Как найти ток в круговом витке

  1. Магнитное поле кругового витка с током.

Согласно
закону Био-Савара-Лапласа, индукция
магнитного поля, создаваемого элементом
тока dl на расстоянии r от него есть

где
α – угол между элементом тока

и
радиус-вектором

,
проведенным из этого элемента в точку
наблюдения; r – расстояние от элемента
тока до точки наблюдения.

В
нашем случае α = π/2, sinα = 1;

, где а – расстояние, отсчитываемое от
центра витка до рассматриваемой точки
на оси витка. Векторы

образуют
в этой точке конус с углом раствора при
вершине 2

=
π – 2β, где β – угол между отрезками а и
r.

Из
соображений симметрии ясно, что
результирующее магнитное поле на оси
витка будет направлено вдоль этой оси,
то есть вклад в него дают только те
составляющие, которые параллельны оси
витка:

Результирующую
величину индукции магнитного поля B на
оси витка получим, проинтегрировав это
выражение по длине контура от 0 до 2πR:

или,
подставив значение r:

В
частности, при а = 0 находим индукцию
магнитного поля в центре кругового
витка с током:

Этой
формуле можно придать другой вид,
воспользовавшись определением магнитного
момента витка с током:

Последнюю
формулу можно записать в векторном виде
(см. рис.9.1):

.

  1. Действие магнитного поля на проводник с током. Закон Ампера.

Магнитное
поле действует с некоторой силой на
любой проводник с током, находящийся
в нем.

Если
проводник, по которому протекает
электрический ток подвесить в магнитном
поле, например, между полюсами магнита,
то магнитное поле будет действовать на
проводник с некоторой силой и отклонять
его.

Направление
движения проводника зависит от
направления тока в проводнике и от
расположения полюсов магнита.

Сила,
с которой магнитное поле действует на
проводник с током, называется силой
Ампера.

Французский
физик А. М. Ампер был первым, кто обнаружил
действие магнитного поля на проводник
с током. Правда, источником магнитного
поля в его опытах был не магнит, а другой
проводник с током. Помещая проводники
с током рядом друг с другом, он обнаружил
магнитное взаимодействие токов (рис.
67) – притяжение параллельных токов и
отталкивание антипараллельных (т. е.
текущих в противоположных направлениях).
В опытах Ампера магнитное поле первого
проводника действовало на второй
проводник, а магнитное поле второго
проводника – на первый. В случае
параллельных токов силы Ампера оказывались
направленными навстречу друг другу и
проводники притягивались; в случае
антипараллельных токов силы Ампера
изменяли свое направление и проводники
отталкивались друг от друга.

Направление
силы Ампера можно определить с помощью
правила левой руки:

если
расположить левую ладонь руки так, чтобы
четыре вытянутых пальца указывали
направление тока в проводнике, а силовые
линии магнитного поля входили в ладонь,
то отставленный большой палец укажет
направление силы, действующей на
проводник с током (рис. 68).

Эта
сила (сила Ампера) всегда перпендикулярна
проводнику, а также силовым линиям
магнитного поля, в котором этот проводник
находится.

Сила
Ампера действует не при любой ориентации
проводника. Если проводник с током
расположить вдоль си

Зако́н
Ампе́ра — закон взаимодействия
электрических токов. Впервые был
установлен Андре Мари Ампером в 1820 для
постоянного тока. Из закона Ампера
следует, что параллельные проводники
с электрическими токами, текущими в
одном направлении, притягиваются, а в
противоположных — отталкиваются.
Законом Ампера называется также закон,
определяющий силу, с которой магнитное
поле действует на малый отрезок проводника
с током. Сила

,
с которой магнитное поле действует на
элемент объёма

проводника с током плотности

,
находящегося в магнитном поле с индукцией
:

.

Если
ток течёт по тонкому проводнику, то

,
где —

«элемент длины» проводника — вектор,
по модулю равный и совпадающий по
направлению с током. Тогда предыдущее
равенство можно переписать следующим
образом:

Сила

,
с которой магнитное поле действует на
элемент

проводника
с током, находящегося в магнитном поле,
прямо пропорциональна силе тока

в проводнике и векторному произведению
элемента длины

проводника на магнитную индукцию :

.

