Как найти тормозной путь тела

Геометрический смысл перемещения заключается в том, что перемещение есть площадь фигуры, заключенной между графиком скорости, осью времени и прямыми, проведенными перпендикулярно к оси времени через точки, соответствующие времени начала и конца движения.

При равноускоренном прямолинейном движении перемещение определяется площадью трапеции, основаниями которой служат проекции начальной и конечной скорости тела, а ее боковыми сторонами — ось времени и график скорости соответственно. Поэтому перемещение (путь) можно вычислить по формуле:

Формула перемещения

Пример №1. По графику определить перемещение тела в момент времени t=3 с.

Перемещение есть площадь фигуры, ограниченной графиком скорости, осью времени и перпендикулярами, проведенными к ней. Поэтому в нашем случае:

Извлекаем из графика необходимые данные:

  • Фигура 1. Начальная скорость — 3 м/с. Конечная — 0 м/с. Время — 1,5 с.
  • Фигура 2. Начальная скорость — 0 м/с. Конечная — –3 м/с. Время — 1,5 с (3 с – 1,5 с).

Подставляем известные данные в формулу:

Перемещение равно 0, так как тело сначала проделало некоторый путь, а затем вернулось в исходное положение.

Варианты записи формулы перемещения

Конечная скорость движения тела часто неизвестна. Поэтому при решении задач вместо нее обычно подставляют эту формулу:

v = v0 ± at

В итоге получается формула:

Если движение равнозамедленное, в формуле используется знак «–». Если движение равноускоренное, оставляется знак «+».

Если начальная скорость равна 0 (v0 = 0), эта формула принимает вид:

Если неизвестно время движения, но известно ускорение, начальная и конечная скорости, то перемещение можно вычислить по формуле:

Пример №2. Найти тормозной путь автомобиля, который начал тормозить при скорости 72 км/ч. Торможение до полной остановки заняло 3 секунды. Модуль ускорения при этом составил 2 м/с.

Перемещение при разгоне и торможении тела

Все перечисленные выше формулы работают, если направление вектора ускорения и вектора скорости совпадают (а↑↑v). Если векторы имеют противоположное направление (а↑↓v), движение следует описывать в два этапа:

Этап торможения

Время торможения равно разности полного времени движения и времени второго этапа:

t1 = t – t2

Когда тело тормозит, через некоторое время t1 оно останавливается. Поэтому скорость в момент времени t1 равна 0:

0 = v01 – at1

При торможении перемещение s1 равно:

Этап разгона

Время разгона равно разности полного времени движения и времени первого этапа:

t2 = t – t1

Тело начинает разгоняться сразу после преодоления нулевого значения скорости, которую можно считать начальной. Поэтому скорость в момент времени t2 равна:

v = at2

При разгоне перемещение s2 равно:

При этом модуль перемещения в течение всего времени движения равен:

s = |s1 – s2|

Полный путь (обозначим его l), пройденный телом за оба этапа, равен:

l = s1 + s2

Пример №3. Мальчик пробежал из состояния покоя некоторое расстояние за 5 секунд с ускорением 1 м/с2. Затем он тормозил до полной остановки в течение 2 секунд с другим по модулю ускорением. Найти этот модуль ускорения, если его тормозной путь составил 3 метра.

В данном случае движение нужно разделить на два этапа, так как мальчик сначала разогнался, потом затормозил. Тормозной путь будет соответствовать второму этапу. Через него мы выразим ускорение:

Из первого этапа (разгона) можно выразить конечную скорость, которая послужит для второго этапа начальной скоростью:

v02 = v01 + a1t1 = a1t1 (так как v01 = 0)

Подставляем выраженные величины в формулу:

Перемещение в n-ную секунду прямолинейного равноускоренного движения

Иногда в механике встречаются задачи, когда нужно найти перемещение тела за определенный промежуток времени при условии, что тело начинало движение из состояния покоя. В таком случае перемещение определяется формулой:

За первую секунду тело переместится на расстояние, равное:

За вторую секунду тело переместится на расстояние, равное разности перемещения за 2 секунды и перемещения за 1 секунду:

За третью секунду тело переместится на расстояние, равное разности перемещения за 3 секунды и перемещения за 2 секунды:

Видно, что за каждую секунду тело проходит перемещение, кратное целому нечетному числу:

Из формул перемещений за 1, 2 и 3 секунду можно выявить закономерность: перемещение за n-ную секунду равно половине произведения модуля ускорения на (2n–1), где n — секунда, за которую мы ищем перемещение тела. Математически это записывается так:

Формула перемещения за n-ную секунду

Пример №4. Автомобиль разгоняется с ускорением 3 м/с2. Найти его перемещение за 6 секунду.

