Как найти ток нагрузки выпрямителя

Расчет выпрямителя

  Поскольку в преобладающем большинстве конструкций
блоков питания используется двухполупериодный выпрямитель, диоды которого
включены по мостовой схеме (рис. 1), о выборе его элементов здесь и пойдет
разговор. Рассчитать выпрямитель – значит правильно выбрать выпрямительные диоды
и конденсатор фильтра, а также определить необходимое переменное напряжение,
снимаемое для выпрямления с вторичной обмотки сетевого трансформатора. Исходными
данными для расчета выпрямителя служат: требуемое напряжение на нагрузке
(Uн) и потребляемый ею максимальный ток
(Iн).

Расчет ведут в таком порядке:

1. Определяют переменное напряжение, которое должно быть на вторичной обмотке
сетевого трансформатора:

U2 = B Uн,

где: Uн – постоянное напряжение на нагрузке, В;

В – коэффициент, зависящий от тока нагрузки, который определяют по табл.
1.

Коэффициент Ток нагрузки,А
0,1 0,2 0,4 0,6 0,8 1,0
В 0,8 1,0 1,9 1,4 1,5 1,7
С 2,4 2,2 2,0 1,9 1,8 1,8

2. По току нагрузки определяют максимальный ток, текущий через каждый диод
выпрямительного моста:

Iд = 0,5 С Iн,

где: Iд – ток через диод, А;
Iн
максимальный ток нагрузки, А;
С – коэффициент, зависящий от тока нагрузки
(определяют по табл. 1).

3. Подсчитывают обратное напряжение, которое будет приложено к каждому диоду
выпрямителя:

Uобр = 1,5 Uн,

где: Uобр – обратное напряжение,
В;
Uн – напряжение на нагрузке, В.

4. Выбирают диоды, у которых значения выпрямленного тока и допустимого
обратного напряжения равны или превышают расчетные.

5. Определяют емкость конденсатора фильтра:

Сф = 3200 Iн / Uн
Kп
,

где: Сф – емкость конденсатора фильтра,
мкФ;
Iн – максимальный ток нагрузки. A;
Uн
напряжение на нагрузке, В;
Kп – коэффициент пульсации
выпрямленного напряжения (отношение амплитудного значения переменной
составляющей частотой 100 Гц на выходе выпрямителя к среднему значению
выпрямленного напряжения).

  Для различных нагрузок коэффициент пульсаций не
должен превышать определенного значения, иначе в динамической головке или
громкоговорителе будет прослушиваться фон переменного тока. Для питания
портативных приемников и магнитофонов, например, допустим коэффициент пульсации
выпрямленного напряжения в пределах 10-3…10-2,
усилителей ВЧ и ПЧ – 10-4…10-3, предварительных каскадов
усилителей НЧ и микрофонных усилителей – 10-5…10-4. Если
выходное напряжение выпрямителя будет дополнительно стабилизироваться
транзисторным стабилизатором напряжения, то расчетная емкость конденсатора
фильтра может быть уменьшена в 5…10 раз.

Источник: shems.h1.ru

Содержание

  1. Электроника
  2. учебно-справочное пособие
  3. Расчет выпрямителей напряжения
  4. Однополупериодный выпрямитель
  5. Двухполупериодный выпрямитель
  6. Схема выпрямления с выводом от средней точки трансформатора
  7. Мостовая схема выпрямителя
  8. Трехфазный выпрямитель
  9. Однополупериодный трехфазный выпрямитель
  10. Двухполупериодный трехфазный выпрямитель
  11. Источники:
  12. Упрощенный расчет выпрямителя
  13. Выпрямители: Однофазный однополупериодный выпрямитель
  14. Расчет выпрямителя

Электроника

учебно-справочное пособие

  • Главная
  • Теория
  • Практика
  • Справочники
  • Схемы
  • Arduino
  • Тесты

Расчет выпрямителей напряжения

Выпрямители относятся ко вторичным источникам электропитания, для которых первичным источником являются сети переменного тока. Выпрямитель — это устройство, которое преобразует переменное напряжение питающей сети в однонаправленное пульсирующее. Именно однонаправленное пульсирующее так как назвать его постоянным немного некорректно. Существует и несколько иное определение: выпрямитель предназначен для преобразования переменного напряжения в импульсное напряжение одной полярности.

Выпрямители могут быть однополупериодные и двуполупериодные. К тому же они разделяются на однофазные и многофазные.

Однополупериодный выпрямитель

Рис. 1 — Диаграмма напряжений однополупериодного выпрямителя

Схема однополупериодного выпрямителя до боли проста и объяснять тут нечего. Для наглядности положительные и отрицательные полуволны показаны разными цветами (рис. 1). Поскольку диод обладает свойствами односторонней проводимости, на выходе получается пульсирующее напряжение одной полярности. Для схемы характерны следующие параметры:

Среднее значение выпрямленного напряжения:

Действующее значение входного напряжения:

Среднее значение выпрямленного тока:

Действующее значение тока во вторичной обмотке трансформатора:

Достоинства схемы — простота конструкции.