Направление
силы

определяется по правилу вычисления
векторного произведения, которое удобно
запомнить при помощи правила правой
руки.

Модуль
силы Ампера можно найти по формуле:

,

где



угол между векторами магнитной индукции
и тока.

Сила

максимальна когда элемент проводника
с током расположен перпендикулярно
линиям магнитной индукции

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Решение.
Магнитный момент кругового витка определим по формуле.

[ {{p}_{m}}=Icdot S, S=pi cdot {{R}^{2}}, {{p}_{m}}=Icdot pi cdot {{R}^{2}} (1). ]

μ0 = 4∙π∙10-7 Гн/м – магнитная постоянная, μ = 1 – магнитная проницаемость среды, В – магнитная индукция.
Магнитная индукция в центре кругового витка с током определим по формуле:

[ B=frac{{{mu }_{0}}cdot I}{2cdot R} (2), B=mu cdot {{mu }_{0}}cdot H (3), mu cdot {{mu }_{0}}cdot H=frac{{{mu }_{0}}cdot I}{2cdot R}, I=2cdot Rcdot H (4). ]

Подставим (4) в (1) определим радиус витка, из (4) определим силу тока.

[ begin{align}
  & {{p}_{m}}=2cdot pi cdot Hcdot {{R}^{3}}, R=sqrt[3]{frac{{{p}_{m}}}{2cdot pi cdot H}} (5). \
 & R=sqrt[3]{frac{6}{2cdot 3,14cdot 500}}=0,124. \
 & I=2cdot 0,124cdot 500=124. \
end{align} ]

R = 0,124 м, I = 124 А.

« Последнее редактирование: 18 Июля 2015, 07:25 от alsak »


Записан

Автор статьи

Виталий Викторович Карабут

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Французские ученые Ж. Био и Ф. Савар изучали магнитные поля, создаваемые постоянными токами разной формы. Результаты их работы обобщил известный математик и физик П. Лаплас.

Применение закона Био – Савара – Лапласа к вычислению магнитного поля кругового тока

Закон Био-Савара–Лапласа описывает порождение магнитного поля током $I$ на элементе проводника длиной $dl$ в некоторой точке пространства ($mu$ – магнитная проницаемость вещества в котором локализовано поле):

$dvec{B}=frac{mu_{0}mu }{4pi }frac{Ileft[ dvec{l}vec{r}right]}{r^{3}}left( 1 right)$

где $d vec l ⃗$ – вектор, длина которого равна длине элемента проводника $dl$, направленный по току; $vec r$ – радиус-вектор, который проведен от элемента $dl$ в точку, в которой исследуется магнитное поле. Поскольку в правой части формулы (1) находится векторное произведение, очевидно, что индукция элементарного магнитного поля будет направлена перпендикулярно плоскости, в которой находятся векторы $vec r$ и $vec l$ и при этом является касательной к силовой линии поля.

Величину вектора $vec{dB}$ из выражения (1) найдем как:

$dB=frac{mu_{0}mu }{4pi }frac{Idlsin alpha }{r^{2}}left( 2 right)$.

где $ alpha $– угол между векторами $vec r$ и $vec l$ .

Конкретное направление $vec{dB}$ находят по правилу буравчика (правилу правой руки):

Если правый винт вращать так, что его поступательное движение будет совпадать с направлением течения тока в избранном элементе, то вращение его головки укажет направление $vec{dB}$.

Магнитные поля подчиняются принципу суперпозиции:

Суммарную магнитную индукцию поля, создаваемого несколькими источниками, находят как геометрическую сумму векторов магнитной индукции отдельных полей:

$vec{B}=sumlimits_{i=1}^N vec{B}_{i} left( 3 right). $

Если распределение токов можно считать непрерывным, то принцип суперпозиции можно записать:

$vec{B}=int {dvec{B}_{i}} left( 4 right).$

Вычисление магнитной индукции поля с применением закона Био-Савара-Лапласа довольно сложная процедура. Но при существовании определенной симметрии в распределении токов, используя, рассмотренный нами закон и принцип суперпозиции, рассчитать конкретные поля просто. В любом случае следует придерживаться следующей схемы действий:

«Магнитное поле кругового тока» 👇

  1. Выделить на проводнике с током элементарный отрезок $dl$.
  2. Записать для исследуемой точки поля закон Био – Савара – Лапласа.
  3. Определить направление элементарного поля $vec{dB}$ в избранной точке.
  4. Воспользоваться принципом суперпозиции для магнитных полей (учесть, что суммируются векторы).