Подставляем известные данные в формулу и получаем:

Таким же способом можно найти перемещение не за 1 секунду, а за некоторый промежуток времени: за 2, 3, 4 секунды и т. д. В этом случае используется формула:

где t — время одного промежутка, а n — порядковый номер этого промежутка.

Пример №5. Ягуар ринулся за добычей с ускорением 2,5 м/с2. Найти его перемещение за промежуток времени от 4 до 6 секунд включительно.

Время от 4 до 6 секунд включительно — это 3 секунды: 4-ая, 5-ая и 6-ая. Значит, промежуток времени составляет 3 секунды. До наступления этого промежутка успело пройти еще 3 секунды. Значит, время от 4 до 6 секунд — это второй по счету временной промежуток.

Подставляем известные данные в формулу:

Проекция и график перемещения

Проекция перемещения на ось ОХ. График перемещения — это график зависимости перемещения от времени. Графиком перемещения при равноускоренном движении является ветка параболы. График перемещения при равноускоренном движении, когда вектор скорости направлен в сторону оси ОХ (v↑↑OX), а вектора скорости и ускорения сонаправлены (v↑↑a), принимает следующий вид:

График перемещения при равнозамедленном движении, когда вектор скорости направлен в сторону оси ОХ (v↑↑OX), а вектора скорости и ускорения противоположно (v↓↑a), принимает следующий вид:

Определение направления знака проекции ускорения по графику его перемещения:

  • Если ветви параболического графика смотрят вниз, проекция ускорения тела отрицательна.
  • Если ветви параболического графика смотрят вверх, проекция ускорения тела положительна.

Пример №6. Определить ускорение тела по графику его перемещения.

Перемещение тела в момент времени t=0 с соответствует нулю. Значит, ускорение можно выразить из формулы перемещения без начального ускорения. Получим:

Теперь возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 с. Этой точке соответствует перемещение 30 м. Подставляем известные данные в формулу и получаем:

График пути

График пути от времени в случае равноускоренного движения совпадает с графиком проекции перемещения, так как s = l.

В случае с равнозамедленным движением график пути представляет собой линию, поделенную на 2 части:

  • 1 часть — до момента, когда скорость тела принимает нулевое значение (v = 0). Эта часть графика является частью параболы от начала координат до ее вершины.
  • 2 часть — после момента, при котором скорость тела принимает нулевое значение (v = 0). Эта часть является ветвью такой же, но перевернутой параболы. Ее вершина совпадает с вершиной предыдущей параболы, но ее ветвь направлена вверх.

Такой вид графика (возрастающий) объясняется тем, что путь не может уменьшаться — он либо не меняется (в состоянии покоя), либо растет независимо от того, в каком направлении, с какой скоростью и с каким ускорением движется тело.

Пример №7. По графику пути от времени, соответствующему равноускоренному прямолинейному движению, определить ускорение тела.

При равноускоренном прямолинейном движении графиком пути является ветвь параболы. Поэтому наш график — красный. График пути при равноускоренном прямолинейном движении также совпадает с графиком проекции его ускорения. Поэтому для вычисления ускорения мы можем использовать эту формулу:

Для расчета возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 c. Ей соответствует путь, равный 5 м. Значит, перемещение тоже равно 5 м. Подставляем известные данные в формулу:

Задание EF18553

Тело массой 200 г движется вдоль оси Ох, при этом его координата изменяется во времени в соответствии с формулой х(t) = 10 5t 3t2(все величины выражены в СИ).

Установите соответствие между физическими величинами и формулами, выражающими их зависимости от времени в условиях данной задачи.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.


Алгоритм решения

1.Записать исходные данные и перевести их единицы измерения величин в СИ.

2.Записать уравнение движения тела при прямолинейном равноускоренном движении в общем виде.

3.Сравнить формулу из условия задачи с этим уравнением движения и выделить кинематические характеристики движения.

4.Определить перемещение тела и его кинетическую энергию.

5.Выбрать для физических величин соответствующую позицию из второго столбца таблицы и записать ответ.

Решение

Из условия задачи известна только масса тела: m = 200 г = 0,2 кг.

Так как тело движется вдоль оси Ox, уравнение движения тела при прямолинейном равноускоренном движении имеет вид:

x(t)=x0+v0t+at22

Теперь мы можем выделить кинематические характеристики движения тела:

 a/2 = –3 (м/с2), следовательно, a = –6 (м/с2).