Недостатки — большие пульсации, малые значения выпрямленного тока и напряжения, низкий КПД.

Применяется такая схема для питания низкоомных нагрузок, некритичных к высоким пульсациям. В бытовой технике однолупериодные выпрямители применяются в основном в импульсных источниках питания: из-за большой рабочей частоты (около 15 кГц а иногда и выше) пульсации не столь чувствительны и их легче сгладить.

Двухполупериодный выпрямитель

Схема выпрямления с выводом от средней точки трансформатора

Рис. 2 — Диаграмма напряжений схемы выпрямителя с выводом от средней точки трансформатора

Пунктиром показано напряжение на входе второго диода. Как видно из графиков, во время первого полупериода первый диод открыт и на нагрузке создается падение напряжения. Во время второго полупериода первый диод закрывается, поскольку оказывается включенным в обратном направлении, а второй, наоборот, открывается и на нагрузке снова выделяется положительная полуволна. На схеме плюсиками и минусами обозначено действие полуволн переменного тока. Частота пульсаций двуполупериодного выпрямителя вдвое больше, что является его достоинством. Для такой схемы характерны следующие параметры:

Достоинства: удвоенные значения Uср и Iср , вдвое меньший коэффициент пульсаций по сравнению с однополупериодной схемой.

Недостатки: наличие трансформатора с двумя симметричными обмотками (что увеличивает его массогабаритные показатели). К тому же на диодах удвоенное обратное напряжение.

Мостовая схема выпрямителя

Рис. 3 — Схема мостового выпрямителя

Параметры такие же, как и двухполупериодной схемы со средним выводом, кроме обратного напряжения (оно в два раза меньше). Положительная полуволна (с верхнего по схеме вывода трансформатора) проходит через диод VD2, затем через нагрузку, затем через VD3 ко второму выводу трансформатора. При смене направления тока работают диоды VD4, VD1. Недостатком схемы считается удвоенное число диодов.

Достоинство — не нужен трансформатор со средней точкой.

Трехфазный выпрямитель

Однополупериодный трехфазный выпрямитель

Рис. 4 — Схема и диаграммы напряжений трехфазного однополупериодного выпрямителя

Каждая фаза смещена относительно другой на угол 120°. На нагрузке работает та фаза, у которой больше значение положительной полуволны в данный момент времени. В схеме диоды используются в течении 1/3 периода. При этом необходимо наличие средней точки.

Среднее значение выпрямленного напряжения:

Двухполупериодный трехфазный выпрямитель

Рис. 5 — Схема двухполупериодного трехфазного выпрямителя

По принципу действия такая схема аналогична однофазной двухполупериодной (мостовой). Для нее характерно:

Находит применение при различных величинах входного напряжения и токах нагрузки в сотни Ампер. Схема экономична, имеет низкие пульсации. Однако в реальных схемах коэффициент пульсаций составляет 8-10% из-за несимметричности фазных питающих напряжений.

Источники:

Электроника © ЦДЮТТ • Марсель Арасланов • 2019

Источник

Упрощенный расчет выпрямителя

Выпрямители блоков питания транзисторной аппаратуры радиолюбители обычно строят по схеме, изображенной на рис. 81.

Упрощенный расчет выпрямителя
Рис. 81. Схема двухполупериодного выпрямителя

Трансформатор Т понижает напряжение осветительной сети до некоторого необходимого значения, диоды VI — V4, включенные по мостовой схеме, выпрямляют это напряжение, а конденсатор фильтра Сф сглаживает его пульсации. Резистор RH символизирует нагрузку, питающуюся от выпрямителя. При конструировании сетевого блока питания сначала с учетом конкретной нагрузки рассчитывают параметры выпрямителя, а затем по полученным результатам — его трансформатор.

Исходные параметры при расчете выпрямителя: Uн требуемое напряжение на нагрузке, которое, как правило, равно напряжению на выходе фильтра выпрямителя Uo, и Iн — максимальный ток, потребляемый нагрузкой. От этих данных, определяемых конкретным радиотехническим устройством, зависит выбор диодов для выпрямителя, мощность сетевого трансформатора и числа витков в его вторичной и первичной обмотках.
Переменное напряжение на вторичной обмотке трансформатора (UII) подсчитывают по формуле:

Упрощенный расчет выпрямителя

где А — коэффициент, численное значение которого зависит от тока
нагрузки (табл. 2).

Зная ток нагрузки, определяют максимальный ток, текущий через каждый диод выпрямительного моста:

Упрощенный расчет выпрямителя

где Б — коэффициент, зависящий от максимального тока нагрузки (табл. 2).

