Как найти ток если известно только сопротивление

Как разными способами найти силу тока

Содержание

  • 1 Зачем нужно находить силу тока
  • 2 Вычисление тока, если известны мощность и напряжение
  • 3 Определение мощности прибора
  • 4 Вычисление тока при известных значениях напряжения и сопротивления
  • 5 Использование мощности и сопротивления
  • 6 Непосредственное измерение силы тока
  • 7 Видео по теме

Знание силы тока в электрической цепи является в некоторых случаях необходимым. Ее определяют не только с помощью непосредственного измерения, но и расчетов. В последнем случае нужную информацию можно получить на основе технических характеристик оборудования.

Зависимости между основными электрическими величинами

Зависимости между основными электрическими величинами

Зачем нужно находить силу тока

Любое вещество состоит из атомов, которые включают в себя положительно заряженное ядро и вращающиеся вокруг него электроны. При отсутствии электрического поля движение этих частиц является хаотичным. Но как только проводник становится частью электрической цепи, подключённой к источнику питания, электроны начинают двигаться по направлению к положительному полюсу.

Ток проявляется через заряд. Каждый электрон несёт в себе элементарный отрицательный электрический заряд. Сила тока — это количество электронов, проходящих через поперечное сечение проводника за какой-то отрезок времени. Следовательно, можно сделать вывод, что рассматриваемый параметр определяют заряд и время.

Электроток выраженный через заряд и время

Электроток, выраженный через заряд и время

Найти силу тока в проводнике можно только в том случае, когда электрическая цепь подключена к источнику питания. Например, это может быть включение бытового прибора в электросеть с переменным напряжением, равным 220 В. Разным приборам для работы нужна разная мощность. В некоторых случаях даже выключенное оборудование может потреблять небольшое количество электричества, если оставить его вилку в розетке. Поэтому рассчитать силу тока в цепи можно через мощность и напряжение.

Слишком интенсивный электроток способен создавать проблемы. Он может, например, привести к перегреву деталей или к их разрушению. Если большой ток пройдёт через человека, то это нанесет серьёзный вред его здоровью или даже станет опасным для жизни. Для нормального и безопасного функционирования оборудования важно, чтобы электроток соответствовал установленным нормативам. Определение силы тока по мощности и напряжению позволяет проверить, насколько она соответствует требованиям.

Вычисление тока, если известны мощность и напряжение

Есть простой способ, как узнать ток, зная мощность и напряжение. В данном случае рассчитать постоянный ток можно по формуле:

Вычисление электротока при известных значениях напряжения и мощности

Расчет для переменного тока через мощность усложняется, поскольку его величина и направление постоянно меняются. Это обстоятельство нужно учитывать при расчетах. Если питание однофазное, то используется такая формула:

Формула электротока для однофазной сети

Чтобы определить силу переменного тока в трехфазной сети, следует воспользоваться формулой:

Расчет для трехфазной сети

При рассмотрении переменного тока нужно учитывать не только активную, но и реактивную мощность. Первая связана с активным сопротивлением, а вторая — с реактивным (ёмкостным и индуктивным). Соотношение между различными видами отражается с помощью cos φ.

Косинус угла «фи» обычно указывают в технической документации прибора. Если эту информацию нельзя получить из документации, то в расчетах очень мощных устройств принимают значение 0.8. Для большинства обычных бытовых приборов в вычислениях используют 0.95.

Подставив в формулу, применяемую для определения силы тока на участке цепи, значения напряжения U = 220 В для однофазной цепи и 380 В для трехфазной, а также cos φ = 0.95, получим следующие выражения:

Вычисление силы тока для однофазной и трехфазной сети

Как видим, сила тока в трехфазной и однофазной сети при одинаковой нагрузке будет разной. В однофазной она втрое больше, чем в трехфазной.

Определение мощности прибора

Перед тем как найти силу электрического тока, нужно определить величину используемой мощности:

  • Ее значение должно указываться в технической документации. Однако она не всегда доступна. В частности, документация может быть утеряна.
  • На задней панели приборов часто имеется наклейка, на которой приведены важнейшие характеристики устройства. В числе прочих обычно указывают мощность.

Задняя панель прибора с указанием основных данных

Задняя панель прибора с указанием основных данных

  • Можно воспользоваться таблицей с указанием средних значений мощности для различных видов устройств.