Перемещение тела определяется формулой:

s=v0t+at22

Начальная координата не учитывается, так как это расстояние было уже пройдено до начала отсчета времени. Поэтому перемещение равно:

x(t)=v0t+at22=5t3t2

Кинетическая энергия тела определяется формулой:

Ek=mv22

Скорость при прямолинейном равноускоренном движении равна:

v=v0+at=56t

Поэтому кинетическая энергия тела равна:

Ek=m(56t)22=0,22(56t)2=0,1(56t)2

Следовательно, правильная последовательность цифр в ответе будет: 34.

Ответ: 34

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18774

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.


Алгоритм решения

  1. Определить, какому типу движения соответствует график зависимости координаты тела от времени.
  2. Определить величины, которые характеризуют такое движение.
  3. Определить характер изменения величин, характеризующих это движение.
  4. Установить соответствие между графиками А и Б и величинами, характеризующими движение.

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

  • перемещение и путь;
  • скорость;
  • ускорение.

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

Ответ: 24

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18831

На рисунке представлен график зависимости модуля скорости υ автомобиля от времени t. Определите по графику путь, пройденный автомобилем в интервале времени от t1=20 с до t2=50 с.


Алгоритм решения

  1. Охарактеризовать движение тела на различных участках графика.
  2. Выделить участки движения, над которыми нужно работать по условию задачи.
  3. Записать исходные данные.
  4. Записать формулу определения искомой величины.
  5. Произвести вычисления.

Решение

Весь график можно поделить на 3 участка:

  1. От t1 = 0 c до t2 = 10 с. В это время тело двигалось равноускоренно (с положительным ускорением).
  2. От t1 = 10 c до t2 = 30 с. В это время тело двигалось равномерно (с нулевым ускорением).
  3. От t1 = 30 c до t2 = 50 с. В это время тело двигалось равнозамедленно (с отрицательным ускорением).

По условию задачи нужно найти путь, пройденный автомобилем в интервале времени от t1 = 20 c до t2 = 50 с. Этому времени соответствуют два участка:

  1. От t1 = 20 c до t2 = 30 с — с равномерным движением.
  2. От t1 = 30 c до t2 = 50 с — с равнозамедленным движением.

Исходные данные:

  • Для первого участка. Начальный момент времени t1 = 20 c. Конечный момент времени t2 = 30 с. Скорость (определяем по графику) — 10 м/с.
  • Для второго участка. Начальный момент времени t1 = 30 c. Конечный момент времени t2 = 50 с. Скорость определяем по графику. Начальная скорость — 10 м/с, конечная — 0 м/с.

Записываем формулу искомой величины:

s = s1 + s2

s1 — путь тела, пройденный на первом участке, s2 — путь тела, пройденный на втором участке.

s1 и s2 можно выразить через формулы пути для равномерного и равноускоренного движения соответственно:

Теперь рассчитаем пути s1 и s2, а затем сложим их:

s1 + s2 = 100 + 100 = 200 (м)

Ответ: 200

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 25.3k

From Wikipedia, the free encyclopedia

Braking distance at 80 km/h (50 mph)

Braking distance refers to the distance a vehicle will travel from the point when its brakes are fully applied to when it comes to a complete stop. It is primarily affected by the original speed of the vehicle and the coefficient of friction between the tires and the road surface,[Note 1] and negligibly by the tires’ rolling resistance and vehicle’s air drag. The type of brake system in use only affects trucks and large mass vehicles, which cannot supply enough force to match the static frictional force.[1][Note 2]

The braking distance is one of two principal components of the total stopping distance. The other component is the reaction distance, which is the product of the speed and the perception-reaction time of the driver/rider. A perception-reaction time of 1.5 seconds,[2][3][4] and a coefficient of kinetic friction of 0.7 are standard for the purpose of determining a bare baseline for accident reconstruction and judicial notice;[5] most people can stop slightly sooner under ideal conditions.

Braking distance is not to be confused with stopping sight distance. The latter is a road alignment visibility standard that provides motorists driving at or below the design speed an assured clear distance ahead (ACDA)[6] which exceeds a safety factor distance that would be required by a slightly or nearly negligent driver to stop under a worst likely case scenario: typically slippery conditions (deceleration 0.35g[7][Note 3]) and a slow responding driver (2.5 seconds).[8][9] Because the stopping sight distance far exceeds the actual stopping distance under most conditions, an otherwise capable driver who uses the full stopping sight distance, which results in injury, may be negligent for not stopping sooner.

