Как найти ток коллектора формула

Биполярный транзистор является одним из старейших, но самым известным типом транзисторов, и до сих пор находит применение в современной электронике. Транзистор незаменим, когда требуется управлять достаточно мощной нагрузкой, для которой устройство управления не может обеспечить достаточный ток. Они бывают разного типа и мощности, в зависимости от исполняемых задач. Базовые знания и формулы о транзисторах вы можете найти в этой статье.

Введение

Прежде чем начать урок, давайте договоримся, что мы обсуждаем только один тип способ включения транзистора. Транзистор может быть использован в усилителе или приемнике, и, как правило, каждая модель транзисторов производится с определенными характеристиками, чтобы сделать его более узкоспециализированым для лучшей работы в определённом включении.

Транзистор имеет 3 вывода: база, коллектор и эмиттер. Нельзя однозначно сказать какой из них вход, а какой выход, так как все они связаны и влияют друг на друга так или иначе. При включении транзистора в режиме коммутатора (управление нагрузкой) он действует так: ток базы контролирует ток от коллектора к эмиттеру или наоборот, в зависимости от типа транзистора.

Есть два основных типа транзисторов: NPN и PNP. Чтобы это понять, можно сказать, что основное различие между этими двумя типами это направления электрического тока. Это можно видеть на рисунке 1.А, где указано направление тока. В транзисторе NPN, один ток течет от основания внутрь транзистора, а другой ток течет от коллектора к эмиттеру, а в PNP транзисторе всё наоборот. С функциональной точки зрения, разница между этими двумя типами транзисторов это напряжение на нагрузке. Как вы можете видеть на рисунке, транзистор NPN обеспечивает 0В когда он открыт, а PNP обеспечивает 12В. Вы позже поймете, почему это влияет на выбор транзистора.

Для простоты мы будем изучать только NPN транзисторы, но всё это применимо к PNP, принимая во внимание, что все токи меняются на противоположные.

Рисунок ниже показывает аналогию между переключателем (S1) и транзисторным ключом, где видно, что ток базы закрывает или открывает путь для тока от коллектора к эмиттеру:

Аналогия транзистора с переключателем

Точно зная характеристики транзистора, от него можно получить максимальную отдачу. Основным параметром является коэффициент усиления транзистора по постоянному току, который обычно обозначается Hfe или β. Также важно знать максимальный ток, мощность и напряжение транзистора. Эти параметры можно найти в документации на транзистор, и они помогут нам определить значение резистора на базе, о чем рассказано дальше.

Использование NPN транзистора как коммутатора

Включение транзистора

На рисунке показано включение NPN транзистора в качестве коммутатора. Вы встретите это включение очень часто при анализе различных электронных схем. Мы будем изучать, как запустить транзистор в выбранном режиме, рассчитать резистор базы, коэффициент усиления транзистора по току и сопротивление нагрузки. Я предлагаю самый простой и самый точный способ для этого.

1. Предположим, что транзистор находится в режиме насыщения: При этом математическая модель транзистора становится очень простой, и нам известно напряжение на точке Vc. Мы найдем значение резистора базы, при котором всё будет правильно.

2. Определение тока насыщения коллектора: Напряжение между коллектором и эмиттером (Vce) взято из документации транзистора. Эмиттер подключен к GND, соответственно Vce= Vc – 0 = Vc. Когда мы узнали эту величину, мы можем рассчитать ток насыщения коллектора по формуле:
Формула

Иногда, сопротивления нагрузки RL неизвестно или не может быть точным, как сопротивление обмотки реле; В таком случае, достаточно знать, необходимый для запуска реле ток.
Убедитесь, что ток нагрузки не превышает максимальный ток коллектора транзистора.

3. Расчет необходимого тока базы: Зная ток коллектора, можно вычислить минимально необходимый ток базы для достижения этого тока коллектора, используя следующую формулу:
Формула
Из неё следует что:
Формула

4. Превышение допустимых значений: После того как вы рассчитали ток базы, и если он оказался ниже указанного в документации, то можно перегрузить транзистор, путем умножения расчетного тока базы например в 10 раз. Таким образом, транзисторный ключ будет намного более устойчивым. Другими словами, производительность транзистора уменьшится, если нагрузка увеличится. Будьте осторожны, старайтесь не превышать максимальный ток базы, указанный в документации.

5. Расчёт необходимого значения Rb: Учитывая перегрузку в 10 раз, сопротивление Rb может быть рассчитано по следующей формуле:
Формула
где V1 является напряжением управления транзистором (см. рис 2.а)

Но если эмиттер подключен к земле, и напряжение база-эмиттер известно (около 0,7В у большинстве транзисторов), а также предполагая, что V1 = 5V, формула может быть упрощена до следующего вида:
Формула

Видно, что ток базы умножается на 10 с учётом перегрузки.
Когда значение Rb известно, транзистор “настроен” на работу в качестве переключателя, что также называется “режим насыщения и отсечки “, где “насыщение” – когда транзистор полностью открыт и проводит ток, а “отсечение” – когда закрыт и ток не проводит.

Примечание: Когда мы говорим Формула, мы не говорим, что ток коллектора должен быть равным beginner88-9.gifbeginner88-10.gif. Это просто означает, что ток коллектора транзистора может подниматься до этого уровня. Ток будет следовать законам Ома, как и любой электрический ток.

Расчет нагрузки

Когда мы считали, что транзистор находится в режиме насыщения, мы предполагали что некоторые его параметры не менялись. Это не совсем так. На самом деле эти параметры менялись в основном за счет увеличения тока коллектора, и поэтому он является более безопасным для перегрузки. В документации указано изменение параметров транзистора при перегрузке. Например, в таблице на рисунке 2.В показано два параметра которые значительно меняются:

HFE (β) меняется в зависимости от тока коллектора и напряжения VCEsat. Но VCEsat само меняется в зависимости от тока коллектора и базы, что показано в таблице дальше.

Таблица

Расчет может быть очень сложным, так как все параметры тесно и сложно взаимосвязаны, поэтому лучше взять худшие значения. Т.е.  наименьший HFE, крупнейший VCEsat и VCEsat.

Типичное применение транзисторного ключа

1. Управление реле

Управление реле

В современной электронике транзисторный ключ используется для контроля электромагнитных реле, которое потребляют до 200 мА. Если вы хотите управлять реле логической микросхемой или микроконтроллером то транзистор незаменим. На рисунке 3.A, сопротивления резистора базы рассчитывается в зависимости от необходимого для реле тока. Диод D1 защищает транзистор от импульсов, которые катушка генерирует при выключении.