Мощность разных приборов

Мощность разных приборов

При вычислениях необходимо помнить, что пусковая мощность может превышать рабочую. Расчёт силы тока должен учитывать обе этих величины. Когда пусковая мощность вызывает резкое мгновенное увеличение силы тока, оно не должно превышать допустимой величины. Для бытовой техники пусковую мощность указывают редко. Поэтому перед тем как рассчитать силу тока, необходимо обратиться к соответствующим справочникам, чтобы найти определенное значение мощности. Для получения ее точной величины следует провести измерение ваттметром.

Вычисление тока при известных значениях напряжения и сопротивления

Если известно напряжение и сопротивление, то сила тока вычисляется по формуле, вытекающей из закона Ома:

Вычисление электротока согласно закону Ома

Если известны значения ЭДС, внутреннего сопротивления и нагрузки, то можно найти силу тока, используя закон Ома для полной цепи:

Определение электротока через эдс

Использование мощности и сопротивления

Как известно, мощность можно находить по формуле.

Определение мощности

Применив в данном выражении закон Ома, можно привести его к следующему виду:

Преобразованная формула мощности

Теперь силу тока можно выразить так:

Вычисление электротока если известны мощность и сопротивление

Следовательно, вычислить силу тока можно разными способами.

Непосредственное измерение силы тока

Величину силы тока можно не только рассчитывать, но и измерять, используя такие приборы, как амперметр или мультиметр. Любой из них при измерениях должен стать частью электрической цепи. Поэтому прибор нужно подключать последовательно.

Использование амперметра и вольтметра

Если нет большой нужды измерять силу тока амперметром, то лучше вычислить этот параметр, используя формулы, даже если для этого придется измерить напряжение. Вольтметром эта процедура осуществляется без разрыва электроцепи, чего нельзя сделать при использовании амперметра.

Также применяется магнитометрический способ. Примером его использования являются токовые клещи. Перед тем как определить силу электротока, их устанавливают так, чтобы они охватывали провод. Поскольку вокруг проводника при протекании тока образуется магнитное поле, которое клещи улавливают, то по его характеристикам прибор определяет силу тока в цепи.

Видео по теме

Расчет электрических параметров необходим для правильных построений цепей. Поскольку целью использования электричества в электротехнике является задача по выполнению током работы, то встает вопрос о том, как найти силу тока. Данный параметр используют при вычислениях мощности и в расчетах потребления электрической энергии.

Существуют разные способы определения этого важного параметра, которые мы рассмотрим в данной статье.

Формулами

Параметры электрического тока всегда взаимосвязаны. Например, изменение величины нагрузки отображается на показателях других величин. Причем эти изменения подчиняются соответствующим законам, которые выражаются через формулы. Поэтому на практике для нахождения силы тока часто используют соответствующие формулы.

Через заряд и время

Вспомним определение (рис.1): электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.

Определение понятия сила тока

Рис. 1. Определение понятия сила тока

Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t

Через мощность и напряжение

В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U.

Данное выражение вытекает из формулы для расчета мощности: P = IU.

Через напряжение или мощность и сопротивление

Силу электричества на участке цепи определяют по закону Ома. Для этого необходимо знать следующие параметры: сопротивление и напряжение на этом участке. Тогда I = U/R. Если известна мощность нагрузки, то ее можно выразить через квадрат силы тока умноженной на сопротивление участка: P = I2R, откуда

Ток через мощность и сопротивление

Для полной цепи эту величину вычисляют по закону Ома, но с учетом параметров источника питания.

Через ЭДС, внутреннее сопротивление и нагрузку R

Применяя закон Ома, адаптированный для полной цепи, вы можете вычислить максимальный ток по формуле I = ε / (R+r′), если известны параметры:

  • внешнее сопротивление проводников (R);
  • ЭДС источника питания (ε);
  • внутреннее сопротивление источника, обладающего ЭДС (r′).

Примечание! Реальные источники питания обладают внутренним сопротивлением. Поскольку в электрической цепи
показатель силы тока может уменьшаться в связи с возрастанием сопротивления источника питания или в результате падения ЭДС. Именно из-за роста внутреннего сопротивления садится аккумулятор и ослабевает ЭДС элементов питания.

Закон Джоуля-Ленца

Казалось бы, что расчет силы тока по количеству тепла, выделяющегося в результате нагревания проводника, не имеет практического применения. Однако это не так. Рассмотрим это на примере.