Derivation[edit]

Energy equation[edit]

The theoretical braking distance can be found by determining the work required to dissipate the vehicle’s kinetic energy.[10]

The kinetic energy E is given by the formula:

E={frac  {1}{2}}mv^{{2}},

where m is the vehicle’s mass and v is the speed at the start of braking.

The work W done by braking is given by:

W=mu mgd,

where μ is the coefficient of friction between the road surface and the tires, g is the gravity of Earth, and d is the distance travelled.

The braking distance (which is commonly measured as the skid length) given an initial driving speed v is then found by putting W = E, from which it follows that

d={frac  {v^{{2}}}{2mu g}}.

The maximum speed given an available braking distance d is given by:

v={sqrt  {2mu gd}}.

Newton’s law and equation of motion[edit]

From Newton’s second law:

F=ma

For a level surface, the frictional force resulting from coefficient of friction mu is:

F_{{frict}}=-mu mg

Equating the two yields the deceleration:

a=-mu g

The d_{f}(d_{i},v_{i},v_{f}) form of the formulas for constant acceleration is:

d_{f}=d_{i}+{frac  {v_{f}^{2}-v_{i}^{2}}{2a}}

Setting d_{i},v_{f}=0 and then substituting a into the equation yields the braking distance:

d_{f}={frac  {-v_{i}^{2}}{2a}}={frac  {v_{i}^{2}}{2mu g}}

Total stopping distance[edit]

Tables of speed and stopping distances[5]
Permitted by good tires and clean, dry, level, pavement.

The total stopping distance is the sum of the perception-reaction distance and the braking distance.

D_{{total}}=D_{{p-r}}+D_{{braking}}=vt_{{p-r}}+{frac  {v^{2}}{2mu g}}

A common baseline value of t_{p-r}=1.5 s, mu=0.7 is used in stopping distance charts. These values incorporate the ability of the vast majority of drivers under normal road conditions.[2] However, a keen and alert driver may have perception-reaction times well below 1 second,[11] and a modern car with computerized anti-skid brakes may have a friction coefficient of 0.9–or even far exceed 1.0 with sticky tires.[12][13][14][15][16]

Experts historically used a reaction time of 0.75 seconds, but now incorporate perception resulting in an average perception-reaction time of: 1 second for population as an average; occasionally a two-second rule to simulate the elderly or neophyte;[Note 4] or even a 2.5 second reaction time—to specifically accommodate very elderly, debilitated, intoxicated, or distracted drivers.[12] The coefficient of friction may be 0.25 or lower on wet or frozen asphalt, and anti-skid brakes and season specific performance tires may somewhat compensate for driver error and conditions.[15][17][Note 5] In legal contexts, conservative values suggestive of greater minimum stopping distances are often used as to be sure to exceed the pertinent legal burden of proof, with care not to go as far as to condone negligence. Thus the reaction time chosen can be related to the burden’s corresponding population percentile; generally a reaction time of 1 second is as a preponderance more probable than not, 1.5 seconds is clear and convincing, and 2.5 seconds is beyond reasonable doubt. The same principle applies to the friction coefficient values.

Actual total stopping distance[edit]

The actual total stopping distance may differ from the baseline value when the road or tire conditions are substantially different from the baseline conditions or when the driver’s cognitive function is superior or deficient. To determine actual total stopping distance, one would typically empirically obtain the coefficient of friction between the tire material[18] and the exact road spot under the same road conditions and temperature. They would also measure the person’s perception and reaction times. A driver who has innate reflexes, and thus braking distances, that are far below the safety margins provided in the road design or expected by other users, may not be safe to drive.[19][20][21] Most old roads were not engineered with the deficient driver in mind, and often used a defunct 3/4 second reaction time standard. There have been recent road standard changes to make modern roadways more accessible to an increasingly aging population of drivers.[22]

For rubber tyres on cars, the coefficient of friction (μ) decreases as the mass of the car increases. Additionally, μ depends on whether the wheels are locked or rolling during the braking, and a few more parameters such as rubber temperature (increases during the braking) and speed.[23]

Rules of thumb[edit]

In a non-metric country the stopping distance in feet given a velocity in MPH can be approximated as follows:

  1. take the first digit of the velocity, and square it. Add a zero to the result, then divide by 2.
  2. sum the previous result to the double of the velocity.

Example:
velocity = 50 MPH.
stopping distance = 5 squared = 25, add a zero = 250, divide by 2 = 125, sum 2*50 = 225 feet (the exact value can be calculated using the formula given below the diagram on the right).