Магнитное поле кругового тока в его центре

Магнитное поле кругового тока в его центре. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Магнитное поле кругового тока в его центре. Автор24 — интернет-биржа студенческих работ

Рассмотрим круговой проводник, по которому течет постоянный ток $I$ (рис.1). Выделим на этом проводнике элемент $dl$, который можно считать прямолинейным. Если перейти к другому элементу этого же тока, затем к третьему и так далее, применить правило правого винта, то очевидно, что все магнитные поля, созданные этими элементами в центре, направлены вдоль одной прямой, перпендикуляру к плоскости кольца. Это означает, применяя принцип суперпозиции, мы векторное сложение заменим алгебраическим.

Запишем закон Био-Савара-Лапласа для модуля вектора индукции поля, создаваемого элементом d$l_1$:

$dB=frac{mu_{0}mu }{4pi }frac{Idl_{1}sin alpha }{r^{2}}left( 5right).$

Из рис.1 мы видим:

  1. что расстояние от элементарного тока до центра витка равно его радиусу ($R$) и будет одинаковым для всех элементов на этом витке,
  2. элемент $dl$ (как и все остальные элементы) будут нормальны к радиус-вектору $vec r$.

Учитывая сказанное выражение (5) представим в виде:

$dB=frac{mu_{0}mu }{4pi }frac{Idl_{1}}{R^{2}}left( 6 right)$.

Обезличивая витки с током, положим далее $dl_1=dl$.

Поскольку наш ток является непрерывным, то для нахождения полного поля в его центре, мы проинтегрируем (6), имеем:

$B=ointlimits_L {dB=} frac{mu_{0}mu }{4pi}frac{I}{R^{2}}ointlimits_L {dl} =frac{mu_{0}mu }{4pi}frac{I}{R^{2}}2pi Rto$

$B=mu_{0}mu frac{I}{2R}left( 7 right)$.

Замечание 1

$L=2πR$ – длина окружности витка.

Индукция магнитного поля кругового тока на его оси

Найдем индукцию магнитного поля на оси кругового тока, если ток, текущий по нему равен $I$, радиус витка – $R$ (рис.2).

Индукция магнитного поля кругового тока на его оси. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Индукция магнитного поля кругового тока на его оси. Автор24 — интернет-биржа студенческих работ

Как основу для выполнения поставленной задачи возьмем закон Био-Савара-Лапласа (1), где из рис.2 мы видим, что:

  • $vec{r}=vec{R}+vec{h}$,

  • $dvec{l}times vec{r}=dvec{l}times vec{R}+dvec{l}times vec{h}(9).$

Используя принцип суперпозиции закон (1) для нашего тока и формулы (8-9) запишем:

$vec{B}=ointlimits_L {dB=}$$frac{mu mu_{0}}{4pi }Iointlimits_L frac{dvec{l}timesvec{r}}{r^{3}} $
$=frac{mu mu_{0}}{4pi }frac{I}{r^{3}}left( ointlimits_L{dvec{l}times vec{R}+} ointlimits_L {dvec{l}times vec{h}}right)left( 10 right).$

В выражении (10) при записи интеграла, мы учли, что величина вектора $vec{r}$ не изменяется. Кроме этого вектор $vec h$, определяющий положение точки, в которой мы ищем поле, не изменяется при движении по нашему контуру, поэтому:

$ointlimits_L {dvec{l}times vec{h}} =(ointlimits_L {dvec{l})timesvec{h}} =0, left( 11 right),$

так как ( $ointlimits_L {dvec{l})=0.}$

Вычислим интеграл: $ointlimits_L {dvec{l}times vec{R}.}$ Введем единичный вектор ($vec n$), нормальный к плоскости витка с током.

$ointlimits_L {dvec{l}times vec{R}=ointlimits_L {vec{n}Rdl=vec{n}R}} ointlimits_L {dl=vec{n}R} 2pi R=2pi R^{2}vec{n}left( 12 right)$.