Упрощенный расчет выпрямителя

Обратное напряжение диодов, используемых в выпрямителе, должно быть в 1,5 раза больше напряжения питания, т. е.

Упрощенный расчет выпрямителя

Емкость фильтрующего конденсатора Сф в мкФ определяют по формуле:

Упрощенный расчет выпрямителя

где КII — коэффициент пульсаций выпрямленного напряжения, характеризующий отношение амплитудного значения переменной составляющей частотой 100 Гц на выходе выпрямителя к среднему значению выпрямленного напряжения.

Чем больше емкость фильтрующего конденсатора и меньше ток, потребляемый нагрузкой, тем меньше пульсация выпрямленного напряжения и, следовательно, слабее прослушивается фон переменного тока в динамической головке или громкоговорителе радиотехнического устройства. Для большинства любительских транзисторных конструкций допустим коэффициент пульсаций питающего напряжения Кп = 0,01. Номинальное напряжение фильтрующего конденсатора не должно быть меньше напряжения на выходе выпрямителя, иначе он может оказаться пробитым более высоким напряжением.

Трансформатор выпрямителя рассчитывают в такой последовательности. Сначала определяют максимальное значение тока, который будет течь во вторичной обмотке: In = 1,5 • Iн max. Далее подсчитывают максимальную мощность, Вт, потребляемую выпрямителем от вторичной обмотки: Р2= U2 * I2, а затем мощность самого трансформатора: Ртр = 1,25 • Р2.

Площадь сечения магнитопровода S (см2), соответствующую расчетной мощности трансформатора, определяют по формуле:

Упрощенный расчет выпрямителя

где 1,3 — постоянный усредненный коэффициент.
Рассчитав магнитопровод трансформатора, определяют число витков первичной и вторичной обмоток по формулам:

Упрощенный расчет выпрямителя

Диаметр проводов обмоток трансформатора (в мм) можно опре делить из табл. 3 или по формуле:

Упрощенный расчет выпрямителя

где Iобм — ток в обмотке, мА.
Познакомившись с методикой расчета выпрямителя, кружковцы приступают к расчету сетевого блока питания для одного из собранных ими устройств.

Упрощенный расчет выпрямителяДля примера приведем расчет выпрямителя для питания приемника, выполненного по схеме, показаной на рис. 72. За исходные данные принимаем: UН=9В, Iн. тах=0,1А (с некоторым запасом), U1 = 220 В.

На вторичной обмотке трансформатора должно быть переменное напряжение:

U2 = A * UH = 0,8 * 0,9

Ток, текущий через каждый диод выпрямительного моста, составит:

Iv = 0,5 * Б • Iн. max = 0,5 * 2,4 • 0,1 = 0,12 А.

Следовательно, для выпрямителя можно использовать диоды серий Д7, Д226, Д229 с любыми буквенными индексами, потому что их средний выпрямленный ток и обратное напряжение значительно больше расчетных. Пригоден также выпрямительный блок КЦ402Б.

Емкость конденсатора фильтра (при коэффициенте пульсаций выпрямленного напряжения Кп = 0,01) может быть: Сф = 3200 * Iн. max / Uн * Кп = 3200 * 0,1 / 9 * 0,01

= 3500 мкФ. Можно использовать электролитический конденсатор емкостью 4000. 5000мкФ, например типа К50-6, на номинальное напряжение 10 В.

Теперь определим значение тока во вторичной обмотке трансформатора:

I2 = 1.5 * Iн.max = 1,5 * 0,1 = 0,15 А.

Мощность, потребляемая выпрямителем от вторичной обмотки трансформатора, будет: Р2 = U2 * I2 = 7 * 0,15

= 1 Вт. Таким образом, мощность самого трансформатора выпрямителя должна составить: Ртр = 1,25 * Р2 = 1,25 * 1 = 1,25 Вт.

Для трансформатора такой мощности можно использовать магнитопровод с минимальной площадью сечения сердечника:

Упрощенный расчет выпрямителя

Предположим, подобран магнитопровод УШ12 X 12 (площадь поперечного сечения сердечника принимаем равной 1,4 см2). В таком случае первичная обмотка, рассчитанная на напряжение сети 220 В, должна содержать

w1 = 50 * U1 / S = 50 * 220 / 1,4 = 7856 витков,
а вторичная обмотка
w2 = 55 * U2 / S = 55 * 7 / 1,4 = 275 витков.

Для первичной обмотки трансформатора можно использовать провод диаметром 0,1. 0,12 мм, а для вторичной — 0,2. 0,25 мм.

На практике для сетевых трансформаторов блоков питания транзисторной аппаратуры используют магнитопроводы, площадь сечения которых значительно превышает расчетную (обычно не менее 3. 4 см2). Это позволяет уменьшить число витков в обмотках, выполнять их проводами большего диаметра и использовать трансформаторы для блоков питания другой аппаратуры.