In Germany the rule of thumb for the stopping distance in a city in good conditions is the 1-second rule, i.e. the distance covered in 1 second should at most be the distance to the vehicle ahead. At 50 km/h this corresponds to about 15 m. For higher speeds up to about 100 km/h outside built-up areas a similarly defined 2-second rule applies, which for 100 km/h translates to about 50 m. For speeds on the order of 100 km/h there is also the more or less equivalent rule that the stopping distance be the speed divided by 2 k/h, referred to as halber tacho (half the speedometer) rule, e.g. for 100 km/h the stopping distance should be about 50 m. Additionally, German driving schools teach their pupils that the total stopping distance is typically:

{displaystyle (Speeddiv 10)times 3+(Speeddiv 10)^{2}}

In the UK, the typical total stopping distances (thinking distance plus braking distance) used in The Highway Code are quoted in Rule 126 [1] as:

  • 20 mph: 40 feet (12 metres)
  • 30 mph: 75 feet (23 metres)
  • 40 mph: 118 feet (36 metres)
  • 50 mph: 175 feet (53 metres)
  • 60 mph: 240 feet (73 metres)
  • 70 mph: 315 feet (96 metres)

See also[edit]

  • Assured clear distance ahead
  • Brake
  • Cadence braking
  • Skid mark
  • Stopping sight distance
  • Threshold braking
  • Vehicle metrics
  • Vehicular accident reconstruction

Notes[edit]

References[edit]

  1. ^ Fricke, L. (1990). “Traffic Accident Reconstruction: Volume 2 of the Traffic Accident Investigation Manual”. The Traffic Institute, Northwestern University.
  2. ^ a b Taoka, George T. (March 1989). “Brake Reaction Times of Unalerted Drivers” (PDF). ITE Journal. 59 (3): 19–21.[permanent dead link]
  3. ^ The National Highway Traffic Safety Administration (NHTSA) uses 1.5 seconds for the average reaction time.
  4. ^ The Virginia Commonwealth University’s Crash Investigation Team typically uses 1.5 seconds to calculate perception-reaction time
  5. ^ a b “Tables of speed and stopping distances”. The State of Virginia.
  6. ^ ACDA or “assured clear distance ahead” rule requires a driver to keep his vehicle under control so that he can stop in the distance in which he can see clearly
  7. ^ National Cooperative Highway Research Program (1997). NCHRP Report 400: Determination of Stopping Sight Distances (PDF). Transportation Research Board (National Academy Press). p. I-13. ISBN 0-309-06073-7.
  8. ^ American Association of State Highway and Transportation Officials (1994) A Policy on Geometric Design of Highways and Streets (Chapter 3)
  9. ^ Highway Design Manual. Vol. 6th Ed. California Department of Transportation. 2012. p. 200. See Chapter 200 on Stopping Sight Distance and Chapter 405.1 on Sight Distance
  10. ^ Traffic Accident Reconstruction Volume 2, Lynn B. Fricke
  11. ^ Robert J. Kosinski (September 2012). “A Literature Review on Reaction Time”. Clemson University. Archived from the original on 2013-10-10.
  12. ^ a b An investigation of the utility and accuracy of the table of speed and stopping distances Archived September 27, 2012, at the Wayback Machine
  13. ^ Tire friction and rolling resistance coefficients
  14. ^ THE GG DIAGRAM: sticky tires exceed 1.0
  15. ^ a b J.Y. Wong (1993). Theory of ground vehicles. Vol. 2nd ed. p. 26. ISBN 9780470170380.
  16. ^ Robert Bosch GmbH (1996). Automotive Handbook. Vol. 4th ed. p. 335. ISBN 9780837603339.
  17. ^ Frictional Coefficients for some Common Materials and Materials Combinations and Reference Tables — Coefficient of Friction Archived 2009-03-08 at the Wayback Machine
  18. ^ Tire Test Results
  19. ^ Warning Signs and Knowing When to Stop Driving Archived 2008-05-27 at the Wayback Machine
  20. ^ Jevas, S; Yan, J. H. (2001). “The effect of aging on cognitive function: a preliminary quantitative review”. Research Quarterly for Exercise and Sport. 72: A-49. Simple reaction time shortens from infancy into the late 20s, then increases slowly until the 50s and 60s, and then lengthens faster as the person gets into his 70s and beyond
  21. ^ Der, G.; Deary, I. J. (2006). “Age and sex differences in reaction time in adulthood: Results from the United Kingdom health and lifestyle survey”. Psychology and Aging. 21 (1): 62–73. doi:10.1037/0882-7974.21.1.62. PMID 16594792.
  22. ^ “Highway Design Handbook for Older Drivers and Pedestrians”. Publication Number: FHWA-RD-01-103. May 2001.
  23. ^ Tomita, Hisao. “Tire-pavement friction coefficients” (PDF). Defense Technical Information Center. Naval Civil Engineering Laboratory. Archived from the original (PDF) on June 14, 2015. Retrieved 12 June 2015.