Подставляем результаты интегрирования из (12) в (10), имеем:

$vec{B}=frac{mu mu_{0}}{4pi }frac{I}{r^{3}}2pi R^{2}vec{n}=frac{mumu_{0}I}{2}frac{R^{2}}{left( R^{2}+h^{2}right)^{frac{3}{2}}}vec{n}left( 13 right)$

где при записи окончательного результата мы учли, что:

$r^{3}=left( R^{2}+h^{2} right)^{frac{3}{2}}$.

Кольца Гельмгольца

Кольцами Гельмгольца считают пару проводников в виде колец одного радиуса, расположенных в параллельных плоскостях (рис.3) на одной оси. Расстояние между плоскостями колец равно их радиусу.

Кольца Гельмгольца. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Кольца Гельмгольца. Автор24 — интернет-биржа студенческих работ

Рассмотрим магнитное поле на оси этих колец.

Декартову систему координат разместим так, что ее начало совпадает с центром нижнего кольца с током. Ось Z нашей системы будет направлена по оси колец (рис.3).

Запишем индукцию магнитного поля в точке с координатой $z$ на оси колец. Используем формулу (13):

$B_{z}=frac{mu mu_{0}I}{2}R^{2}left[ frac{1}{left( R^{2}+z^{2}right)^{frac{3}{2}}}+frac{1}{left[ left( z-d right)^{2}+R^{2}right]^{frac{3}{2}}} right]left( 14right)$.

Исследуем полученное поле. Считается, что магнитное поле на оси колец Гельмгольца на посередине между ними является однородным.

Неоднородность в первом приближении характеризуют первой производной:

$frac{partial B_{z}}{partial z}=frac{3mu mu_{0}I}{2}R^{2}left[frac{-z}{left( R^{2}+z^{2} right)^{frac{5}{2}}}+frac{z-d}{left[ left(z-d right)^{2}+R^{2} right]^{frac{5}{2}}} right]left( 15 right)$.

Если $z=frac{d}{2}quad$ , подставим в (15), имеем:

$frac{partial B_{z}}{partial z}=0.$

Найдем $frac{partial^{2}B_{z}}{partial z^{2}}:$

$frac{partial^{2}B_{z}}{partial z^{2}}=frac{3mu mu_{0}I}{2}R^{2}left( frac{5z^{2}}{left( R^{2}+z^{2}right)^{frac{7}{2}}}-frac{1}{left( R^{2}+z^{2}right)^{frac{5}{2}}}+frac{5left( z-d right)^{2}}{left[ left( z-d right)^{2}+R^{2} right]^{frac{7}{2}}}-frac{1}{left[ left( z-dright)^{2}+R^{2} right]^{frac{5}{2}}} right)left( 16 right)$

По условию для колец Гельмгольца, имеем:
$d=R.$

На середине их общей оси ($z=frac{d}{2})$, получаем:

$frac{partial^{2}B_{z}}{partial z^{2}}=0, left( 17 right)$.

Равенство нулю второй производной от $B_z$ по координате $z$, показывает, что в на середине оси колец магнитное поле является однородным с высокой степенью точности.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

В школьной физике в качестве источников магнитного поля рассматриваются постоянные магниты и проводники с током. Если постоянные магниты мы уже рассмотрели, то с проводниками давайте разберёмся в данном разделе. Простейшие формы проводников для расчёта магнитных полей:

  • бесконечный прямолинейный проводник с током
  • круговой виток с током (проводник в форме окружности)

Для каждого из этих проводников можно рассчитать напряжённость магнитного поля в точке.

Итак, движущийся заряд создаёт вокруг себя магнитное поле. Самый простой тип движущегося заряда — это обычный электрический ток. Вопрос только в том, как согнуть проводник:

  • бесконечный прямолинейный проводник с током

Магнитное поле бесконечного проводника

Рис. 1. Магнитное поле бесконечного проводника

Итак, возьмём бесконечный прямолинейный проводник с током. Слово «бесконечный» в данном случае небольшое приближение. Так для любой точки, находящейся непосредственно вблизи любого линейного проводника, сам проводник «кажется» бесконечным. Пусть по нашему проводнику течёт ток displaystyle I (рис. 1). Прямолинейный проводник с током создаёт вихревое (круговое) магнитное поле вокруг себя. Направление вектора магнитной индукции задаётся правилом буравчика (правилом правой руки). Исходя из этого правила, найдём направление вектора (рис. 2).

