-ой степени некоторого числа z=left|zright|cdotleft(cosleft(фright)+isinleft(фright)right) является комплексное число, определяемое следующим равенством: sqrt[n]z=sqrt[n]cdot(cosleft(fracnright)+isinleft(fracnright)). Воспользуемся этой формулой: Для k=0: w_1=sqrt[3]z=sqrt[3]>cdotleft(cosleft(fracpiright)+icdotsinleft(fracpiright)right). Для k=1 будет справедливо уравнение: w_2=sqrt[3]z=sqrt[3]>cdotleft(cosleft(frac3right)+icdotsinleft(frac3right)right)=sqrt[3]>cdotleft(cosleft(frac4right)+icdotsinleft(frac4right)right). Для k=2: w_3=sqrt[3]z=sqrt[3]>cdotleft(cosleft(frac3right)+icdotsinleft(frac3right)right)=sqrt[3]>cdotleft(cosleft(fracright)+icdotsinleft(fracright)right). Задача на квадратный корень Задача: Извлечь корень sqrt z для заданных комплексных чисел в показательной форме: z=3cdot e^. Решение: Определим значение модуля и аргумента в тригонометрической форме записи: z=left|zright|cdotleft(cosleft(фright)+isinleft(фright)right): r=3, ф=fracpi3. Подставляем ф в равенство: z=3cdotleft(cosleft(fracpi3right)+isinleft(fracpi3right)right). Воспользуемся формулой sqrt[n]z=sqrt[n]cdot(cosleft(fracnright)+isinleft(fracnright)). Для k=0 справделиво уравнение: w_1=sqrt z=sqrt3cdotleft(cosleft(fracpi6right)+isinleft(fracpi6right)right); Для k=1: w_2=sqrt z=sqrt3cdotleft(cosleft(frac2right)+isinleft(frac2right)right)=sqrt3cdotleft(cosleft(frac6right)+isinleft(frac6right)right).
Ход урока
1. Проверить решение задачи № 24 по записям (с пробелами), сделанными на доске до начала урока.
Решение задачи № 24 Пусть АВα (рис. 166).
1) ВС = 40 см, BD =. ; пусть AD = х см, тогда АС=. С ΔАВ D : АВ2 = х2 -122 = х2 — 144. Из ΔАВС АВ2. Тогда х2 — 144 = (х + 26)2 — 402; 52х=. ; х =15. Следовательно, AD=. AC = 41 см.
2) BD=. BC=7 см; пусть А D =. тогда AC = 2х см.
С ΔАВ D AB2=. Из Δ АВС АВ2 = 4х2 — 49.
Тогда х2 — 1 = . ; 3х2 = . ; х2 = 16. Отсюда х = . ; следовательно, AD =. AC = 2·4 = 8 (см).
Ответ. 1) 15 см и 41 см; 2) 4 см и 8 см.
2. Математический диктант.
МО — перпендикуляр к плоскости ОАВ; AOB = 90° (рис. 167); МА и МВ — наклонные.
Вариант 1 — МО = 1 см, ОА = 3 см, MB = см;
вариант 2 — МЕ = 1 см, ОВ = 4 см, МА = см. Пользуясь рисунком, найдите:
1) длину неизвестной наклонной; (2 балла)
2) длину неизвестной проекции наклонной; (2 балла)
3) длину отрезка АВ; (2 балла)
4) расстояние от точки В до середины отрезка АВ; (2 балла)
5) расстояние от точки М до середины отрезка АВ; (2 балла)
6) расстояние от точки А до плоскости ЯЗЫКОВ. (2 балла)
Ответ. Вариант 1.1) см; 2) см; 3) см; 4) см; 5) см; 6) 3 см.
Вариант 2. 1) см; 2) 3 см; 3) 5 см; 4) 2,5 см; 5) см; 6) 3 см.
II. Восприятие и осознание нового материала
Свойство точки, равноудаленной от вершины многоугольника
Если через центр окружности, описанной вокруг многоугольника, проведено прямую, перпендикулярную к плоскости многоугольника, то каждая точка этой прямой равноудалена от вершин многоугольника.
Доведение
Пусть ABCD — четырехугольник, вокруг которого описана окружность с центром в точке О, и OS(ABC). Докажем, что SA = SB = SC = SD (рис. 168).
ΔASO = ΔBSO = ΔCSO = ΔDSO (за двумя катетами: SO — общая, АО = BO = CO = DO).
Из равенства треугольников следует, что SA = SB = SC = SD.
Если некоторая точка равноудалена от вершин многоугольника, то основание перпендикуляра, опущенного из данной точки на плоскость многоугольника, совпадает с центром окружности, описанной вокруг многоугольника.
Доведение
Пусть ABCD — данный четырехугольник, для точки S пространства SA = SB = SC = SD и SOАВС. Докажем, что точка О — центр окружности, описанной вокруг ABCD (рис. 168). ΔASO = ΔBSО = ΔCSO = ΔDSO (по гипотенузой и катетом: SO — совместный, AS = BS = CS = DS — по условию). Из равенства треугольников следует, что АО = BO = CO = DO, т.е. точка О — центр окружности, описанной вокруг четырехугольника ABCD.
Далее следует напомнить формулы для нахождения радиуса круга, описанного вокруг некоторых многоугольников, с помощью данной настенной таблицы.
1. ABC = 90°; МА = MB = МС (рис. 169). Опустите из точки М перпендикуляр на плоскость АВС.
2. ABCD — квадрат, АВ = 4 см, МА = MB = MC = MD = 5 см (рис. 170). Найдите расстояние от точки М до плоскости АВС.
3. АВ = ВС = АС = 5 см; МА = MB = MC = 13 см (рис. 171). Найдите расстояние от точки М до плоскости АВС.