2. Подключение транзистора с открытым коллектором:

Включение транзистора

Многие устройства, такие как семейство микроконтроллеров 8051 имеют порты с открытым коллектором. Сопротивление резистора базы внешнего транзистора рассчитывается, как описано в этой статье. Заметим, что порты могут быть более сложными, и часто используют полевые транзисторы вместо биполярных и называются выходами с открытым стоком, но всё остаётся точно таким же как на рисунке 3.B

3. Создание логического элемента ИЛИ-НЕ (NOR):

Включение транзистора

Иногда в схеме необходимо использовать один логический элемент, и вы не хотите использовать 14-контактную микросхему с 4 элементами либо из-за стоимости или местом на плате. Её можно заменить парой транзисторов. Отметим, что частотные характеристики таких элементов зависят от характеристик и типа транзисторов, но обычно ниже 100 кГц. Уменьшение выходного сопротивления (Ro) приведет к увеличению потребления энергии, но увеличит выходной ток.
Вам надо найти компромисс между этими параметрами.

beginner88-15.jpg

На рисунке выше показан логический элемент ИЛИ-НЕ  построенный с использованием 2х транзисторов 2N2222. Это может быть сделано на транзисторах PNP 2N2907, с незначительными изменениями. Вы просто должны учитывать, что все электрические токи тогда текут в противоположном направлении.

Поиск ошибок в транзисторных схемах

При возникновении проблемы в цепях, содержащих много транзисторов, может быть весьма проблематично узнать, какой из них неисправен, особенно когда они все впаяны. Я даю вам несколько советов, которые помогут вам найти проблему в такой схеме достаточно быстро:

1. Температура: Если транзистор сильно греется, вероятно, где-то есть проблема. Необязательно что проблема в горячем транзисторе. Обычно дефектный транзистор даже не нагревается. Это повышение температуры может быть вызвано другим транзистором, подключенным к нему.

2. Измерение VCE транзисторов: Если они все одного типа и все работают, то они должны иметь приблизительно одинаковое VCE. Поиск транзисторов, имеющих различные VCE это быстрый способ обнаружения дефектных транзисторов.

3. Измерение напряжения на резисторе базы: Напряжение на резисторе базы достаточно важно (если транзистор включен). Для 5 В устройства управления транзистором NPN, падения напряжения на резисторе должно быть более 3В. Если нет падения напряжения на резисторе, то либо транзистор, либо устройство управления транзистора имеют дефект. В обоих случаях ток базы равен 0.

Оригинал статьи

Теги:

Биполярный транзистор.

Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления,
генерирования и преобразования электрических сигналов. Транзистор называется биполярный,
поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки.
Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток,
только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока —
основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего.
У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля.
В данной статье рассмотрим подробнее работу биполярного транзистора.

биполярный транзистор принцип работы

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов.
Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей.
Это похоже на два диода, соединенных лицом к лицу или наоборот.

У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base).
Крайние электроды носят названия коллектор и эмиттер (collector и emitter).
Прослойка базы очень тонкая относительно коллектора и эмиттера. В
дополнение к этому, области полупроводников по краям транзистора
несимметричны. Слой полупроводника со стороны коллектора немного толще,
чем со стороны эмиттера. Это необходимо для правильной работы транзистора.

Работа биполярного транзистора.

Рассмотрим физические процессы, происходящие во время работы биполярного
транзистора. Для примера возьмем
модель NPN. Принцип работы транзистора PNP аналогичен, только
полярность напряжения между коллектором и эмиттером будет
противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках,
в веществе P-типа находятся положительно заряженные ионы —
дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В
транзисторе концентрация электронов в области N значительно превышает
концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE).
Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора.
Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера.
Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.

Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE
(для кремниевых транзисторов минимальное необходимое VBE
— 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения
подключенного к базе, сможет «дотянуться» своим электрическим полем до
N области эмиттера. Под его действием электроны направятся к базе.
Часть из них начнет заполнять находящиеся там дырки (рекомбинировать).
Другая часть не найдет себе свободную дырку, потому что концентрация
дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами.
Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше.
Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая,
все равно потечет в сторону плюса базы.

включение биполярного транзистора база коллектор эмиттер

В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE,
и большой — от коллектора к эмиттеру ICE.

Если увеличить напряжение на базе, то в прослойке P соберется еще
больше электронов. В результате немного усилится ток базы, и
значительно усилится ток коллектора. Таким образом, при небольшом
изменении тока базы I
B,
сильно меняется ток коллектора I
С.
Так и происходит усиление сигнала в биполярном транзисторе.
Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току.
Обозначается β, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзистором.

β = IC / IB

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы.
Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного
напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для
понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов
в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200).
Со стороны коллектора подключим относительно мощный источник питания в 20V,
за счет энергии которого будет происходить усиление. Со стороны базы транзистора
подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного
напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить.
Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала,
обычно обладающего слабой мощностью.

усилитель биполярный транзистор схема

2. Расчет входного тока базы Ib

Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением,
нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin).
Назовем эти значения тока соответственно — Ibmax и Ibmin.

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается
один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение,
при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности
вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель,
согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между
базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0),
то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

Посчитаем Ibmax и Ibmin с помощью закона Ома:

ток базы биполярного транзистора формула

2. Расчет выходного тока коллектора IС

Теперь, зная коэффициент усиления (β = 200),
можно с легкостью посчитать максимальное и
минимальное значения тока коллектора ( Icmax и Icmin).

ток коллектора биполярного транзистора формула

3. Расчет выходного напряжения Vout

Осталось посчитать напряжение на выходе нашего усилителя Vout.
В данной цепи — это напряжение на коллекторе VC.

усилитель выходное напряжение

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

расчет выходного напряжения усилителя

4. Анализ результатов

Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того,
что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве
случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда,
которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же,
соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя,
однако для иллюстрации процесса усиления вполне подойдет.

схема усилителя на биполярном транзисторе

Итак, подытожим принцип работы усилителя на биполярном транзисторе.
Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие.
Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся».
Переменная составляющая – это, собственно, сам сигнал (полезная информация).
Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β.
В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний,
но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор
берет у источника питания VCC. Если напряжения питания будет недостаточно,
транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

  • Режим отсечки (cut off mode).
  • Активный режим (active mode).
  • Режим насыщения (saturation mode).
  • Инверсный ражим (reverse mode ).

Режим отсечки

Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт.
В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет,
поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе.
Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.

Активный режим

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся.
В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы,
умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора,
который используют для усиления.

Режим насыщения

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора,
которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным,
который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал,
поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен».
Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

Инверсный режим

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном.
В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру,
и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме.
Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме.
Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB.
Обозначается β, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзисторов.

β — величина постоянная для одного транзистора, и зависит от физического строения прибора.
Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа,
даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного
транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах,
то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх).
Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться
источник слабого сигнала, у которого нужно потреблять как можно меньше тока.
Идеальный вариант – это когда входное сопротивление равняется бесконечность.

Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом).
Здесь биполярный транзистор очень сильно проигрывает полевому транзистору,
где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость — проводимость транзистора между коллектором и эмиттером.
Чем больше выходная проводимость, тем больше тока коллектор-эмиттер
сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления)
увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных
потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью
усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ,
он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления,
но с большей выходной проводимостью, падение усиления будет меньше.
Идеальный вариант – это когда выходная проводимость равняется бесконечность
(или выходное сопротивление Rout = 0 (Rвых = 0)).

Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала.
С повышением частоты, способность транзистора усиливать сигнал постепенно падает.
Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах.
На изменения входного сигнала в базе транзистор реагирует не мгновенно,
а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей.
Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.

формула тока коллектора транзистора? Оч надо, помогите, пожалуйста!)

[Счастье]



Знаток

(281),
закрыт



4 года назад

Дополнен 10 лет назад

1)Формула тока коллектора транзистора?
2)При малых сигналах формула тока тока коллектора??

В этом цикле статей мы попытаемся просто и доходчиво рассказать о таких непростых компонентах, как транзисторы.

Сегодня этот полупроводниковый элемент встречается почти на всех печатных платах, в любом электронном устройстве (в сотовых телефонах, в радиоприёмниках, в компьютерах и другой электронике). Транзисторы являются основой для построения микросхем логики, памяти, микропроцессоров… Вот давайте и разберёмся, что это чудо из себя представляет, как работает и чем вызвана такая широта его применения.

Транзистор — это электронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током.

Многие считают, что транзистор усиливает входной сигнал. Спешу огорчить, — сами по себе, без внешнего источника питания, транзисторы ничего не усилят (закон сохранения энергии ещё никто не отменял). На транзисторе можно построить усилитель, но это лишь одно из его применений, и то, для получения усиленного сигнала нужна специальная схема, которая проектируется и рассчитывается под определённые условия, плюс обязательно источник питания.

Сам по себе транзистор может только управлять током.

Что нужно знать из самого важного? Транзисторы делятся на 2 большие группы: биполярные и полевые. Эти 2 группы отличаются по структуре и принципу действия, поэтому про каждую из этих групп мы поговорим отдельно.

Итак, первая группа — биполярные транзисторы.

Эти транзисторы состоят из трёх слоёв полупроводника и делятся по структуре на 2 типа: pnp и npn. Первый тип (pnp) иногда называют транзисторами прямой проводимости, а второй тип (npn) — транзисторами обратной проводимости.

Что означают эти буквы? Чем отличаются эти транзисторы? И почему именно двух проводимостей? Как обычно — истина где-то рядом. © Всё гениальное — просто. N — negative (англ.) — отрицательный. P — positive (англ.) — положительный. Это обозначение типов проводимостей полупроводниковых слоёв из которых транзистор состоит. «Положительный» — слой полупроводника с «дырочной» проводимостью (в нём основные носители заряда имеют положительный знак), «отрицательный» — слой полупроводника с «электронной» проводимостью (в нём основные носители заряда имеют
отрицательный знак).

Структура и обозначение на схемах биполярных транзисторов

Структура и обозначение биполярных транзисторов на схемах показаны на рисунке справа. У каждого вывода имеется своё название. Э — эмиттер, К — коллектор, Б — база. Как на схеме узнать базовый вывод? Легко. Он обозначается площадкой, в которую упираются коллектор и эмиттер. А как узнать эмиттер? Тоже легко, — это вывод со стрелочкой. Оставшийся вывод — это коллектор. Стрелочка на эмиттере всегда показывает направление тока. Соответственно, для npn транзисторов — ток втекает через коллектор и базу, а вытекает из эмиттера, для pnp транзисторов наоборот, — ток втекает через эмиттер, а вытекает через коллектор и базу.

Тонем в теории глубже… Три слоя полупроводника образуют в транзисторе два pn-перехода. Один — между эмиттером и базой, его обычно называют эмиттерный, второй — между коллектором и базой, его обычно называют коллекторный.

На каждом из двух pn-переходов может быть прямое или обратное смещение, поэтому в работе транзистора выделяют четыре основных режима, в зависимости от смещения pn-переходов (помним да, что если на стороне с проводимостью p-типа напряжение больше, чем на стороне с проводимостью n-типа, то это прямое смещение pn-перехода, если всё наоборот, то обратное). Ниже, на рисунках, иллюстрирующих каждый режим, стрелочками показано направление от большего напряжения к меньшему (это не направление тока!). Так легче ориентироваться: если стрелочка направлена от «p» к «n» — это прямое смещение pn-перехода, если от «n» к «p» — это обратное смещение.

Режимы работы биполярного транзистора:

Активный режим транзистора

1) Если на эмиттерном pn-переходе прямое смещение, а на коллекторном — обратное, то транзистор находится в нормальном активном режиме (иногда говорят просто: «активный режим», — опуская слово нормальный). В этом режиме ток коллектора зависит от тока базы и связан с ним следующим соотношением: Iк=Iб*β.

Активный режим используется при построении транзисторных усилителей.

Режим насыщения транзистора

2) Если на обоих переходах прямое смещение — транзистор находится в режиме насыщения. При этом ток коллектора перестаёт зависеть от тока базы в соответствии с указанной выше формулой (в которой был коэффициент β), он перестаёт увеличиваться, даже если продолжать увеличивать ток базы. В этом случае говорят, что транзистор полностью открыт или просто открыт. Чем глубже мы уходим в область насыщения — тем больше ломается зависимость Iк=Iб*β. Внешне это выглядит так, как будто коэффициент β уменьшается. Ещё скажу, что есть такое понятие, как коэффициент насыщения. Он определяется как отношение реального тока базы (того, который у вас есть в данный момент) к току базы в пограничном состоянии между активным режимом и насыщением.

Режим отсечки транзистора

3) Если у нас на обоих переходах обратное смещение — транзистор находится в режиме отсечки. При этом ток через него не течёт (за исключением очень маленьких токов утечки — обратных токов через pn-переходы). В этом случае говорят, что транзистор полностью закрыт или просто закрыт.

Режимы насыщения и отсечки используются при построении транзисторных ключей.

Инверсный активный режим транзистора

4) Если на эмиттерном переходе обратное смещение, а на коллекторном — прямое, то транзистор попадает в инверсный активный режим. Этот режим является довольно экзотическим и используется редко. Несмотря на то, что на наших рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны (посмотрите ещё раз на самый верхний рисунок, — на первый взгляд ничего не изменится, если поменять местами коллектор и эмиттер), на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на «нормальный активный режим» и «инверсный активный режим».