В.Г. Борисов. Кружок радиотехнического конструирования

Источник

Выпрямители: Однофазный однополупериодный выпрямитель

Простейшим выпрямителем является схема однофазного однополупериодного выпрямителя (рис. 3.4-1а). Графики, поясняющие его работу при синусоидальном входном напряжении (U_ <вх>= U_ <вх max>sin<left( omega t right)>) , представлены на рис. 3.4-1б.

Однофазный однополупериодный выпрямитель (а) и временные диаграммы, поясняющие его работу (б)

Рис. 3.4-1. Однофазный однополупериодный выпрямитель (а) и временные диаграммы, поясняющие его работу (б)

На интервале времени (left[ <0;>T/2 right]) полупроводниковый диод выпрямителя смещен в прямом направлении и напряжение, а следовательно, и ток в нагрузочном резисторе повторяют форму входного сигнала. На интервале (left[ T/2 <;>T right]) диод смещен в обратном направлении и напряжение (ток) на нагрузке равно нулю. Таким образом, среднее значение напряжения на нагрузочном резисторе будет равно:

где (U_<вх д>) — действующее значение переменного напряжения на входе выпрямителя.

Аналогично, для среднего тока нагрузки:

где (I_) — максимальная амплитуда выпрямленного тока.

Действующее значение тока нагрузки (I_<н д>) (через диод протекает такой же ток):

Отношение среднего значения выпрямленного напряжения (U_<н ср>) к действующему значению входного переменного напряжения (U_<вх д>) называется коэффициентом выпрямления ((K_<вып>)). Для рассматриваемой схемы (K_ <вып>= <0,45>).

Максимальное обратное напряжение на диоде (U_ <обр max>= U_ <вх max>= pi U_<н ср>) , т.е. более чем в три раза превышает среднее выпрямленное напряжение (это следует учитывать при выборе диода для выпрямителя).

Спектральный состав выпрямленного напряжения имеет вид (разложение в ряд Фурье):

Коэффициент пульсаций, равный отношению амплитуды низшей (основной) гармоники пульсаций к среднему значению выпрямленного напряжения, для описываемой схемы однополупериодного выпрямителя равен:

Как видно, однополупериодное выпрямление имеет низкую эффективность из-за высокой пульсации выпрямленного напряжения.

Еще один отрицательный аспект однополупериодного выпрямления связан с неэффективным использованием силового трансформатора, с которого берется переменное напряжение. Это обусловлено тем, что в токе вторичной обмотки трансформатора существует постоянная составляющая, равная среднему значению выпрямленного тока. Такая составляющая не трансформируется, т.е.:

(I_1 cdot w_1 = left( I_2 – I_ <н ср>right) w_2) ,

где (I_1), (I_2) — токи первичной и вторичной обмоток, а (w_1), (w_2) — число витков первичной и вторичной обмоток трансформатора.

Временнáя диаграмма тока первичной обмотки трансформатора (рис. 3.4-2) подобна диаграмме тока вторичной обмотки, но смещена на величину (I_ <н ср>cfrac).

Временная диаграмма токов в первичной и вторичной обмотках силового трансформатора, нагруженного на схему однофазного однополупериодного выпрямителя

Рис. 3.4-2. Временная диаграмма токов в первичной и вторичной обмотках силового трансформатора, нагруженного на схему однофазного однополупериодного выпрямителя

В сердечнике трансформатора за счет постоянной составляющей тока вторичной обмотки создается постоянный магнитный поток (Phi_0 = w_2 cdot I_0). Это явление принято называть вынужденным намагничиванием сердечника трансформатора. Оно может вызвать насыщение магнитной системы трансформатора, т.е. увеличение тока холостого хода, действующего значения первичного тока и следовательно, расчетной мощности первичной обмотки трансформатора, что обусловливает увеличение необходимых размеров трансформатора в целом.

Дополнительный минус однополупериодного выпрямления состоит в наличии участка стабильного тока, что также снижает эффективность использования трансформатора по мощности. Максимальный коэффициент использования трансформатора по мощности для такой схемы не превышает (k_ <тр P>approx <0,48>).

Для снижения уровня пульсаций на выходе выпрямителя включаются разнообразные индуктивно-емкостные фильтры. Наличие конденсаторов и индуктивностей в цепи нагрузки оказывает значительное влияние на работу выпрямителя.

В маломощных выпрямителях обычно применяют простейший емкостный фильтр, который представляет собой конденсатор, включенный параллельно нагрузке (рис. 3.4-3).