Пусть требуется найти силу тока во время работы электрочайника. Для этого доведите до кипения 1 кг воды и засеките время в секундах. Предположим, начальная температура составляла 10 ºС. Тогда Q = Cm(τ – τ0) = 4200 Дж/кг× 1 кг (100 – 10) = 378 000 Дж.

Закон Джоуля-Ленца

Рис. 2. Закон Джоуля-Ленца

Из закона Джоуля-Ленца (изображение на рис. 2) вытекает формула:

Ток из закона джоуля ленца

Измерив сопротивление электроприбора и подставив значения в формулу, получим величину потребляемого тока.

Измерительными приборами

Если под руками имеются измерительные приборы, то с их помощью довольно просто найти силу тока. Необходимо лишь соблюдать правила измерений и не забывать о правилах безопасности.

Амперметром

Пользуясь приборами для измерения ампеража, следует помнить, что они подключаются в цепи последовательно. Внутреннее сопротивление амперметра очень маленькое, поэтому прибор легко выводится из строя, если проводить измерения пределами значений, для которых он рассчитан.

Схема подключения амперметра показана на рисунке 3. Обратите внимание на то, что на участке измеряемой электрической цепи обязательно должна быть нагрузка.

Схема подключения амперметра

Рис. 3. Схема подключения амперметра

Большинство аналоговых амперметров, например, таких, как на рисунке 4, предназначены для измерений параметров в цепях с постоянными токами.

Аналоговый амперметр

Рис. 4. Аналоговый амперметр

Обратите внимание распределение шкалы амперметра. Цена первого деления 50 А, а всех последующих – 10 А. Максимальная величина, которую можно измерить данным амперметром не должна превышать 300 А. Для измерений электрической величины в меньших либо в больших пределах следует применять соответствующие приборы, предназначенные для таких диапазонов. В этом смысле универсальность амперметра ограничена.

При измерениях постоянных токов необходимо соблюдать полярность щупов при подключении амперметра. Для подключения прибора требуется разрывать цепь. Это не всегда удобно. Иногда вычисление силы тока по формуле является предпочтительней, особенно если приходится проводить измерения в сложных электротехнических схемах.

Мультиметром

Преимущество мультиметра в том, что этот прибор многофункциональный. Современные мультиметры цифровые. У них есть режимы для измерений в цепях постоянных и переменных токов. В режиме измерения силы тока этот измерительный прибор подключается в цепь аналогично амперметру.

Перед включением мультиметра в цепь, всегда проверяйте режим измерений, а пределы измерения выбирайте заведомо большие предполагаемой силы тока. После первого измерения можно перейти в режим с меньшим диапазоном.

Для работы с переменным напряжением переводите прибор в соответствующий режим. Считывайте значения с дисплея после того, как цифры перестанут мелькать.

Примеры

Покажем на простых примерах, как решать задачи на вычисление силы тока по формуле.

Задача 1.

На участке цепи имеются три параллельно включенных резистора (см. рис. 5). Значения сопротивлений резисторов: R1 = 5 Ом; R2 = 25 Ом; R3 = 50 Ом. Требуется рассчитать силу тока для каждого резистора и на всём участке, если на нем поддерживается постоянное напряжение 100 В.

Пример 1

Рис. 5. Пример 1

Решение: При параллельном соединении нагрузочных элементов U  = const, то есть, напряжение одинаково на всех резисторах и составляет 100 В. Тогда, по закону Ома I = U/R

  • I1 = U/R1 =100/5 = 20 А;
  • I2 = U/R2 =100/25 ≈ 4 А;
  • I3 = U/R3 =100/50 = 2 А.

Для вычисления искомого параметра на всем участке цепи, нам необходимо знать общее сопротивление этого участка. Учитывая тот факт, что при параллельном соединении нагрузочных элементов в цепи их общее сопротивление равно:

Паралельное соединение резисторов

Имеем: 1/R= 1/5 + 1/25 + 1/50 = 13/50; R = 50/13 ≈ 3.85 (Ом)

Тогда: I = U/R = 100 В/3,85 Ом ≈26 А.

Ответ:

  • Сила тока на сопротивлениях:  I1 =20 А; I2 = 4А; I3 = 2 А.
  • Сила тока, поступающего на рассматриваемый участок цепи равна 26 А.