Иногда ещё выделяют пятый, так называемый, «барьерный режим». В этом случае база транзистора закорочена с коллектором. По сути правильнее было бы говорить не о каком-то особом режиме, а об особом способе включения. Режим тут вполне обычный — близкий к пограничному состоянию между активным режимом и насыщением. Его можно получить и не только закорачивая базу с коллектором. В данном конкретном случае вся фишка в том, что при таком способе включения, как бы мы не меняли напряжение питания или нагрузку — транзистор всё равно останется в этом самом пограничном режиме. То есть транзистор в этом случае будет эквивалентен диоду.

Итак, c теорией пока закончили. Едем дальше.

Принцип работы биполярного транзистора

Биполярный транзистор управляется током. То есть, для того, чтобы между коллектором и эмиттером мог протекать ток (по другому говоря, чтобы транзистор открылся), — должен протекать ток между эмиттером и базой (или между коллектором и базой — для инверсного режима). Более того, величина тока базы и максимально возможного тока через коллектор (при таком токе базы) связаны постоянным коэффициентом β (коэффициент передачи тока базы): IБ*β=IK.

Кроме параметра β используется ещё один коэффициент: коэффициент передачи эмиттерного тока (α). Он равен отношению тока коллектора к току эмиттера: α=Iк/Iэ. Значение этого коэффициента обычно близко к единице (чем ближе к единице — тем лучше). Коэффициенты α и β связаны между собой следующим соотношением: β=α/(1-α).

В отечественных справочниках часто вместо коэффициента β указывают коэффициент h21Э (коэффициент усиления по току в схеме с общим эмиттером), в забугорной литературе иногда вместо β можно встретить hFE. Ничего страшного, обычно можно считать, что все эти коэффициенты равны, а называют их зачастую просто «коэффициент усиления транзистора».

Работа биполярного транзистора в качестве усилителя

Что нам это даёт и зачем нам это надо? На рисунке слева изображены простейшие схемы. Они эквивалентны, но построены с участием транзисторов разных проводимостей. Также присутствуют: нагрузка, в виде лампочки накаливания, переменный резистор и постоянный резистор.

Смотрим на левую схему. Что там происходит? Представим себе, что ползунок переменного резистора в верхнем положении. При этом на базе транзистора напряжение равно напряжению на эмиттере, ток базы равен нулю, следовательно ток коллектора тоже равен нулю (IК=β*IБ) — транзистор закрыт, лампа не светится. Начинаем опускать ползунок вниз
— напряжение на нём начинает опускаться ниже, чем на эмиттере — появляется ток из эмиттера в базу (ток базы) и одновременно с этим — ток из эмиттера в коллектор (транзистор начнёт открываться). Лампа начинает светиться, но не в полный накал. Чем ниже мы будем перемещать ползунок переменного резистора — тем ярче будет гореть лампа.

И тут, внимание! Если мы начнём перемещать ползунок переменного резистора вверх — то транзистор начнёт закрываться, а токи из эмиттера в базу и из эмиттера в коллектор — начнут уменьшаться. На правой схеме всё то же самое, только с транзистором другой проводимости.

Рассмотренный режим работы транзистора как раз является активным. В чём суть? Ток управляет током? Именно, но фишка в том, что коэффициент β может измеряться десятками и
даже сотнями. То есть для того, чтобы сильно менять ток, протекающий из эмиттера в коллектор, нам достаточно лишь чуть-чуть изменять ток, протекающий из эмиттера в базу.

В активном режиме транзистор (с соответствующей обвязкой) используется в качестве усилителя.

Мы устали… отдохнём немного…

И снова вперёд!

Работа биполярного транзистора в качестве ключа

Теперь разберёмся с работой транзистора в качестве ключа. Смотрим на левую схему. Пусть переключатель S будет замкнут в положении 1. При этом база транзистора через резистор R притянута к плюсу питания, поэтому ток между эмиттером и базой отсутствует и транзистор закрыт. Представим, что мы перевели переключатель S в положение 2. Напряжение на базе становится меньше, чем на эмиттере, — появляется ток между эмиттером и базой (его величина определяется сопротивлением R). Сразу возникает ток КЭ. Транзистор открывается, лампа загорается. Если мы снова вернём переключатель S в положение 1 — транзистор закроется, лампа погаснет. (на правой схеме всё то же самое, только транзистор другой проводимости)

В этом случае говорят, что транзистор работает в качестве ключа. В чём суть? Транзистор переключается между двумя состояниями — открытым и закрытым. Обычно при использовании транзистора в качестве ключа — стараются, чтобы в открытом состоянии транзистор был близок к насыщению (при этом падение напряжения между коллектором и эмиттером, а значит и потери на транзисторе, — минимальны).Для этого специальным образом рассчитывают ограничительный резистор в цепи базы. Состояний глубокого насыщения и глубокой отсечки обычно стараются избежать, потому что в этом случае увеличивается время переключения ключа из одного состояния в другое.

Небольшой пример расчётов. Представим себе, что мы управляем лампой накаливания 12В, 50мА через транзистор. Транзистор у нас работает в качестве ключа, поэтому в открытом состоянии должен быть близок к насыщению. Падение напряжения между коллектором и эмиттером учитывать не будем, поскольку для режима насыщения оно на порядок меньше напряжения питания. Так как через лампу течёт ток 50 мА, то нам нужно выбрать транзистор с максимальным током КЭ не менее 62,5 мА (обычно рекомендуют использовать компоненты на 75% от их максимальных параметров, это такой своеобразный запас). Открываем справочник и ищем подходящий p-n-p транзистор. Например КТ361. В нашем случае по току подходят с буквенными индексами «а, б, в, г», так как максимальное напряжение КЭ у них 20В, а у нас в задаче всего 12В.

Предположим, что использовать будем КТ361А, с коэффициентом усиления от 20 до 90. Так как нам нужно, чтобы транзистор гарантированно открылся полностью, — в расчёте будем использовать минимальный Кус=20. Теперь думаем. Какой минимальный ток должен течь между эмиттером и базой, чтобы через КЭ обеспечить ток 50 мА?

50 мА/ 20 раз = 2,5 мА

Токоограничивающий резистор какого номинала нужно поставить, чтобы пустить через БЭ ток 2,5 мА?

Тут всё просто. Закон Ома: I=U/R. Следовательно R=(12 В питания — 0,65 В потери на pn-переходе БЭ) / 0,0025 А = 4540 Ом. Так как 2,5 мА — это минимальный ток, который в нашем случае должен протекать из эмиттера в базу, то нужно выбрать из стандартного ряда ближайший резистор меньшего сопротивления. Например, с 5% отклонением это будет резистор 4,3 кОм.

Теперь о токе. Для зажигания лампы с номинальным током 50 мА нам нужно коммутировать ток всего 2,5 мА. И это при использовании ширпотребовского, копеечного транзистора, с низким Кус, разработанного 40 лет назад. Чувствуете разницу? Насколько можно уменьшить габариты выключателей (а значит и их стоимость) при использовании транзисторов.