Схема однофазного однополупериодного выпрямителя с емкостным фильтром (а) и временные диаграммы, поясняющие его работу (б)

Рис. 3.4-3. Схема однофазного однополупериодного выпрямителя с емкостным фильтром (а) и временные диаграммы, поясняющие его работу (б)

В установившемся режиме работы, когда напряжение на входе выпрямителя (U_<вх>) больше напряжения на нагрузке (U_н) и диод выпрямителя открыт, конденсатор будет подзаряжаться, накапливая энергию, поступающую от внешнего источника. Когда же напряжение на входе выпрямителя упадет ниже уровня открывания диода и он закроется, конденсатор начнет разряжаться через (R_н), предотвращая при этом быстрое падение уровня напряжения на нагрузке. Таким образом, результирующее напряжение на выходе выпрямителя (на нагрузке) окажется уже не таким пульсирующим, а будет значительно сглажено, причем тем сильнее, чем большую емкость будет иметь применяемый конденсатор.

Обычно, емкость конденсатора фильтра выбирают такой, чтобы его реактивное сопротивление было намного меньше сопротивления нагрузки ((1/ omega C ll R_н)). В этом случае пульсации напряжения на нагрузке малы и допустимо предполагать, что это напряжение постоянно ((U_н approx )). Примем: (U_н = U_ <вх max>cos<beta>), где (beta) — некоторая константа, определяющая значение напряжения на нагрузке. Очевидно, что в общем случае (beta) зависит от емкости конденсатора, сопротивления нагрузки, частоты входного напряжения и т.п. Физический смысл этой величины можно понять из временных диаграмм, приведенных на рис. 3.4-4. Как видно, (beta) отражает длительность временного интервала в одном периоде колебаний внешнего напряжения, когда диод выпрямителя находится в открытом состоянии ((beta = omega cdot t_<откр>/2)). Угол ( beta) принято называть углом отсечки.

График зависимости A(beta)

Рис. 3.4-4. График зависимости (A(beta))

Для тока, протекающего через диод в открытом состоянии, можно записать:

где (r) — активное сопротивление, обусловленное сопротивлением диода в открытом состоянии и сопротивлением вторичной обмотки трансформатора (иногда его называют сопротивлением фазы выпрямителя).

Среднее за период значение выпрямленного тока диода (учитывая, что диод открыт только на участке (varphi = left[pi/2 – beta ; pi/2 + beta right]):

Формула (3.4.2) очень важна при расчете выпрямителя. Ведь угол отсечки (beta) не является заранее известным исходным параметром, как правило, его приходится вычислять на основании заданных выходного напряжения ((U_н)), сопротивления ((R_н)) или тока нагрузки ((I_н)), а также параметров применяемого диода и трансформатора (которые определяют сопротивление фазы (r)). Располагая этими данными и учитывая (3.4.2) можно определить значение коэффициента (A):

(A left( beta right) = cfrac pi r> )

Средний ток через диод (I_<д ср>) равен среднему току нагрузки (I_<н ср>), а учитывая, что напряжение на нагрузке предполагается неизменным, то и мгновенное значение тока через нагрузку равно току диода: (I_н = I_<д ср>). Таким образом:

(A left( beta right) = cfrac pi r> = cfrac<pi r> )

Для нахождения угла отсечки (beta) при известном коэффициенте (A(beta)) на практике обычно пользуются графиком (рис. 3.4-4).

Максимальное значение тока диода достигается при (U_ <вх>= U_<вх max>) в момент времени, когда (varphi = pi/2 ), т.е. согласно выражения (3.4.1):

И далее, учитывая (3.4.2) получим:

График функции (F(beta)) представлен на рис. 3.4-5. Из него видно, что с уменьшением угла отсечки (beta) существенно увеличивается амплитуда тока через вентили.

График зависимости F(beta)

Рис. 3.4-5. График зависимости (F(beta))

Таким образом, емкостный характер нагрузки выпрямителя приводит к тому, что выпрямительный диод оказывается открытым в течение меньшего промежутка времени, а амплитуда тока, проходящего в это время через диод, оказывается больше, чем в аналогичной схеме, работающей на чисто активную нагрузку. Этот факт необходимо учитывать при выборе диода, который должен выдерживать повторяющийся ток соответствующей амплитуды и более того, нормально переносить первоначальный всплеск тока при включении, когда происходит первоначальная зарядка конденсатора.

Указанная закономерность справедлива не только для описываемой схемы однофазного однополупериодного выпрямления. Аналогичным образом будет происходить работа и других рассматриваемых далее схем, имеющих нагрузку емкостного характера.

Требуемый коэффициент пульсаций на выходе однофазного однополупериодного выпрямителя с емкостным фильтром (K_п) может быть получен при правильном выборе емкости сглаживающего конденсатора. Для ее нахождения используется следующая формула:

где (H(beta)) — это еще один вспомогательный коэффициент, значение которого находится по графику (рис. 3.4-6).