Задача 2.

Мощность электрочайника 2 кВт. Чайник работает от городской сети под напряжением 220 В. Сколько электричества потребляет этот электроприбор?

Решение:

Воспользуемся формулой для нахождения силы тока, включающей напряжение и мощность: I = P/U.

  • 2 кВт преобразим в ватты: 2 кВт = 2000 Вт.
  • Подставляем данные: I = 2 000 Вт/ 220 В ≈ 9 А
  • Ответ: Нагревательный элемент электрочайника рассчитан на 9 А.

Задача 3.

Вычислить силу тока в цепи, если известно, что сопротивление составляет 5 Ом, ЭДС источника питания 6 В, а его внутреннее сопротивление составляет 1 Ом.

Решение.

Применяя закон Ома для полной цепи, запишем: I = ε / (R+r′)

I = 6 В / (5 Ом + 1 Ом) = 1 А.

Ответ: сила тока 1 А.

Задача 4.

Сколько энергии потребляет электроплита за 2 часа работы, если сопротивление нагревательного элемента 40 Ом?

Решение:

За время t электричество выполнит работу A = U*I*t.

Напряжение сети известно – оно составляет 220 В.Силу тока находим по формуле: I = U/R, тогда A = (U2/R)*t или

A = ((220 В)2 / 40 Ом) * 2 ч = 2420 Втч = 2,42 кВтч

Ответ: За 2 часа работы электроплита потребляет 2,42 кВт часов электроэнергии.

Применяя формулы для вычисления параметров электричества, пользуясь фундаментальными законами физики можно находить неизвестные данные для составных элементов цепей и электроприборов с целью оценки их состояния. В каждом отдельном случае необходимо определить известные параметры тока, которые можно использовать в дальнейших вычислениях. Обычно, это напряжение, мощность или сопротивление нагрузки.

Если можно обойтись без измерений амперметром – лучше прибегнуть к вычислениям, даже если при этом потребуется измерить напряжение. Такое измерение можно проводить без разрыва электрической цепи, чего нельзя сделать при помощи амперметра.

Закон Ома

  1. Главная
  2. /
  3. Физика
  4. /
  5. Закон Ома

Чтобы посчитать Закон Ома воспользуйтесь нашим очень удобным онлайн калькулятором:

Закон Ома для участка цепи

Закон Ома для участка цепи гласит, что сила тока (I) на участке электрической цепи прямо пропорциональна напряжению (U) на концах участка цепи и обратно пропорциональна его сопротивлению (R).

Онлайн калькулятор

Найти силу тока

Напряжение: U =В
Сопротивление: R =Ом

Сила тока: I =

0

А

Сила тока

Формула

I = U/R

Пример

Если напряжение на концах участка цепи U = 12 В, а его электрическое сопротивление R = 2 Ом, то:

Сила тока на этом участке I = 12/2= 6 А

Найти напряжение

Сила тока: I =A
Сопротивление: R =Ом

Напряжение: U =

0

В

Напряжение

Формула

U = I ⋅ R

Пример

Если сила тока на участке цепи I = 6 А, а электрическое сопротивление этого участка R = 2 Ом, то:

Напряжение на этом участке U = 6⋅2 = 12 В

Найти сопротивление

Напряжение: U =В
Сила тока: I =A

Сопротивление: R =

0

Ом

Сопротивление

Формула

R = U/I

Пример

Если напряжение на концах участка цепи U = 12 В, а сила тока на участке цепи I = 6 А, то:

Электрическое сопротивление на этом участке R = 12/6 = 2 Ом

Закон Ома для полной цепи

Закон Ома для полной цепи гласит, что сила тока в цепи пропорциональна действующей в цепи электродвижущей силе (ЭДС) и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

Онлайн калькулятор

Найти силу тока

ЭДС: ε
Сопротивление всех внешних элементов цепи: R =Ом
Внутреннее сопротивление источника напряжения: r =Ом

Сила тока: I =

0

А

Формула

I = ε/R+r

Пример

Если ЭДС источника напряжения ε = 12 В, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

Сила тока I = 12/4+2 = 2 А

Найти ЭДС

Сила тока: I =А
Сопротивление всех внешних элементов цепи: R =Ом
Внутреннее сопротивление источника напряжения: r =Ом

ЭДС: ε =

0

В

Формула

ε = I ⋅ (R+r)