Вернёмся опять к теории.

В рассмотренных выше примерах мы использовали только одну из схем включения транзистора. Всего же, в зависимости от того, куда мы подаём управляющий сигнал и откуда снимаем выходной сигнал (от того, какой электрод для этих сигналов является общим) выделяют 3 основных схемы включения биполярных транзисторов (ну, логично, да? — у транзистора 3 вывода, значит если делить схемы по принципу, что один из выводов общий, то всего может быть 3 схемы):

Включение транзистора по схеме с общим эмиттером

1) Схема с общим эмиттером.

Если считать, что входной ток — это ток базы, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора и выходное напряжение — это напряжение между коллектором и эмиттером, то можно записать, что: Iвых/Iвх=Iк/Iб=β , Rвх=Uбэ/Iб.

Кроме того, так как Uвых=Eпит-Iк*R, то видно, что, во-первых, выходное напряжение легко можно сделать гораздо выше входного, а во-вторых, что выходное напряжение инвертировано по отношению ко входному (когда Uбэ=Uвх увеличивается и входной ток растёт — выходной ток также растёт, но Uкэ=Uвых при этом уменьшается).

Такая схема включения (для краткости её обозначают ОЭ) является наиболее распространённой, поскольку позволяет усилить как ток, так и напряжение, то есть позволяет получить максимальное усиление мощности. Замечу, что эта дополнительная мощность у усиленного сигнала берётся не из воздуха и не от самого транзистора, а от источника питания (Eпит), без которого транзистор ничего не сможет усилить и вообще никакого тока в выходной цепи не будет. (Я думаю, — мы позже, в отдельной статье, про то, как именно работают транзисторные усилители и как их рассчитывать, подробнее напишем).

Включение транзистора по схеме с общей базой

2) Схема с общей базой.

Здесь входной ток — это ток эмиттера, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора, а выходное напряжение — это напряжение на включенной в цепь коллектора нагрузке. Для этой схемы: Iвых≈Iвх, т.к. Iк≈Iэ, Rвх=Uбэ/Iэ.

Такая схема (ОБ) усиливает только напряжение и не усиливает ток. Сигнал в данном случае по фазе не сдвигается.

3) Схема с общим коллектором (эмиттерный повторитель).

Включение транзистора по схеме с общим коллектором

Здесь входной ток — это ток базы, а входное напряжение подключено к переходу БЭ транзистора и нагрузке, выходной ток — ток эмиттера, а выходное напряжение — это напряжение на включенной в цепь эмиттера нагрузке. Для этой схемы: Iвых/Iвх=Iэ/Iб=(IК+IБ)/IБ=β+1, т.к. обычно коэффициент β достаточно большой, то иногда считают Iвых/Iвх≈β. Rвх=Uбэ/Iб+R. Uвых/Uвх=(Uбэ+Uвых)/Uвых≈1.

Как видим, такая схема (ОК) усиливает ток и не усиливает напряжение. Сигнал в данном случае по фазе не сдвигается. Кроме того, данная схема имеет самое большое входное сопротивление.

Оранжевыми стрелками на приведённых выше схемах показаны контура протекания токов, создаваемых источником питания выходной цепи (Епит) и самим входным сигналом (Uвх). Как видите, в схеме с ОБ ток, создаваемый Eпит, протекает не только через транзистор, но и через источник усиливаемого сигнала, а в схеме с ОК, наоборот, — ток, создаваемый входным сигналом, протекает не только через транзистор, но и через нагрузку (по этим приметам можно легко отличить одну схему включения от другой).

Упрощённая модель биполярного транзистора для проверки исправности

Ну и на последок поговорим о том, как проверить биполярный транзистор на исправность. В большинстве случаев о исправности транзистора можно судить по состоянию pn-переходов. Если рассматривать эти pn-переходы независимо друг от друга, то транзистор можно представить как совокупность двух диодов (как на рисунке слева). В общем-то взаимное влияние pn-переходов и делает транзистор транзистором, но при проверке можно с этим взаимным влиянием не считаться, поскольку напряжение к выводам транзистора мы прикладываем попарно (к двум выводам из трёх). Соответственно, проверить эти pn-переходы можно обычным мультиметром в режиме проверки диодов. При подключении красного щупа (+) к катоду диода, а чёрного к аноду — pn-переход будет закрыт (мультиметр показывает бесконечно большое сопротивление), если поменять щупы местами — pn-переход будет открыт (мультиметр показывает падение напряжения на открытом pn-переходе, обычно 0,6-0,8 В). При подключении щупов между коллектором и эмиттером мультиметр будет показывать бесконечно большое сопротивление, независимо от того какой щуп подключен к коллектору, а какой к эмиттеру.

Продолжение следует…

42

Выключите ВП, для чего нажмите на панели ВП кнопку«Заверше-

ние работы».

5.КОНТРОЛЬНЫЕ ВОПРОСЫ

·Что такое туннельный эффект?

·Каковы особенности структуры туннельного диода по сравнению с выпрямительным диодом?

·Чем отличаются вольтамперные характеристики туннельного и выпрямительного диодов?

·Какой участок ВАХ туннельного диода является рабочим?

·Перечислите основные электрические параметры туннельного диода.

·Какие электронные устройства можно реализовать на базе туннельного диода?

·Как правильно выбрать параметры регрессии?

·Как оценить качество полученной ВАХ?

·Объясните, на основании каких соображений в работе выбираются параметры электрической схемы включения ТД.

·Насколько точно определены в работе параметры туннельного диода? От чего может зависеть качество полученных результатов?

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК БИПОЛЯРНОГО ТРАНЗИСТОРА

1. ЦЕЛЬ РАБОТЫ

Целью работы является:

·определение коэффициента передачи транзистора по постоянному току;

·получение входной характеристики транзистора в схеме с общим эмиттером;

·получение семейства выходных характеристик транзистора в схеме с общим эмиттером;

·установка рабочей точки транзисторного каскада с общим эмиттером.

2.СВЕДЕНИЯ, НЕОБХОДИМЫЕ ДЛЯ ВЫПОЛНЕНИЯ РАБОТЫ

Перед началом работы полезно ознакомиться со следующими вопро-

сами:

·устройство и принцип работы биполярного транзистора [1, с. 42-48],

·основные характеристики биполярного транзистора [1, с 44-51, 73-82],

·схемы включения биполярного транзистора и режимы его работы[1,

с. 182-190],

43

· особенности работы транзистора в режиме малого сигнала[1, с. 188190].

Полупроводниковый прибор, имеющий три электрода и два взаимодействующих p-n-перехода, называется биполярным транзистором. В зависимости от последовательности чередования областей с различным типом проводимости различают p-n-p-транзисторы и n-p-n-транзисторы. Их условные обозначения и устройство приведены на рис. 4.1.