Further reading[edit]

  • B. Finberg (2010). “Judicial notice of drivers’ reaction time and of stopping distance of motor vehicles traveling at various speeds”. American Law Reports–Annotated, 2nd Series. Vol. 84. The Lawyers Co-operative Publishing Company; Bancroft-Whitney; West Group Annotation Company. p. 979.
  • E. Campion (2008). “Admissibility in evidence, in automobile negligence action, of charts showing braking distance, reaction times, etc.”. American Law Reports–Annotated, 3rd Series. Vol. 9. The Lawyers Co-operative Publishing Company; Bancroft-Whitney; West Group Annotation Company. p. 976.
  • C. C. Marvel (2012). “Admissibility of experimental evidence, skidding tests, or the like, relating to speed or control of motor vehicle”. American Law Reports–Annotated, 2nd Series. Vol. 78. The Lawyers Co-operative Publishing Company; Bancroft-Whitney; West Group Annotation Company. p. 218.
  • Jerre E. Box (2009). “Opinion testimony as to speed of motor vehicle based on skid marks and other facts”. American Law Reports–Annotated, 3rd Series. Vol. 29. The Lawyers Co-operative Publishing Company; Bancroft-Whitney; West Group Annotation Company. p. 248.
  • Wade R. Habeeb (2008). “Negligence of driver of motor vehicle as respects manner of timely application of proper brakes”. American Law Reports–Annotated, 2nd Series. Vol. 72. The Lawyers Co-operative Publishing Company; Bancroft-Whitney; West Group Annotation Company. p. 6.

External links[edit]

  • Car Stopping Distance Calculator
  • Braking Distance Calculator
  • Tables of speed and stopping distances
  • Wikibooks: Sight Distance
  • The Highway Code (in English)

  • Автошкола Спб

  • Блог

  • Что такое тормозной путь автомобиля и от чего он зависит?

Что такое тормозной путь автомобиля и от чего он зависит?

Одним из важных параметров безопасности, о котором должны знать выпускники курсов вождения, является тормозной путь автомобиля. Способность машины быстро снижать свою скорость до нуля всегда будет цениться среди автовладельцев. Но что такое тормозной путь и от чего он зависит?

Что называется тормозным путем?

Тормозной путь – расстояние, которое требуется автомобилю, чтобы остановиться с момента начала работы системы торможения.

Под данным термином подразумевается отрезок пути, который машина преодолевает с момента начала срабатывания тормозной системы до полной остановки транспортного средства. Некоторые водители путают это понятие с “остановочным путем”, но не смотря на схожесть в названии, есть четкая смысловая разница.

Тормозной путь – это способность автомобиля, точнее, показатель его возможности экстренно совершить быструю остановку. Чем он меньше, тем больше шансов остаться в живых при ДТП. Короткий тормозной путь может запросто спасти жизнь невнимательному пешеходу, ребенку или появившейся на дороге собаке.

Что подразумевают под остановочным путем?

Остановочный путь – расстояние, которое проходит транспортное средство с момента обнаружения водителем опасности до полной остановки

Минимальное время реакции водителя – 0,4с. Чтобы остановить машину, ему вначале нужно обработать информацию о ситуации на дороге. Рефлексы помогают нам быстро нажать педаль тормоза, но реакция и осмысление происходящего тоже требуют некоторого времени. За это время автомобиль проезжает на заданной скорости какое-то расстояние, прежде чем начинается торможение.

Остановочный путь образуется из суммы тормозного пути и расстояния, отведенного на время реакции водителя. По-другому это определение звучит так: это небольшой отрезок дороги, который преодолевает автомобиль или любое другое транспортное средство с того самого момента, когда шофер заметил опасность до полной остановки. Вполне естественно, что остановочный путь будет всегда и при любых условиях больше тормозного.