Пример

Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

ЭДС ε = 2 ⋅ (4+2) = 12 В

Найти внутреннее сопротивление источника напряжения

Сила тока: I =А
ЭДС: ε
Сопротивление всех внешних элементов цепи: R =Ом

Внутреннее сопротивление источника напряжения: r =

0

Ом

Формула

r = ε/I R

Пример

Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а ЭДС источника напряжения ε = 12 В, то:

Внутреннее сопротивление источника напряжения r = 12/2 – 4 = 2 Ом

Найти сопротивление всех внешних элементов цепи

Сила тока: I =А
ЭДС: ε
Внутреннее сопротивление источника напряжения: r =Ом

Сопротивление всех внешних элементов цепи: R =

0

Ом

Формула

R = ε/I – r

Пример

Если сила тока в цепи I = 2A, внутреннее сопротивление источника напряжения r = 2 Ом, а ЭДС источника напряжения ε = 12 В, то:

Сопротивление всех внешних элементов цепи: R = 12/2 – 2 = 4 Ом

См. также

Один из способов определения силы тока в резисторе – это ее прямое измерение мультиметром. Измерения следует проводить в разрыве цепи после резистора следующим образом:

– выставить на тестере максимально допустимый диапазон,

– присоединить щупы прибора к месту разрыва цепи.

Применив закон Ома, искомую величину можно также определить расчетным путем:

zakon-oma.jpg

где I – сила тока, U – напряжение, R – сопротивление (единицы измерения ампер (А), вольт (В), ом (Ом) соответственно).

В приборостроении и электротехнике применяются различные типы соединения и подключения резисторов, что обеспечивает разнообразие электротехнических свойств электрических схем.

Типы соединений резисторов

Соединение элементов в одну цепь осуществляется следующими способами:

  • последовательно;

  • параллельно;

  • смешанно.

Общие схемы типов соединений представлены на рисунке 1.

soedineniya-rezistorov.png

Рисунок 1. Типы соединений резисторов

Параллельным соединением принято считать соединение, при котором элементы цепи соединены так, что их начала могут соединиться в одной точке, а концы – в другой (см.рис.2)

parallelnoye-soedineniye-rezistorov.png

Рисунок 2. Параллельное соединение резисторов

Потоку заряженных частиц при прохождении участка АВ предоставлено несколько вариантов пути, поэтому на каждом участке с резистором будет протекать ток, величиной, обратно пропорциональной сопротивлению резистора.

При увеличении нагрузки параллельного соединения, в случае подключения большого числа резисторов способом параллельного соединения в электрическую цепь, общее сопротивление цепи значительно уменьшится, за счет увеличения числа путей, предоставленных потоку заряженных частиц. Увеличение количества возможных вариантов движения влечет за собой уменьшение противодействия движению тока.

Как найти сопротивление параллельно соединенных резисторов?

Общее сопротивление резисторов в случае параллельного соединения определено по закону Ома в следующем соотношении:

soprotivleniye-parallelno-soedinennyh-rezistorov.png

и рассчитывается по формуле:

zakon-oma-parallelnoye-soedineniye-rezistorov-2.png

Для примера произведем расчет общего сопротивления для цепи из двух резисторов, обладающих сопротивлением R1= R2=7Ом (см. рис.3а)

R12= 7*7/ (7+7) = 3,5Ом

Сопротивление на участке АВ
(1– 2)
в 2 раза меньше R каждого из резисторов.

При параллельном подсоединении к рассматриваемой цепи еще одного резистора, также обладающего аналогичным сопротивлением R3=7Ом (см. рис.3б) общее сопротивление цепи рассчитывается с учетом предыдущих вычислений, где R12= 3,5Ом

Rобщ= 3,5*7/ (3,5+7) = 2,33 Ом

R123< R3
uvelichenie-parallelnogo-soedinenya-rezistorov.png

Рисунок 3. Увеличение цепи параллельного соединения резисторов

Из расчетов следует, что общее сопротивление (см. рис.3в) всегда будет меньше сопротивления любого параллельно включенного резистора. Такое условие обеспечивается равенством токов на входе и выходе узлов или групп параллельных резисторов и постоянством напряжения в сети.

Что такое последовательное соединение резисторов?

При последовательном соединении резисторы подсоединяются друг за другом, при этом конец предыдущего резистора соединен с началом последующего резистора (рисунок 4).

posledovatelnoye-soedyneniye-rezistorov.png

Рисунок 3. Последовательное соединение резисторов.