Рис.4.1. Условные обозначения и устройство транзисторов p-n-p (а, б) и n-p-n (в, г) типов (показано смещение переходов транзисторов при работе в линейном режиме)

Биполярные транзисторы, как правило, изготавливаются из кремния, германия или арсенида галлия. По технологии изготовления биполярные транзисторы делятся на сплавные, диффузионные и эпитаксиальные.

В основном биполярные транзисторы применяются для построения схем усилителей, генераторов и преобразователей электрических сигналов в широком диапазоне частот(от постоянного тока до десяти гигагерц) и мощности ( от десятков милливатт до сотен ватт). В соответствии с этим биполярные транзисторы делятся на группы по частоте(низкочастотные – не более 3 МГц; средней частоты – от 3 МГц до 30МГц; высокочастотные

– от 30 МГц до 300 МГц; сверхвысокочастные – более 300 МГц) и по мощности (маломощные – не более 0,3 Вт; средней мощности – от 0,3 Вт до 1,5 Вт; большой мощности – более 1,5 Вт).

Разновидностью биполярных транзисторов являются лавинные транзисторы, предназначенные для формирования мощных импульсов наносекундного диапазона.

Другую разновидность биполярных транзисторов представляют двухэмиттерные модуляторные транзисторы, в которых конструктивно объединены две транзисторные структуры.

Широкое распространение в последние годы получили составные

44

биполярные транзисторы (транзисторы Дарлингтона), обладающие очень высоким коэффициентом передачи тока.

Взависимости от полярности напряжений, приложенных к электродам транзистора, различают следующие режимы его работы: линейный (усилительный), насыщения, отсечки и инверсный.

Влинейном режиме работы биполярного транзистора эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном. В режиме насыщения оба перехода смещены в прямом направлении, а в режиме отсечки – оба перехода в обратном направлении. И, наконец, в инверсном режиме коллекторный переход смещен в прямом направлении, а эмиттерный –

вобратном. Кроме рассмотренных режимов возможен еще один режим, который является не рабочим, а аварийным – это режим пробоя.

Принцип работы биполярного транзистора основан на возможности управления токами электродов путем изменения напряжений, приложенных к электронно-дырочным переходам. В линейном режиме, когда пере-

ход база-эмиттер открыт благодаря приложенному к нему напряжению UБЭ, через него протекает ток базыIБ. Протекание тока базы приводит к инжекции зарядов из области коллектора в область базы, причем ток коллектора определяется выражением:

где bDC статический коэффициент передачи тока базы.

Прямое падение напряжения UБЭ на эмиттерном переходе связано с

током коллектора уравнением Эберса-Молла:

I К = I КБ .О ( eU БЭ / jТ 1 ),

(4.2)

где IКБ.О – обратный ток коллекторного перехода, а jТ – температурный потенциал, который при температуре =300Т К составляет для кремния примерно 25 мВ.

Из выражения (4.2) следует, что при прямом смещении эмиттерного перехода и при условииUБЭ>jТ ток коллектора возрастает с ростом -на пряжения UБЭ по экспоненциальному закону:

I К » I КБ .О eU БЭ / jТ ,

(4.3)

где UБЭ <yК – контактная разность потенциалов.

Важнейшими характеристиками транзистора являются его входная и выходные вольтамперные характеристики. Типичные ВАХ биполярного транзистора приведены на рис.4.2.

Кроме ВАХ рассматривают статический коэффициент передачи тока, коэффициент передачи тока, дифференциальное входное сопротивление. Значения этих характеристик зависят от схемы включения транзисто-

45

ра. На рис.4.3 приведена схема включения биполярного транзистора с обратной проводимостью (n-p-n – типа) по схеме с общим эмиттером. Для такой схемы справедливо следующее соотношение между токами:

где IЭ, IБ, IК – сила тока в цепях эмиттера, базы и коллектора, соответственно.

Рис.4.2. Входная (а) и выходные (б) ВАХ биполярного транзистора

Рис.4.3. Включение биполярного транзистора по схеме с общим эмиттером

Рассмотрим основные характеристики биполярного транзистора.

Статический коэффициент передачитока bDC

определяется как

отношение тока коллектора IК к току базы IК :

bDC =

I К

.

(4.5)

I Б

приращением DIК

Коэффициент передачи токаbAC определяется

коллекторного тока к вызывающему его приращению DIБ базового тока:

bAC =

DI К

.

(4.6)

DI Б

46

Дифференциальное входное сопротивление ri транзистора в схеме с общим эмиттером определяется при фиксированном значении напряжения коллектор-эмиттер. Оно может быть найдено как отношение приращения напряжения база-эмиттер к вызванному им приращению тока базы:

ri

=

DU

БЭ

=

U БЭ 2 U БЭ1

.

(4.7)

DI

Б

I Б 2 I БЭ1

Используя полученные ранее параметры транзистора дифференциальное входное сопротивление rВХ можно определить по формуле:

ri = rБ + bАС × rЭ ,

(4.8)

где rБ – распределенное сопротивление базовой области полупроводника, rЭ – дифференциальное сопротивление перехода база-эмиттер, определяемое из выражения: rЭ = 25/IЭ , а IЭ – постоянный ток эмиттера в миллиамперах.

Первое слагаемое в выражении (4.8) много меньше второго, поэтому им можно пренебречь. Тогда:

Биполярные транзисторы чаще всего используются в усилительных каскадах. На рис.4.4 изображен типичный транзисторный каскад с общим эмиттером. Режим работы биполярного транзистора в таком каскаде определяется силой базового тока. Для того, чтобы базовый ток был стабилен, база соединяется с источником напряженияЕБ через высокоомное сопротивление RБ.

Рис.4.4. Установка рабочей точки с помощью стабильного тока базы

Для определения режима работы транзисторного каскада удобно построить линию нагрузки на выходной характеристике транзистора. Данный способ позволяет описать поведение транзистора во всех основных режимах работы, а именно: насыщения, усиления и отсечки.

Режим насыщения имеет место в случае, когда ток коллектора не

47

управляется током базы. Эта ситуация возникает при условииbDC IБ >IКН, где IКН – ток насыщения коллектора. Значение этого тока определяется сопротивлением RК в цепи коллектора и напряжением источника питания ЕК:

I КН

»

EK

.

(4.10)

RK

Режим насыщения характеризуется низким падением напряжения коллектор-эмиттер (порядка 0,1 В). Для перевода транзистора в этот режим необходимо, чтобы через базу транзистора протекал ток, больший, чем ток насыщения базы IБН:

I БН =

I КН

.

(4.11)

bDC

Для того чтобы базовый ток стал равным току насыщения, сопро-

тивление резистора RБ следует выбрать равным:

RБ

= RБН =

ЕБ

.