Магнитное поле бесконечного проводника (магнитная индукция)

Рис. 2. Магнитное поле бесконечного проводника (магнитная индукция)

Для подсчёта модуля вектора магнитной индукции поля вне прямолинейного бесконечного проводника с током можно использовать соотношение (рис. 3):

displaystyle B=mu {{mu }_{0}}frac{I}{2pi R} (1)

  • где

Модуль вектора магнитной индукции бесконечного линейного проводника

Рис. 3. Модуль вектора магнитной индукции бесконечного линейного проводника

3D модели рисунков достаточно сложны для рассмотрения, поэтому введены условные обозначения для направлений векторов/токов в трёхмерном пространстве (рис. 4).

Схематические отображения векторов

Рис. 4. Схематические отображения векторов

Тогда перерисуем рисунок 3, в случае, если мы смотрим сверху провода (рис. 5.1). В этом случае ток течёт на нас, т.е. из рисунка. И в случае, когда мы смотрим на провод снизу вверх (рис. 5.2). В этом случае ток течёт от нас, т.е. внутрь рисунка.

Поле проводника (вид сверху)

Рис. 5. Поле проводника (вид сверху)

На рисунке 5 точечной линией обозначено магнитное поле прямолинейного тока (оно круговое). Направление вектора магнитной индукции (displaystyle vec{B}) определяется правилом буравчика (правилом правой руки).

Правило буравчика для прямолинейного тока: правой рукой обхватываем проводник с током, отогнутый большой палец сонаправляем с током, тогда согнутые 4 пальца показывают направление вектора магнитной индукции.

  • круговой виток с током (проводник в форме окружности)

Второй вариант системы, в которой достаточно просто рассчитать модуль вектора магнитной индукции, — это круговой виток с током. Т.е. сам проводник с током представляет собой окружность. По данному проводнику ток может течь как по часовой стрелке (рис. 6.1), так и против часовой (рис. 6.2).

Круговой виток с током

Рис. 6. Круговой виток с током

В целом, магнитное поле такого проводника достаточно сложное, однако для центра витка нахождение модуля вектора магнитной индукции не представляет проблем:

displaystyle B=mu {{mu }_{0}}frac{I}{2R} (2)

  • где

Немного о displaystyle mu — относительной магнитной проницаемости среды. Это параметр, который описывает насколько сама среда воспринимает магнитное поле источника. В целом, это табличная величина.

Правило буравчика для кругового тока: обнимаем правой рукой провод, большой отогнутый палец правой руки направляем по току, тогда загнутые 4 пальца будут указывать направление вектора магнитной индукции.

Важно: для наших систем можно запомнить, что прямолинейный ток создаёт круговое магнитное поле (рис.5), а круговой ток создаёт прямолинейное магнитное поле (рис.6).

Вывод: для поиска модуля вектора магнитной индукции достаточно проанализировать систему в задаче и описать её через модель бесконечного прямолинейного или кругового проводника с током.

Для нахождения индукции магнитного поля в центре кругового проводника с током необходимо разбить этот проводник на элементы , для каждого из них найти век­тор , а затем все эти векторы сложить. Так как все век­торы направлены вдоль нормали к плоскости витка (рис. 11), то сложение век­торов можно заменить сложением их модулей dB.

По закону Био-Савара-Лапласа модуль вектора :

.

Так как все элементы проводника перпендикулярны соответствующим радиусам-векторам , то sina = 1 для всех элементов . Расстояния r = R для всех элементов проводника . Тогда выражение для модуля вектора :

.

Теперь можно перейти к интегрированию:

.

Итак, индукция магнитного поля в центре кругового проводника с током:

(R – радиус витка с током I).

Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Ж. Био и Ф. Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции:

Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.

Индукцию проводника с током можно представить как векторную сумму элементарных индукций создаваемых отдельными участками проводника. На опыте невозможно выделить отдельный участок проводника с током, так как постоянные токи всегда замкнуты. Можно измерить только суммарную индукцию магнитного поля, создаваемого всеми элементами тока. Закон Био–Савара определяет вклад в магнитную индукцию результирующего магнитного поля, создаваемый малым участком Δl проводника с током I.