Потоку заряженных частиц при прохождении участка АВ предоставлен один путь, поэтому, чем больше резисторов подсоединено, тем большее сопротивление движущимся заряженным частицам они оказывают, то есть общее сопротивление участка цепи Rобщ возрастает.

Формула для расчета общего сопротивления при последовательном соединении имеет вид:

Как рассчитать напряжения на последовательно соединенных резисторах?

Последовательное соединение резисторов увеличивает общее сопротивление. Ток во всех частях схемы будет одинаковым, при этом будет определяться падение напряжения на каждом резисторе.

Общее напряжение питания на резисторах, соединенных последовательно, равно сумме разностей потенциалов на каждом резисторе:

URобщ =UR1+ UR2 + UR3+ UR4

Применив закон Ома, можно вычислить напряжение на каждом резисторе:

UR1=I*R1, UR2=I*R2, UR3=I*R3, UR4=I*R4

Напряжение на участке АВ рассчитывается по формуле:

UАВ=I* (R1
+ R2+R3+R4)

А ток в цепи:

tok-v-tsepy.png

Резисторы, соединенные последовательно, применяются в электротехнике в качестве делителя напряжения.

schema-delitelya-napryazheniya.png

Рисунок 5. Схема простейшего делителя напряжения

Регулируя сопротивление обоих резисторов можно выделить требуемую часть входящего напряжения. При необходимости деления напряжения на несколько частей к источнику напряжения подключается несколько последовательно соединенных резисторов.

Смешанное соединение резисторов

В электротехнике наиболее распространено использование различных комбинаций параллельного и последовательного подключения. Силу тока при смешанном соединении резисторов определяют путем разделения цепи на последовательно соединенные части. Однако для определения общего сопротивления в случае параллельного сопротивления различных частей следует применять соответствующую формулу.

Алгоритм расчета смешанного подключения аналогичен правилу расчета базовой схемы последовательного и параллельного подключения резисторов. В этом нет ничего нового: нужно правильно разложить предложенное решение на пригодные для расчета части. Участки с элементами подключаются поочередно или параллельно. Гибридное резистивное соединение представляет собой комбинацию последовательного и параллельного. Эту комбинацию иногда называют последовательно-параллельным соединением.

На рисунке 6 представлена схема смешанного соединения резисторов.

smeshannoye-soedyneniye-rezistorov.png

Рисунок 6. Смешанное соединение резисторов.

На рисунке показано, что резисторы R2 и R3
соединены параллельно, а R1, R23
и R4 последовательно.

Чтобы рассчитать сопротивление этого соединения, вся схема делится на простейшие части, начиная с параллельного или последовательного сопротивления. Тогда следующий алгоритм выглядит следующим образом:

1. Определите эквивалентное сопротивление части резистора, подключенной параллельно.

2. Если эти части содержат резисторы, включенные последовательно, сначала рассчитайте их сопротивление.

3. Вычислив эквивалентное сопротивление резистора, перерисовываем схему. Обычно схема получается из последовательного эквивалентного сопротивления.

4. Рассчитайте сопротивление цепи.

Другие способы подключения хорошо видны на примере, показанном на рисунке. Без специальных расчетов очевидно, что параллельное соединение резисторов создает несколько путей для тока. Следовательно, в одиночном контуре его сила будет меньше по сравнению с контрольными точками на входе и выходе. При этом напряжение на отметке остается неизменным.

Пример участка цепи для расчета сопротивления смешанного соединения показан на рисунке 5.

obsheye-soprotivleniye-uchastka-tsepy-so-smeshannym-soedineniyem-rezistorov.png

Рисунок 7. Общее сопротивление участка цепи со смешанным соединением резисторов.

«Не знаешь Ома – сиди дома» — пословица старых электриков. Действительно, этот закон очень важен для понимания того, как связаны напряжение, ток и сопротивление, или проще говоря — от чего зависит ток и мощность нагрузки и как их рассчитать.

Для понимания этих базовых вещей нужно знать закон Ома для участка цепи и закон Ома для полной цепи. Главное различие между ними, что первый распространяется на отдельный участок или элемент и учитывает только его сопротивление и приложенное к нему напряжение, а второй учитывает и внутреннее сопротивление источника питания. Давайте разберёмся подробнее.