(4.12)

IБН

В режиме усиления ток коллектора меньше тока насыщения Iкн и для его вычисления можно воспользоваться уравнением линии нагрузки цепи коллектора:

I К

=

EК U КЭ

.

(4.13)

RК

Рабочая точка транзисторного каскада

Рабочая точка транзисторного каскада в статическом режиме задается током базы и напряжением на коллекторе.

Базовый ток транзистора в схеме(рис. 4.4) определяется как ток через сопротивление в цепи базы RБ:

I Б

=

EБ U БЭ

.

(4.14)

RБ

Он может быть также

определен как

точка пересечения входной

ВАХ транзистора и линии нагрузки цепи базы (точка 1 на рис.4.5а)

Ток коллектора определяется точкой пересечения линии нагрузки цепи коллектора и выходной характеристики транзистора(точка 1 на рис

4.5б.)

Значение тока коллектора можно вычислить по формуле:

I K = bDC × I Б .

(4.15)

48

Рис.4.5. Определение рабочей точки транзистора по входной (а) и выходной (б) вольтамперным характеристикам транзистора

Напряжение коллектор-эмиттер определяется из уравнения линии

нагрузки цепи коллектора:

U КЭ = E K I K × RK .

(4.16)

В режиме отсечки ток коллектора равен нулю и не создает на резисторе RК падения напряжения. Следовательно, напряжение UКЭ максимально и равно напряжению источника питанияЕК. Данный режим соответствует точке 2 на рис. 4.5б.

Работа транзисторного каскада в режиме малого сигнала

При работе транзисторного каскада в режиме малого сигнала обеспечивается наибольшее усиление входного сигнала при минимальных искажениях. Характерной особенностью данного режима является ,точто при всех возможных значениях входного сигнала рабочая точка транзистора не выходит из линейной области.

Расчет режима малого сигнала состоит в нахождении постоянных и переменных составляющих токов и напряжений в транзисторном каскаде. Расчет постоянных составляющих позволяет найти параметры рабочей точки транзисторного каскада(статический режим). Расчет переменных составляющих – усилительные свойства каскада в этой точке.

Коэффициент усиления по напряжению определяется отношением амплитуд выходного синусоидального напряжения к входному:

КУ

=

U ВЫХm

.

(4.17)

U ВХm

Величина этого параметра в схеме с общим эмиттером приближенно

49

равна отношению сопротивления в цепи коллектораrК цепи эмиттера rЭ:

KУ = rK . rЭ

Сопротивление в цепи коллектораrК определяется параллельным соединением сопротивления коллектора RK и сопротивления нагрузкиRН, роль которого может играть, например, входное сопротивление следующего каскада:

rK

=

RK × RН

.

(4.19)

RK + RН

Сопротивление в цепи эмиттераrЭ это сопротивление эмиттерного перехода, равное rЭ = 25мВ/IЭ. , причем в силу малости тока базы можно считать IЭ» IК. Если в цепи эмиттера включен резистор сопротивлением RЭ, то коэффициент усиления следует рассчитывать по формуле:

KУ

=

rK

.

(4.20)

rЭ + RЭ

Важными параметрами

транзисторного

каскада являются также

входное и выходное сопротивления.

Входное сопротивление усилителя по переменному току определяется как отношение амплитуд синусоидального входного напряжения UВХm

и входного тока IВХm:

U ВХm

rВХ

=

.

(4.21)

I ВХm

Входное сопротивление усилителя по переменному току вычисляется как параллельное соединение входного сопротивления транзистораri = bАС×rЭ и резисторов в цепи смещения базы. В схеме рис.4.4 используется один резистор RБ , поэтому входное сопротивление каскада равно:

1

=

1

+

1

.

(4.22)

rВХ

ri

RБ

Значение дифференциального выходного сопротивления схемы находится по напряжениюUХХm холостого хода на выходе усилителя и по напряжению UВЫХm, измеренному для сопротивления нагрузки RН , из следующего уравнения, решаемого относительно rВЫХ:

U ВЫХm

=

RН

.

(4.23)

U ХХm

RН + rВЫХ

Выбор рабочей точки транзисторного каскада определяет особенности работы транзисторного каскада. Максимальная величина неис-

50

каженного переменного напряжения на выходе может быть получена при условии, когда в статическом режиме постоянное напряжение на коллекторе равно половине напряжения коллекторного источника питания UK =EK /2.

При неудачном выборе амплитуды входного сигнала и величины базового смещения возникают искажения: выходное напряжение принимает несинусоидальную форму. Для устранения искажений нужно скорректировать положение рабочей точки или уменьшить амплитуду входного сигнала.

3.ОПИСАНИЕ ЛАБОРАТОРНОГО СТЕНДА

Всостав лабораторного стенда входят:

·базовый лабораторный стенд.

·Лабораторный модуль Lab4А для исследования характеристик биполярного транзистора типа КТ3102Д.

4.РАБОЧЕЕ ЗАДАНИЕ

Подготовьте шаблон отчета в редакторе MS Word.

Установите лабораторный модуль Lab4 на макетную плату лабораторной станции NI ELVIS. Внешний вид модуля показан на рис. 4.6.

При исследовании характеристик биполярного транзистора используется схема, изображенная на рис.4.7.

Рис. 4.6. Внешний вид модуля Lab4А

Рис. 4.7. Принципиальная электри-

для исследования характеристик

ческая схема для исследования ха-

биполярного транзистора

рактеристик биполярного транзи-

стора

Загрузите и запустите программу Lab-4А.vi.

После ознакомления с целью работы нажмите кнопку«Начать работу». На экране появится изображение ВП, необходимого для выполнения задания 1 (рис. 4.8).

51

Задание 1. Определение коэффициента передачи биполярного транзистора по постоянному току

4.1.1. Установите с помощью ползунковых регуляторов, находящихся на передней панели ВП, напряжения источников питания ЕБ и ЕК, примерно равными указанным в табл.4.1, и измерьте с помощью ВП соответствующие значения тока коллектора IК, тока базы IБ и напряжения коллек- тор-эмиттер UКЭ. Полученные результаты запишите в табл. 4.1.

Рис. 4.8. Лицевая панель ВП при выполнении задания 1

4.1.2. Вычислите по формуле(4.5) и запишите в табл.4.1 значения статического коэффициента усиления транзистораbDC. Сделайте вывод о влиянии напряжения коллектор-эмиттерUКЭ на коэффициент усиления транзистора.

Таблица 4.1

ЕБ, В

ЕК, В

IК, мА

IБ, мкА

UКЭ, В

bDC

1,25

5

2,5

5

5

5

1,25

10

2,5

10

5

10

52

4.1.3. Нажмите на передней панели ВП кнопку«Перейти к заданию 2», на экране появится лицевая панель ВП, необходимая для выполнения задания 2 (рис.4.9).