Здесь r – расстояние от данного участка Δl до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ0 – магнитная постоянная. Направление вектора определяется правилом буравчика: оно совпадает с направлением вращения рукоятки буравчика при его поступательном перемещении вдоль тока. Рис. 1.17.1 иллюстрирует закон Био–Савара на примере магнитного поля прямолинейного проводника с током. Если просуммировать (проинтегрировать) вклады в магнитное поле всех отдельных участков прямолинейного проводника с током, то получится формула для магнитной индукции поля прямого тока:

которая уже приводилась в § 1.16.

Рисунок 1.17.1.
Иллюстрация закона Био–Савара

Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле

где R – радиус кругового проводника. Для определения направления вектора также можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.
Расчеты магнитного поля часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае можно пользаоваться теоремой о циркуляции вектора магнитной индукции, которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике.

Поясним понятие циркуляции вектора Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление его обхода. На каждом отдельном малом участке Δl этого контура можно определить касательную составляющую вектора в данном месте, то есть определить проекцию вектора на направление касательной к данному участку контура (рис. 1.17.2).

Рисунок 1.17.2.
Замкнутый контур (L) с заданным направлением обхода. Изображены токи I1, I2 и I3, создающие магнитное поле

Циркуляцией вектора называют сумму произведений Δl, взятую по всему контуру L:

Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур L в то время, как другие токи могут находиться в стороне от контура.

Теорема о циркуляции утверждает, что циркуляция вектора магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур:

В качестве примера на рис. 1.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи I2 и I3 пронизывают контур L в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, I3 > 0, а I2 <� 0. Ток I1 не пронизывает контур L.

Теорема о циркуляции в данном примере выражается соотношением:

Теорема о циркуляции в общем виде следует из закона Био–Савара и принципа суперпозиции.

Простейшим примером применения теоремы о циркуляции является вывод формулы для магнитной индукции поля прямолинейного проводника с током. Учитывая симметрию в данной задаче, контур L целесообразно выбрать в виде окружности некоторого радиуса R, лежащей в перпендикулярной проводнику плоскости. Центр окружности находится в некоторой точке проводника. В силу симметрии вектор направлен по касательной , а его модуль одинаков во всех точках окружности. Применение теоремы о циркуляции приводит к соотношению:

откуда следует формула для модуля магнитной индукции поля прямолинейного проводника с током, приведенная ранее.

Этот пример показывает, что теорема о циркуляции вектора магнитной индукции может быть использована для расчета магнитных полей, создаваемых симметричным распределением токов, когда из соображений симметрии можно «угадать» общую структуру поля.

Имеется немало практически важных примеров расчета магнитных полей с помощью теоремы о циркуляции. Одним из таких примеров является задача вычисления поля тороидальной катушки (рис. 1.17.3).

Рисунок 1.17.3.
Применение теоремы о циркуляции к тороидальной катушке

Предполагается, что катушка плотно, то есть виток к витку, намотана на немагнитный тороидальный сердечник. В такой катушке линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса r1 ≤ r <� r2 изображена на рис. 1.17.3. Применим теорему о циркуляции к контуру L в виде окружности, совпадающей с изображенной на рис. 1.17.3 линией индукции магнитного поля. Из соображений симметрии ясно, что модуль вектора одинаков вдоль всей этой линии. По теореме о циркуляции можно записать:

где N – полное число витков, а I – ток, текущий по виткам катушки. Следовательно,

Таким образом, модуль вектора магнитной индукции в тороидальной катушке зависит от радиуса r. Если сердечник катушки тонкий, то есть r2 – r1 <<� r, то магнитное поле внутри катушки практически однородно. Величина n = N / 2πr представляет собой число витков на единицу длины катушки. В этом случае

В это выражение не входит радиус тора, поэтому оно справедливо и в предельном случае r → ∞. Но в пределе каждую часть тороидальной катушки можно рассматривать как длинную прямолинейную катушку. Такие катушки называют соленоидами. Вдали от торцов соленоида модуль магнитной индукции выражается тем же соотношением, что и в случае тороидальной катушки.

На рис. 1.17.4 изображено магнитное поле катушки конечной длины. Следует обратить внимание на то, что в центральной части катушки магнитное поле практически однородно и значительно сильнее, чем вне катушки. На это указывает густота линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле целиком сосредоточено внутри него.