Закон Ома для участка цепи

Самый простой и всем известный со школы вариант — закон Ома для участка цепи. Его определение звучит следующим образом:

Как связаны напряжение, ток и сопротивление — вспоминаем закон Ома

В виде формулы это выглядит так:

I=U/R,

где I — ток, U — напряжение, R— сопротивление.

То есть чтобы определить силу тока нужно знать напряжение на участке цепи (на элементе) и его сопротивление.

Напряжение на элементе равно произведению тока на сопротивление, то есть чтобы найти напряжение нужно знать ток в участке цепи и его сопротивление:

U=IR

Чтобы найти сопротивление по закону Ома, нужно знать напряжение и ток:

R=U/I

К сведению: правильнее говорить «падение напряжения», но для упрощения в разговорной речи говорят просто «напряжение на элементе» или «… на участке цепи».

Электрическое сопротивление измеряется в Омах, величина 1 Ом выражает такое сопротивление проводника, при котором по нему будет протекать ток в 1 ампер, если к нему приложить напряжение в 1 вольт.

Как запомнить эти формулы?

В виде формулы это выглядит так:

I=U/R,

где I — ток, U — напряжение, R— сопротивление.

То есть чтобы определить силу тока нужно знать напряжение на участке цепи (на элементе) и его сопротивление.

Напряжение на элементе равно произведению тока на сопротивление, то есть чтобы найти напряжение нужно знать ток в участке цепи и его сопротивление:

U=IR

Чтобы найти сопротивление по закону Ома, нужно знать напряжение и ток:

R=U/I

К сведению: правильнее говорить «падение напряжения», но для упрощения в разговорной речи говорят просто «напряжение на элементе» или «… на участке цепи».

Электрическое сопротивление измеряется в Омах, величина 1 Ом выражает такое сопротивление проводника, при котором по нему будет протекать ток в 1 ампер, если к нему приложить напряжение в 1 вольт.

Как запомнить эти формулы?

Как связаны напряжение, ток и сопротивление — вспоминаем закон Ома

Для запоминания формул закона Ома есть удобная мнемоническая подсказка так называемый «треугольник Ома». В нём сверху размещена буква U, а снизу I и R. Как несложно догадаться, они обозначают напряжение, ток и сопротивление соответственно.

Для запоминания формул закона Ома есть удобная мнемоническая подсказка так называемый «треугольник Ома». В нём сверху размещена буква U, а снизу I и R. Как несложно догадаться, они обозначают напряжение, ток и сопротивление соответственно.

Как пользоваться треугольником? Всё просто — закройте пальцем величину, которую нужно найти, а оставшиеся не закрытыми буквы нужно умножить или разделить друг на друга, что подробно проиллюстрировано ниже.

Как связаны напряжение, ток и сопротивление — вспоминаем закон Ома

Есть еще одна шпаргалка в виде круга разделенного на сегменты, где перечислены все необходимые формулы, кроме перечисленных выше, добавлены и формулы для вычисления мощности.

Как связаны напряжение, ток и сопротивление — вспоминаем закон Ома

Примеры

Итак, чтобы научиться рассчитывать напряжение на участке цепи, решим простенькую задачу. У нас есть цепь, состоящая из 3 резисторов и идеального источника с напряжением 12В постоянного тока. Пусть участком цепи у нас будет резистор R2, найдём напряжение на нём.

Как связаны напряжение, ток и сопротивление — вспоминаем закон Ома

Дано:

U= 12 В;

R1= 1 кОм;

R2= 2 кОм;

R3= 3 кОм;

Найти:

I — ?;

U(R2) — ?;

По закону Ома чтобы найти напряжение нужно знать ток через участок цепи и его сопротивление.

U=IR

Последнее у нас известно, поэтому нужно найти ток в цепи, элементы соединены последовательно, поэтому ток через каждый из них одинаков, и чтобы найти его силу — нужно сначала найти общее сопротивление всех элементов, но сначала переведём его в Омы:

R1 = 1 кОм = 1000 Ом; R2 = 2 кОм = 2000 Ом; R3 = 3 кОм = 3000 Ом.

Теперь найдём общее сопротивление:

Rобщ=R1+R2+R3=1000+2000+3000= 6000 Ом

Тогда ток в цепи равен:

I= U/R = 12/6000 = 0,002 А

И наконец падение напряжения на резисторе R2:

U(R2) = I*U(R2) = 0,002*2000=4В

Итого, на выводах резистора R2 будет 4 вольта.