График зависимости H(beta)

Рис. 3.4-6. График зависимости (H(beta))

Емкостный фильтр характерен для выпрямителей, рассчитанных на малые токи нагрузки. При больших токах обычно применяют индуктивные фильтры. Такой фильтр представляет собой катушку индуктивности (обычно с ферромагнитным сердечником), включенную последовательно с нагрузкой (рис. 3.4-7). Наличие индуктивности в цепи нагрузки также как и емкость оказывает значительное влияние на режим работы вентилей выпрямителя.

Схема однофазного однополупериодного выпрямителя с индуктивным фильтром (а) и временные диаграммы, поясняющие его работу (б)

Рис. 3.4-7. Схема однофазного однополупериодного выпрямителя с индуктивным фильтром (а) и временные диаграммы, поясняющие его работу (б)

Работа схемы на рис. 3.4-7 описывается уравнением:

Приняв ток в цепи в начальный момент времени ((t = 0)) равным нулю, решив данное уравнение получим следующее выражение для тока в цепи нагрузки:

где ( theta = operatorname left( cfrac<omega L> right) )

Временная диаграмма, отражающая эту зависимость приведена на рис. 3.4-7(б). По ней хорошо виден физический смысл константы (theta). Она представляет собой угол, на который запаздывает основной всплеск тока в нагрузке относительно инициирующего его всплеска напряжения на входе выпрямителя.

Если проанализировать зависимость тока нагрузки (I_н(t)), можно заметить, что его амплитуда с увеличением индуктивности катушки падает (соответственно падает и его среднее значение). Т.е. среднее значение напряжения на нагрузке оказывается меньшим, чем в случае отсутствия индуктивности, уменьшаются также пульсации выходного напряжения. Сами колебания тока оказываются сдвинутыми относительно колебаний входного напряжения на угол (theta). Это является причиной скачкообразного приложения к диоду в момент его запирания отрицательного обратного напряжения величиною до (U_ <обр>= U_<вх max>).

Описанный режим работы вентилей (затягивание тока, уменьшение его амплитуды, скачкообразное приложение обратного напряжения) при наличии индуктивного фильтра характерен для всех схем выпрямителей. Индуктивный фильтр обычно применяют в схемах мощных выпрямителей, поскольку в этом случае требуемая для существенного изменения параметров выходного напряжения индуктивность оказывается незначительной.

Наиболее эффективно сглаживание пульсаций выпрямленного напряжения осуществляется с помощью сложных многозвенных фильтров, в состав которых входят и катушки индуктивности и конденсаторы (основой таких фильтров являются т.н. Г- или П-образные звенья).

Источник

Расчет выпрямителя

Поскольку в преобладающем большинстве конструкций блоков питания используется двухполупериодный выпрямитель, диоды которого включены по мостовой схеме (рис. 1), о выборе его элементов здесь и пойдет разговор. Рассчитать выпрямитель — значит правильно выбрать выпрямительные диоды и конденсатор фильтра, а также определить необходимое переменное напряжение, снимаемое для выпрямления с вторичной обмотки сетевого трансформатора. Исходными данными для расчета выпрямителя служат: требуемое напряжение на нагрузке (U н ) и потребляемый ею максимальный ток (I н ) .

Расчет ведут в таком порядке:

1. Определяют переменное напряжение, которое должно быть на вторичной обмотке сетевого трансформатора:

где: U н — постоянное напряжение на нагрузке, В;
В — коэффициент, зависящий от тока нагрузки, который определяют по табл. 1.

Коэффициент Ток нагрузки, А
0,1 0,2 0,4 0,6 0,8 1,0
В 0,8 1,0 1,9 1,4 1,5 1,7
С 2,4 2,2 2,0 1,9 1,8 1,8

2. По току нагрузки определяют максимальный ток, текущий через каждый диод выпрямительного моста:

где: I д — ток через диод, А;
I н — максимальный ток нагрузки, А;
С — коэффициент, зависящий от тока нагрузки (определяют по табл. 1).

3. Подсчитывают обратное напряжение, которое будет приложено к каждому диоду выпрямителя:

где: U обр — обратное напряжение, В;
U н — напряжение на нагрузке, В.

4. Выбирают диоды, у которых значения выпрямленного тока и допустимого обратного напряжения равны или превышают расчетные.

5. Определяют емкость конденсатора фильтра:

С ф = 3200 I н / U н K п ,

где: С ф — емкость конденсатора фильтра, мкФ;
I н — максимальный ток нагрузки. A;
U н — напряжение на нагрузке, В;
K п — коэффициент пульсации выпрямленного напряжения (отношение амплитудного значения переменной составляющей частотой 100 Гц на выходе выпрямителя к среднему значению выпрямленного напряжения).

Источник

Полупроводниковые однофазные выпрямители блоков питания.


Классификация, свойства, схемы, онлайн калькулятор.
Расчёт ёмкости сглаживающего конденсатора.

«- Почему пульт не работает?
  – Я, конечно, не электрик, но, по-моему, пульт не работает, потому что телевизора нет».