При этом тормозной путь автомобиля будет всегда одинаков, даже если за рулем сидят разные водители. Тормозная система работает всегда одинаково при выжиме педали тормоза до упора. А вот различия в остановочном пути существенны. Они зависят от индивидуальных особенностей человека, который находится за рулем, а также от его состояния. К примеру, не трезвый водитель имеет более длительное время реакции, а, следовательно, больше остановочный путь. Поэтому можно сделать вывод, что этот параметр больше относится к самому человеку и лишь во вторую очередь – к машине.

Что такое формула тормозного пути

В специальных дорожных службах, на испытательных автомобильных полигонах, автопроизводители, сотрудники исследовательских центров и просто люди, близкие науке, стараются вычислить данный параметр автомобиля, посредством испытаний и даже на стадии проектирования.

При торможении автомобиль подчиняется законам физики, а значит, его тормозной путь можно рассчитать. Формула, позволяющая его определить, звучит следующим образом: тормозной путь равен отношению скорости автомобиля в момент начала торможения в квадрате, помноженному на тормозной коэффициент, к 254 помноженным на коэффициент сцепления с дорожным покрытием.  

Данная формула уже давно применяется практически во всех подразделениях ГИБДД и является наиболее точной.

Как найти тормозной путь?

Найти его не сложно. Достаточно подставить в уже имеющуюся формулу значения:

Допустим, что скорость автомобиля в момент начала торможения составляет 110 километров в час. Чтобы подставить коэффициент сцепления шин с дорогой, необходимо обратиться к табличным значениям. Допустим, дорожное покрытие – мокрый асфальт. Согласно табличным данным, коэффициент на данном покрытии будет равен 0,45. Коэффициент торможения для легковой машины составляет 1. Таким образом, тормозной путь легковушки составит 98-100 метров.

При этом остановочный путь будет немного длиннее тормозного. При 100 метрах тормозного пути, остановочный составит около 120 метров, учитывая среднее время реакции водителя на изменяющуюся дорожную обстановку около 1 сек.

Что влияет на длину тормозного пути?

Тормозной путь зависит от множества факторов. Поэтому при расчете можно смело увеличивать или уменьшать показания, исходя из:

  • состояния покрышек;
  • средней скорости движения;
  • общее состояние машины, включая тормозную систему;
  • особенности дороги – асфальт, гравий, грязь или снег;
  • наличие или отсутствие АБС в машине;

Читайте также: как управлять автомобилем с автоматической коробкой передач правильно.

АБС

Начать следует с самой популярной системы – АБС. Многие автовладельцы ошибочно полагают, что антиблокировочная система колес должна уменьшать тормозной путь. На самом деле, она просто сохраняет управляемость автомобиля при попытке оттормозиться юзом.

Учитывая особенность работы ABS, она чисто физически не может сократить тормозной путь автомобиля, поэтому торможение юзом при равных условиях будет эффективнее.

Скорость движения

Как уже ясно из формулы средняя скорость движения оказывает большое влияние на длину этого пути. Чем быстрее движется машина, тем дольше она будет останавливаться, следовательно, тормозной путь прямо пропорционален этому параметру.

Техническое состояние автомобиля

Немаловажное значение имеет и исправность автомобиля. Есть множество факторов, которые могут оказать влияние на способность быстро останавливаться. К примеру, состояние тормозных дисков и колодок. Если диски кривые, то эффективность торможения будет снижаться, ровно так же, если бы колодки были изрядно стерты.

Другой негативный момент – вообще отсутствие тормозов на одном из контуров. К примеру, на старых автомобилях сильно страдают задние барабанные тормоза из-за недобросовестного обслуживания. Из-за этого эффективность торможения серьезно снижается, а значит, увеличивается путь необходимый для остановки.

Дорожное покрытие

Вид дорожного покрытия также влияет на длину этого пути. Машина по-разному будет вести себя на грязи, асфальте или гравийном покрытии. Для торможения нужна хорошая сила трения, поэтому лучшими характеристиками для сцепления шин с дорогой обладает асфальт. Его коэффициент сцепления составляет 0,8 для сухого покрытия и 0,45 для мокрого. При этом худшим принято считать лед – всего 0,1.

Проблема мокрого асфальта состоит в том, что на его поверхности создается маленькая водяная пленка. При торможении, шина собирает большое количество воды перед собой и скользит по ней, увеличивая тормозной путь автомобиля. Зимой эта проблема актуальна, но при этом создает опасность и гладкая поверхность льда. Резине сложнее за нее зацепиться, даже шипованной.