Закон Ома для полной цепи

Определение закона Ома для полной цепи вы видите ниже, жирным выделено основное отличие от закона для участка цепи.

Как связаны напряжение, ток и сопротивление — вспоминаем закон Ома

В формуле добавляется внутреннее сопротивление источника питания, а напряжение заменяется на ЭДС:

I=E/(R+r),

где I – ток, E – ЭДС, R – сопротивление, r- внутреннее сопротивление источника.

Внутреннее сопротивление источника обуславливается его устройством, например, сечением вторичной обмотки трансформатора, химическим составом, степенью заряда и состоянием электродов аккумуляторов и батареек и так далее. На схеме условно рисуется в виде резистора внутри источника, но на самом деле никакого «внутреннего» или «скрытого» сопротивления там нет, как было отмечено выше.

Как связаны напряжение, ток и сопротивление — вспоминаем закон Ома

Почему важно учитывать внутреннее сопротивление источника? Всё очень просто — вы замечали, как погасают лампочки в автомобиле, когда стартер запускает двигатель? Это происходит из-за просадок на проводах и в аккумуляторе от высоких пусковых токов. В принципе, подобное мы наблюдаем, когда лампы накаливания «просаживаются» по яркости во время пуска мощной нагрузки, например, электродвигателей.

Примеры

Давайте проанализируем, как влияет внутреннее сопротивление источника на напряжение нагрузки. Допустим, что у нас есть какой-то источник с внутренним сопротивлением (r) в 1 Ом и ЭДС (E) в 12 Вольт. И есть 3 разных нагрузки, с сопротивлением (R) каждой из них: 10, 5 и 1 Ом соответственно. Нагрузку будем подключать по очереди, по одной для каждого расчета.

Рассчитаем ток первой нагрузки:

I1=E/(R1+r)=12/(10+1)=1.09 А

Рассчитаем напряжение на нагрузке:

U1=I1*R1=1.09*10=10.9 В

Сразу видим, что на нагрузке уже не 12, а 10 вольт, посчитаем другие варианты:

Рассчитаем ток второй нагрузки:

I2=E/(R2+r)=12/(5+1)=2 А

Рассчитаем напряжение на нагрузке:

U2=I2*R2=2*5=10 В

Рассчитаем ток третей нагрузки:

I3=E/(R3+r)=12/(1+1)=6 А

Рассчитаем напряжение:

U3=I3*R3=6*1=6 В

Как вы можете видеть на внутреннем сопротивлении падает какое-то напряжение, и падение напряжение прямо пропорционально току нагрузки. При этом до нагрузки доходит всё меньше и меньше напряжения.

Сделаем то же самое, но для источника с внутренним сопротивлением 0.1 Ома. Рассчитаем ток первой нагрузки:

I1=E/(R1+r)=12/(10+0,1)=1.18 А

Рассчитаем напряжение:

U1=I1*R1=1.18*10=11.8 В

Ток второй нагрузки:

I2=E/(R2+r)=12/(5+0,1)=2,35 А

Рассчитаем напряжение на нагрузке:

U2=I2*R2=2,35*5=11.75 В

Рассчитаем ток третей нагрузки:

I3=E/(R3+r)=12/(1+0,1)=10,9 А

Рассчитаем напряжение:

U3=I3*R3=10,9*1=10,9 В

Для удобства соберем все результаты расчётов в одну таблицу.

Как связаны напряжение, ток и сопротивление — вспоминаем закон Ома

Из таблицы мы видим, что чем меньше внутреннее сопротивление источника — тем меньше просаживается напряжение под нагрузкой.

Заключение

Как связаны напряжение, ток и сопротивление — вспоминаем закон Ома

Георг Симон Ом жил в 1786-1854 годах, в 1826 году вывел теоретически и подтвердил с помощью опытов закон выражающий связь напряжения, тока и сопротивления. Этот закон назвали в честь открывателя — законом Ома, а также единицу измерения электрического сопротивления.

Закон Ома — один из важнейших и основополагающих в электротехнике, он широко используется при расчетах электрических схем.

Пишите в комментариях, понравился ли вам такой формат теоретической статьи и какие статьи хотите увидеть в будущем?

Добавить комментарий