Рисунок 1.17.4.
Магнитное поле катушки конечной длины. В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки

В случае бесконечно длинного соленоида выражение для модуля магнитной индукции можно получить непосредственно с помощью теоремы о циркуляции, применив ее к прямоугольному контуру, показанному на рис. 1.17.5.

Рисунок 1.17.5.
Применение теоремы о циркуляции к расчету магнитного поля бесконечно длинного соленоида

Вектор магнитной индукции имеет отличную от нуля проекцию на направление обхода контура abcd только на стороне ab. Следовательно, циркуляция вектора по контуру равна Bl, где l – длина стороны ab. Число витков соленоида, пронизывающих контур abcd, равно n · l, где n – число витков на единицу длины соленоида, а полный ток, пронизывающий контур, равен I n l. Согласно теореме о циркуляции,

откуда

Это выражение совпадает с полученной ранее формулой для магнитного поля тонкой тороидальной катушки.

Модель. Магнитное поле кругового витка с током

Модель. Магнитное поле прямого тока

Модель. Магнитное поле соленоида

Магнитное поле кругового тока в его центре

Магнитное поле кругового тока в его центре. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Магнитное поле кругового тока в его центре. Автор24 — интернет-биржа студенческих работ

Рассмотрим круговой проводник, по которому течет постоянный ток $I$ (рис.1). Выделим на этом проводнике элемент $dl$, который можно считать прямолинейным. Если перейти к другому элементу этого же тока, затем к третьему и так далее, применить правило правого винта, то очевидно, что все магнитные поля, созданные этими элементами в центре, направлены вдоль одной прямой, перпендикуляру к плоскости кольца. Это означает, применяя принцип суперпозиции, мы векторное сложение заменим алгебраическим.

Запишем закон Био-Савара-Лапласа для модуля вектора индукции поля, создаваемого элементом d$l_1$:

$dB=frac{mu_{0}mu }{4pi }frac{Idl_{1}sin alpha }{r^{2}}left( 5right).$

Из рис.1 мы видим:

  1. что расстояние от элементарного тока до центра витка равно его радиусу ($R$) и будет одинаковым для всех элементов на этом витке,
  2. элемент $dl$ (как и все остальные элементы) будут нормальны к радиус-вектору $vec r$.

Учитывая сказанное выражение (5) представим в виде:

$dB=frac{mu_{0}mu }{4pi }frac{Idl_{1}}{R^{2}}left( 6 right)$.

Обезличивая витки с током, положим далее $dl_1=dl$.

Поскольку наш ток является непрерывным, то для нахождения полного поля в его центре, мы проинтегрируем (6), имеем:

$B=ointlimits_L {dB=} frac{mu_{0}mu }{4pi}frac{I}{R^{2}}ointlimits_L {dl} =frac{mu_{0}mu }{4pi}frac{I}{R^{2}}2pi Rto$

$B=mu_{0}mu frac{I}{2R}left( 7 right)$.

Замечание 1

$L=2πR$ — длина окружности витка.

Индукция магнитного поля кругового тока на его оси

Найдем индукцию магнитного поля на оси кругового тока, если ток, текущий по нему равен $I$, радиус витка — $R$ (рис.2).

Рисунок 2. Индукция магнитного поля кругового тока на его оси. Автор24 — интернет-биржа студенческих работ

Как основу для выполнения поставленной задачи возьмем закон Био-Савара-Лапласа (1), где из рис.2 мы видим, что:

  • $vec{r}=vec{R}+vec{h}$,
  • $dvec{l}times vec{r}=dvec{l}times vec{R}+dvec{l}times vec{h}(9).$

Используя принцип суперпозиции закон (1) для нашего тока и формулы (8-9) запишем:

$vec{B}=ointlimits_L {dB=}$$frac{mu mu_{0}}{4pi }Iointlimits_L frac{dvec{l}timesvec{r}}{r^{3}} $ $=frac{mu mu_{0}}{4pi }frac{I}{r^{3}}left( ointlimits_L{dvec{l}times vec{R}+} ointlimits_L {dvec{l}times vec{h}}right)left( 10 right).$

В выражении (10) при записи интеграла, мы учли, что величина вектора $vec{r}$ не изменяется. Кроме этого вектор $vec h$, определяющий положение точки, в которой мы ищем поле, не изменяется при движении по нашему контуру, поэтому:

$ointlimits_L {dvec{l}times vec{h}} =(ointlimits_L {dvec{l})timesvec{h}} =0, left( 11 right),$

так как ( $ointlimits_L {dvec{l})=0.}$

Вычислим интеграл: $ointlimits_L {dvec{l}times vec{R}.}$ Введем единичный вектор ($vec n$), нормальный к плоскости витка с током.