– А для чего нам ещё “нахрен не упал” профессиональный электрик?
– Для чего? Да много для чего! Например, для того, чтобы быть в курсе, что без источника питания, а точнее без преобразователя
сетевого переменного напряжения в постоянное, не обходится ни одно электронное устройство.

– А электрик?
– Электрик, электрик… Что электрик?… «Электрик Сидоров упал со столба и вежливо выругался…»

Итак, приступим.
Выпрямитель – это электротехническое устройство, предназначенное для преобразования переменного напряжения в постоянное.

Выпрямитель содержит трансформатор,
необходимый для преобразования напряжения сети Uc до величины U2, определяемой требованиями
нагрузки;

вентильную группу (в нашем случае диодную), которая обеспечивает одностороннее протекание тока в цепи нагрузки;
фильтр, передающий на выход схемы постоянную составляющую напряжения и сглаживающий пульсации напряжения.

Расчёт трансформатора – штука громоздкая, в рамках этой статьи рассматриваться не будет, поэтому сразу перейдём к основным и наиболее
распространённым схемам выпрямителей блоков питания радиоэлектронной аппаратуры.
В процессе повествования давайте сделаем допущение, что под величинами переменных напряжений и токов в цепях выпрямителей мы будем
подразумевать их действующие (эффективные) значения:

Uдейств = Uампл/√2

и
Iдейств = Iампл/√2
.

Именно такие значения приводятся в паспортных характеристиках обмоток трансформаторов, да и большинство измерительных приборов
отображают – не что иное, как аккурат эффективные значения сигналов переменного тока.

Однополупериодный выпрямитель.

Выпрямители блоков питания

Выпрямители блоков питания
Рис.1

На Рис.1 приведена однофазная однополупериодная схема выпрямления, а также осциллограммы напряжений в различных точках
(чёрным цветом – напряжение на нагрузке при отсутствии сглаживающего конденсатора С1, красным – с конденсатором).
В данном типе выпрямителя напряжение с вторичной обмотки трансформатора поступает в нагрузку через диод только в положительные
полупериоды переменного напряжения. В отрицательные полупериоды полупроводник закрыт, и напряжение в нагрузку подаётся только с
заряженного в предыдущий полупериод конденсатора.
Однополупериодная схема выпрямителя применяется крайне редко и только для питания цепей с низким током потребления ввиду высокого уровня
пульсаций выпрямленного напряжения, низкого КПД, и неэффективного использования габаритной мощности трансформатора.

Здесь обмотка трансформатора должна обеспечивать величину тока, равную удвоенному значению максимального тока в нагрузке
Iобм = 2×Iнагр
 и напряжение холостого хода
~U2 ≈ 0,75×Uн
.
При выборе диода D1 для данного типа схем, следует придерживаться следующих его параметров:

Uобр > 3,14×Uн
  и  
Iмакс > 3,14×Iн
.

Едем дальше.
Двухполупериодный выпрямитель с нулевой точкой.

Выпрямители блоков питания

Выпрямители блоков питания
Рис.2

Схема, приведённая на Рис.2, является объединением двух противофазных однополупериодных выпрямителей, подключённых к общей
нагрузке.
В одном полупериоде переменного напряжения ток в нагрузку поступает с верхней половины вторичной обмотки через открытый диод D1,
в другом полупериоде – с нижней, через второй открытый диод D2.
Как и любая двухполупериодная, эта схема выпрямителя имеет в 2 раза меньший уровень пульсации по сравнению с однополупериодной
схемой. К недостаткам следует отнести более сложную конструкцию трансформатора и такое же, как в однополупериодной схеме – нерациональное
использование трансформаторной меди и стали.

Каждая из обмоток трансформатора должна обеспечивать величину тока, равную значению максимального тока в нагрузке
Iобм = Iнагр
 и напряжение холостого хода
~U2 ≈ 0,75×Uн
.
Полупроводниковые диоды D1 и D2 должны обладать следующими параметрами:

Uобр > 3,14×Uн
  и  
Iмакс > 1,57×Iн
.

И наконец, классика жанра –
Мостовые схемы двухполупериодных выпрямителей.

Выпрямители блоков питания

Выпрямители блоков питания
Рис.3

На Рис.3 слева изображена схема однополярного двухполупериодного мостового выпрямителя с использованием одной обмотки
трансформатора.
Графики напряжений на входе и выходе выпрямителя аналогичны осциллограммам, изображённым на Рис.2.

Во время положительного полупериода переменного напряжения ток протекает через цепь, образованную D2 и D3, во время отрицательного –
через цепь D1 и D4. В обоих случаях направление тока, протекающего через нагрузку, одинаково.