Рис. 4.9. Лицевая панель ВП при выполнении задания 2

Задание 2. Получение входной характеристики биполярного транзистора в схеме с общим эмиттером

4.2.1.С помощью цифрового элемента управления, находящегося на передней панели ВП, установите значение напряжения питания коллектора

ЕК, равным 5 В. Нажмите на панели ВП кнопку «Измерение». На графическом индикаторе ВП появится график зависимости входного токаIБ транзистора от входного напряжения UБЭ.

Скопируйте изображение, полученное на графическом индикаторе на страницу отчета.

4.2.2.Изменяя напряжение источника ЭДС базыЕБ с помощью ползункового регулятора, расположенного на панели ВП, установите значение тока базы сначала примерно равным10 мкА, а затем примерно равным 40 мкА. Запишите в отчет значения тока базыIБ и напряжения база-эмиттер UБЭ для этих точек входной характеристики.

4.2.3.Вычислите дифференциальное входное сопротивление транзистора при изменении базового тока от10 мкА до 40 мкА по формуле rВХ =

DUБЭ/DIБ. Полученное значение запишите в отчет.

4.2.4. Нажмите на передней панели ВП кнопку«Перейти к заданию 3», на экране появится лицевая панель ВП, необходимая для выполнения задания 3 (рис.4.10).

53

Рис. 4.10. Лицевая панель ВП при выполнении задания 3

Задание 3. Получение семейства выходных характеристик биполярного транзистора в схеме с общим эмиттером

4.3.1.Нажмите на панели ВП кнопку «Измерение». На графическом индикаторе ВП появятся графики зависимостей коллекторного токаIК от напряжения коллектор-эмиттер UКЭ, полученные при плавном изменении напряжения на коллекторе транзистора от 0 до 10 В и фиксированных значениях напряжения источника ЭДС базыЕБ = 0,6 В; 0,74 В; 0,88 В; 1,02 В;1,16 В. Установившиеся при этом значения тока базыIБ отображаются на поле графика.

4.3.2.Скопируйте изображение, полученное на графическом индикаторе, на страницу отчета. Средствами MS Word для каждой кривой отметьте соответствующие значения тока базы транзистора.

4.3.3.При фиксированном коллекторном напряжении, Равном UКЭ =5 В, определите ток коллектора IК, соответствующий значениям тока базы, при которых снимались выходные характеристики.

Для этого с помощью расположенного на панели ВП ползункового регулятора «X» установите вертикальную визирную линию напротив деления «5 В» горизонтальной оси графика выходных характеристик. Затем с помощью горизонтальной визирной линии, перемещаемой ползунковым регулятором «Y», получите значения коллекторного тока в точках пересечения выходных характеристик с вертикальным визиром. Полученные результаты запишите в отчет.

4.3.4.Определите коэффициент передачи токаbАС при изменении

тока базы в диапазоне от10 мкА до 40 мкА по формуле bАС =D IК /D IБ.

54

Полученное значение запишите в отчет.

4.3.5.Выберите сопротивление коллектора равнымRК = 300 Ом, а ЭДС коллекторного источника питанияЕК = 5 В, и средствами MS Word постройте в отчете на графике выходных характеристик транзистора -ли нию нагрузки по двум точкам: точка ЕК = 5 В на оси абсцисс и точка IК = Ек/RК на оси ординат.

4.3.6.Оцените по выходным характеристикам и линии нагрузки значения тока коллектора IК* и тока базы IБ* в рабочей точке, для которой UK =EK /2. Полученные значения запишите в отчет.

4.3.7.Нажмите на передней панели ВП кнопку«Перейти к заданию 4», на экране появится лицевая панель ВП, необходимая для выполнения задания 4 (рис.4.11).

Рис. 4.11. Лицевая панель ВП при выполнении задания 4

Задание 4. Установка рабочей точки транзисторного каскада с общим эмиттером

4.4.1.Установите с помощью органов управления ВП амплитуду напряжения источника входного гармонического напряженияuВХ.m =0, и величину напряжения источника ЭДС коллектора ЕК = 5 В. Нажмите кнопку

«Измерение».

На графике выходных характеристик транзистора появится изображение линии нагрузки. Сравните его с изображением, полученным при выполнении п.4.3.5.

4.4.2.Регулируя ЭДС источника смещения базыЕБ, установите значение тока базы IБ*, равное значению, полученному в п.4.3.6. Измерьте и запишите в табл.4.2 параметры статического режима транзисторного уси-

55

лителя с общим эмиттером.

Таблица 4.2

IБ, мкА

UБЭ, В

IК , мА

UК, В

4.4.3.Плавно увеличивая амплитуду входного сигнала uВХ.m, получите на графическом индикаторе ВП максимальный неискаженный выходной сигнал. Скопируйте изображение выходного сигнала в отчет. Сопоставьте осциллограммы и сделайте вывод о соотношении фаз входного и выходного сигналов транзисторного каскада с общим эмиттером.

4.4.4.С помощью ВП измерьте значения амплитуд входногоUВХ и выходного UВЫХ сигналов. Для этого, используя визирные линии графических индикаторов, определите по осциллограммам входного и выходного сигналов максимальные и минимальные мгновенные значения указанных напряжений. При отсчете значений напряжения используйте цифровые индикаторы, совмещенные с ползунковыми регуляторами ВП. Для определения амплитуды сигналов используйте формулуUm=(umax-umin)/2. Полученные результаты запишите в отчет.

4.4.5.Используя полученные значения амплитуды входного и -вы ходного сигналов, определите по формуле(4.17) коэффициент усиления транзисторного каскада. Результат запишите в отчет.

4.4.6.Вычислите коэффициент усиления транзисторного каскада по формуле (4.18). Результат запишите в отчет. Сравните измеренное и рассчитанное значения коэффициента усиления. Объясните полученный результат.

4.4.7.Исследуйте, как влияет положение рабочей точки на работу транзисторного каскада с общим эмиттером. Для этого, регулируя напря-

жение ЭДС источника смещения базыЕБ, измените значение тока базы примерно на 30% от величины IБ*, полученной в разделе 4.3.6, сначала в сторону увеличения, а затем в сторону уменьшения. Пронаблюдайте характер искажения выходного сигнала. Скопируйте в отчет изображение, полученное на графическом индикаторе ВП в обоих случаях. Объясните причину наблюдаемых искажений выходного сигнала.

4.4.8.Выключите ВП, для чего нажмите на панели ВП кнопку«За-

вершение работы».

5.КОНТРОЛЬНЫЕ ВОПРОСЫ

·Изобразите возможные схемы включения биполярного транзистора.

·Укажите факторы, определяющие силу тока, протекающего через коллектор биполярного транзистора.

·Зависит ли коэффициент bDC от тока коллектора? Если да, то в какой степени? Обоснуйте ответ.

Добавить комментарий