$ointlimits_L {dvec{l}times vec{R}=ointlimits_L {vec{n}Rdl=vec{n}R}} ointlimits_L {dl=vec{n}R} 2pi R=2pi R^{2}vec{n}left( 12 right)$.

Подставляем результаты интегрирования из (12) в (10), имеем:

$vec{B}=frac{mu mu_{0}}{4pi }frac{I}{r^{3}}2pi R^{2}vec{n}=frac{mumu_{0}I}{2}frac{R^{2}}{left( R^{2}+h^{2}right)^{frac{3}{2}}}vec{n}left( 13 right)$

где при записи окончательного результата мы учли, что:

$r^{3}=left( R^{2}+h^{2} right)^{frac{3}{2}}$.

Магнитный поток. Теорема Гаусса для магнитного поля

Поток вектора магнитной индукции (или магнитный поток) через произвольную площадку S характеризуется числом силовых линий магнитного поля, пронизывающих данную площадку S.

Если площадка S расположенаперпендикулярно силовым линиям магнитного поля (рис. 14), то поток ФB вектора индукции через данную площадку S :

.

Рис. 14 Рис. 15

Если площадка S расположена неперпендикулярно силовым линиям магнитного поля (рис. 15), то поток ФB вектора индукции через данную площадку S :

,

где α – угол между векторами и нормали к площадке S.

,Для того, чтобы найти поток ФB вектора магнитной индукции через произвольную поверхность S, необходиморазбить эту поверхность на элементарные площадки dS (рис. 16)иопределить элементарный поток вектора через каждую площадку dS по формуле:

где α – угол между векторами и нормали к данной площадке dS;

Тогда поток вектора через произвольную поверхность S равен алгебраической сумме элементарных потоков через все элементарные площадки dS, на которые разбита поверхность S, что приводит к интегрированию:

– вектор, равный по величине площади площадки dS и направленный по вектору нормали к данной площадке dS .

.

Теорема Гаусса для магнитного поля

Для произвольной замкнутой поверхности S (рис. 17) поток вектора индукции магнитного поля через эту поверхность S можно рассчитать по формуле:

.

С другой стороны, число линий магнитной индукции, входящих внутрь объема, ограниченного этой замкнутой поверхностью, равно числу линий, выходящих из этого объема (рис. 17). Поэтому, с учетом того, что поток вектора индукции магнитного поля считается положитель­ным, если силовые линии выходят из поверхности S, и отрицательным для линий, входящих в поверхность S, суммарный поток ФB вектора через произвольную замкнутую поверхность S равен нулю, т.е.:

,

что составляет формулировку теоремы Гаусса для магнитного поля.

Действие магнитного поля на проводник с током (закон Ампера) и на движущийся заряд (сила Лоренца)

Закон Ампера. На элемент проводника с током I , помещённый в магнитное поле с индукцией (рис. 12), действует сила (– сила Ампера):

.

Модуль вектора : ,

где – угол между векторами и .

Направление вектора можно определить по правилу левой руки: если силовые линии входят в ладонь, а четыре вытянутых пальца располагаются по току, то отведённый большой палец укажет направление вектора силы Ампера .

(Сила перпендикулярна плоскости рисунка 12.)

Сила Лоренца. На заряд q , движущийся со скоростью в магнитном поле с индукцией (рис. 13), действует сила ( – сила Лоренца ):

.

Модуль вектора : ,

где α – угол между векторами и .

Направление вектора может быть определено по правилу левой руки для движущихся положительных зарядов и по правилу правой руки для движущихся отрицательных зарядов:

если силовые линии магнитного поля входят в ладонь, а четыре вытянутых пальца располагаются по скорости движения частицы, то отведённый большой палец укажет направление силы Лоренца (рис. 13, сила перпендикулярна плоскости рисунка).

Добавить комментарий