4. ABCD — квадрат, SO( ABC ), SO = 2см, АВ = 4 см (рис. 172). Найдите расстояние от точки S до вершин квадрата.
5. Δ АВС — правильный; точка О — центр треугольника; АВ = 3см; SO(АВС); SO = см (рис. 173). Найдите расстояние от точки 5 до вершин треугольника АВС.
6. Задача 21 из учебника (с. 35).
7. Задача 20* из учебника (с. 35).
III. Домашнее задание
Задачи № 6, 17-19 (с. 34-35).
IV. Подведение итога урока
Вопрос к классу
1) Какое свойство имеют точки, которые лежат на перпендикуляре, проведенном к плоскости многоугольника через центр окружности, описанной вокруг многоугольника?
2) Где находятся точки, равноудаленные от вершин некоторого многоугольника?
3) Через центр О правильного шестиугольника ABCDEF проведем перпендикуляр SO к плоскости АВС (рис. 174). Укажите, какие из приведенных утверждений правильные, а какие — неправильные:
а) расстояния от точки S до вершин шестиугольника ABCDEF разные;
б) угол OAS равен углу OCS;
в) если ОА = 1 cm, SO = 1 см, то SA = cm;
г) если SO = OB, то OSB = 60°.
4) Расстояния от точки S до всех вершин прямоугольника ABCD равны, точка О — точка пересечения диагоналей АС и BD прямоугольника ABCD. Укажите, какие из приведенных утверждений правильные, а какие — неправильные:
Четыре замечательные точки треугольника
В треугольнике есть так называемые четыре замечательные точки: точка пересечения медиан. Точка пересечения биссектрис, точка пересечения высот и точка пересечения серединных перпендикуляров. Рассмотрим каждую из них.
Точка пересечения медиан треугольника
О пересечении медиан треуголника: Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.
Доказательство.
Рассмотрим треугольник $ABC$, где $_1, _1, _1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 1).
Рисунок 1. Медианы треугольника
По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $angle ABB_1=angle BB_1A_1, angle BAA_1=angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда
Аналогично доказывается, что
Точка пересечения биссектрис треугольника
О пересечении биссектрис треугольника: Биссектрисы треугольника пересекаются в одной точке.
Доказательство.
Рассмотрим треугольник $ABC$, где $AM, BP, CK$ его биссектрисы. Пусть точка $O$ — точка пересечения биссектрис $AM и BP$. Проведем из этой точки перпендикуляры к сторонам треугольника (рис. 2).
Рисунок 2. Биссектрисы треугольника
Готовые работы на аналогичную тему
Для доказательства нам потребуется следующая теорема.
Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.
По теореме 3, имеем: $OX=OZ, OX=OY$. Следовательно, $OY=OZ$. Значит точка $O$ равноудалена от сторон угла $ACB$ и, значит, лежит на его биссектрисе $CK$.
Точка пересечения серединных перпендикуляров треугольника
Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Доказательство.
Пусть дан треугольник $ABC$, $n, m, p$ его серединные перпендикуляры. Пусть точка $O$ — точка пересечения серединных перпендикуляров $n и m$ (рис. 3).
Рисунок 3. Серединные перпендикуляры треугольника
Для доказательства нам потребуется следующая теорема.
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов данного отрезка.
По теореме 3, имеем: $OB=OC, OB=OA$. Следовательно, $OA=OC$. Значит точка $O$ равноудалена от концов отрезка $AC$ и, значит, лежит на его серединном перпендикуляре $p$.
Точка пересечения высот треугольника
Высоты треугольника или их продолжения пересекаются в одной точке.
Доказательство.
Рассмотрим треугольник $ABC$, где $_1, _1, _1$ его высоты. Проведем через каждую вершину треугольника прямую, параллельную противоположной вершине стороне. Получаем новый треугольник $A_2B_2C_2$ (рис. 4).
Рисунок 4. Высоты треугольника
Так как $AC_2BC$ и $B_2ABC$ параллелограммы с общей стороной, то $AC_2=AB_2$, то есть точка $A$ — середина стороны $C_2B_2$. Аналогично, получаем, что точка $B$ — середина стороны $C_2A_2$, а точка $C$ — середина стороны $A_2B_2$. Из построения мы имеем, что $_1bot A_2B_2, _1bot A_2C_2, _1bot C_2B_2$. Следовательно, $_1, _1, _1$ — серединные перпендикуляры треугольника $A_2B_2C_2$. Тогда, по теореме 4, имеем, что высоты $_1, _1, _1$ пересекаются в одной точке.
Пример задачи на использование 4 замечательных точек треугольника
Серединные перпендикуляры к сторонам $AB$ и $AC$ треугольника $ABC$ пересекаются в точке $D$ стороны $BC$. Докажите, что
а) точка $D$ — середина стороны $BC$.
б) $angle A=angle B+angle C$
Решение.
а) По теореме 4, все серединные перпендикуляры пересекаются в точке $D$. Следовательно, $D$ — основание серединного перпендикуляра к стороне $BC$. Значит точка $D$ — середина стороны $BC$.
б) Так как $X$ и $D$ — середины сторон, то $XD$ — средняя линия треугольника. Тогда, по теореме о средней линии треугольника $XD||AC$. Значит,$angle A=angle DXB$, как соответственные углы. Значит, $angle A=^0$. Тогда$angle B+angle C=^0-angle A=^0-^0=^0=angle A$