Если сравнивать данную схему с предыдущей схемой выпрямителя с нулевой точкой, то мостовая имеет более простую конструкцию трансформатора при таком
же уровне пульсаций, менее жёсткие требования к обратному напряжению диодов, а главное – более рациональное использование
трансформатора и возможность уменьшения его габаритной мощности.

К недостаткам следует отнести необходимость увеличения числа диодов, что приводит к повышенным тепловым потерям за счёт большего падения
напряжения в выпрямителе.

Обмотка трансформатора должна обеспечивать величину тока, равную
Iобм = 1,41×Iнагр
 и напряжение холостого хода
~U2 ≈ 0,75×Uн
.
Полупроводниковые диоды следует выбирать исходя из следующих соображений:

Uобр > 1,57×Uн
  и  
Iмакс > 1,57×Iн
.

При наличии у трансформатора двух одинаковых вторичных обмоток, или одной с отводом от середины выводом, однополярная схема
преобразуется в схему двуполярного выпрямителя со средней точкой (Рис.3 справа).
Естественным образом, диоды в двуполярном исполнении должны выбираться исходя из двойных значений
Uобр и
Iмакс по отношению к однополярной схеме.

Значения Uобр и
Iмакс приведены исходя из величин
наибольшего (амплитудного) значения обратного напряжения, приложенного к одному диоду, и наибольшего (амплитудного) значения
тока через один диод при отсутствии сглаживающих фильтров на выходе.

Конденсатор С1 во всех схемах – это простейший фильтр, выделяющий постоянную составляющую напряжения и сглаживающий
пульсации напряжения в нагрузке.
Для выпрямителей, не содержащих стабилизатор, его ёмкость рассчитывается по формулам:
С1 = 6400×Iн/(Uн×Кп)
для однополупериодных выпрямителей и
С1 = 3200×Iн/(Uн×Кп)
– для двухполупериодных,
где Кп – это
коэффициент пульсаций, численно равный отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей.

Для стабилизированных источников питания ёмкость С1 можно уменьшить в 5-10 раз.

«Коэффициент пульсаций выбирают самостоятельно в зависимости от предполагаемой нагрузки, допускающей питание постоянным
током вполне определённой “чистоты”:
10-3… 10-2   (0,1-1%) – малогабаритные транзисторные радиоприёмники и магнитофоны,
10-4… 10-3   (0,01-0,1%) – усилители радио и промежуточной частоты,
10-5… 10-4   (0,001-0,01%) – предварительные каскады усилителей звуковой частоты и микрофонных усилителей.» –
авторитетно учит нас печатное издание.

Ну и под занавес приведём незамысловатую онлайн таблицу.

КАЛЬКУЛЯТОР РАСЧЁТА ВЫПРЯМИТЕЛЯ ДЛЯ БЛОКА ПИТАНИЯ.


   Выбор схемы выпрямителя  
  

   Переменное входное напряжение U2 (В)  
     

   Максимальный ток нагрузки Iн (А)  
     

   Пульсации выходного напряжения (%)  
     

  

   Выходное напряжение Uн на холостом ходу (В)   
     

   Выходное напряжение Uн при максимальном токе (В)   
     

   Параметр диодов – максимальный прямой ток (А)   
     

   Параметр диодов – максимальное обратное напряжение (В)   
     

   Ёмкость конденсатора С1 (МкФ)   
     

А на следующей странице рассмотрим сглаживающие фильтры силовых выпрямителей, не только ёмкостные, но и индуктивные, а также
активные фильтры на биполярных транзисторах.

читать далее…

4) Определяем максимальный ток тазы регулирующего транзистора:

Iб.макс = Iн/h21э мин

где h21э мин – минимальный коэффициент передачи тока выбранного (по справочнику) транзистора.

5) Подбираем стабилитрон. Его напряжение стабилизации должно быть равно выходному напряжению стабилизатора, а значение максимального тока стабилизации превышать максимальный ток базы Iб.макс.

6) Подсчитываем сопротивление резистора R1:

R1 = (Uвып – Uст)/(Iб.макс + Iст.мин)

Здесь Uст – напряжение стабилизации стабилитрона, Iб.макс – вычисленное значение максимального тока базы транзистора, Iст.мин – минимальный ток стабилизации для данного стабилитрона, указанный в справочнике (обычно 3…5мА).

7) Определяем мощность рассеяния резистора R1:

Ррас. = (Uвып – Uст)²/ R1

стабилизатор с составным транзисторомМожет случиться, что маломощный стабилитрон не подойдет по максимальному току стабилизации и придется выбирать стабилитрон значительно болльшей емкости – такое случается при больших токах потребления и использовании транзистора с малым коэффициентом h21э. В таком случае целесообразно ввести в стабилизхатор дополнительный транзистор Vдоп малой мощности , который позволит снизить максимальный ток нагрузки для стабилитрона примерно в h21э раз и применить маломощный стабилитрон.

Добавить комментарий