Состояние покрышек

Последним, но тоже очень важным фактором сцепления шин с дорогой в процессе торможения является их состояние. Чем ниже остаточная величина протектора, тем большее расстояние пройдет автомобиль при торможении.

Рисунок протектора имеет большое значение. Если его нет, покрышке попросту нечем цепляться за поверхность дороги, отсюда низкое трение, особенно на гололеде и мокрой дороге. Если на шине остается достаточно большая толщина протектора, то сила трения возрастает и автомобиль быстрее снижает свою скорость.

Особого внимания заслуживают летние и зимние шины не по сезону. Применение летних шин зимой чревато очень длительным торможением. Летняя шина при низких температурах становится жесткой и не способна держаться за дорогу. Зимняя резина, напротив, слишком мягкая и буквально “плавает” по асфальту зимой. Мягкая резина будет дольше скользить по асфальту, прежде чем остановится.

Влияет ли масса машины?

Многие автовладельцы ошибочно полагают, что вес машины может оказывать большое влияние на длину тормозного пути. На самом деле, это не так, даже если машина движется с горы. Масса лишь увеличивает кинетическую энергию, а она, в свою очередь, перегревает тормоза, снижая их эффективность. При условии, что автомобиль будет загружен до разрешенной массы, тормозной путь его будет одинаковым с другим таким же автомобилем, но с меньшей массой. Чтобы не перегреть тормоза, рекомендуется использовать торможение двигателем на спуске.

Как уменьшить тормозной путь?

Зная о причинах большого тормозного пути, проблему можно решить несколькими способами:

  • Привести техническое состояние автомобиля в порядок. Здесь подразумевается полностью обслуженная тормозная система. Колодки должны иметь достаточную толщину, а диски не должны иметь биений. Все рабочие тормозные цилиндры не должны иметь подклиниваний.
  • Следите за шинами. Резина должна иметь остаточную величину протектора в пределах нормы. Эту норму задают в ПДД и перечне неисправностей, с которыми эксплуатация автомобиля запрещена. Она составляет не менее 1,6 мм.
  • Двигаться с меньшей скоростью. Если вы не уверенны в тормозном пути своего автомобиля, значит, необходимо сбавить скорость. Скорость – это 60% влияния на тормозной путь машины, а потому этот параметр необходимо контролировать.
  • Используйте торможение “педаль в пол”. Если сохранение управляемости в данный момент не в приоритете, то торможение с полной блокировкой колес будет самым эффективным. К сожалению, на автомобилях с АБС повлиять на это никак нельзя.
  • Выбирайте погодные условия. Состояние дороги будет напрямую зависеть от погоды. Если осадков ожидается много, имейте ввиду, двигаться придется медленнее обычного. Хорошим вариантом для поездки является – солнечный летний день.
  • Не перегревать тормозные колодки. Чтобы сохранить их эффективность в экстренной ситуации, для торможения можно использовать двигатель машины.

Поможет ли торможение двигателем снизить тормозной путь?

На отдельных участках дорог, к примеру, затяжных спусках, целесообразнее использовать торможение двигателем. Суть данного способа заключается в том, что водитель отпускает педаль газа, двигаясь на передаче и замедляется за счет падения оборотов двигателя.

Но помогает ли этот способ сократить расстояние, необходимое для торможения? Нет. Как было сказано ранее, чтобы остановить машину перед внезапно возникшим препятствием, необходимо тормозить юзом и создать максимальное трение с дорожным покрытием. Подобный способ торможения поможет лишь сохранить управляемость автомобиля и не допустит перегрева колодок, но использовать его, как средство сокращения тормозного пути – неправильно.


Логотип статьи - тормозной путь

Содержание

  1. Что такое тормозной путь у транспорта
  2. От чего зависит расстояние тормозного пути
  3. Тормозной путь – формула
  4. Онлайн калькулятор тормозного пути
  5. Остановочный путь
  6. Примерные средние значения

Что такое тормозной путь у транспорта

Всегда хочется получить чуть больше времени, но насколько ценной может быть для вас одна жалкая секунда? Когда дело доходит
до использования тормозов на шоссе, это может означать… ну, намного больше, чем вы можете себе представить. Исследования показывают,
что среднестатистическому водителю требуется от половины до трех четвертей секунды, чтобы почувствовать необходимость нажат на тормоз, и еще
три четверти секунды, чтобы переместить ногу с газа на педаль тормоза. Время реакции у всех разное, но в сумме может получиться до 1,5 секунды между
моментом, когда вы впервые начинаете понимать, что у вас проблемы, и реальным началом замедления. Это фундаментальные значения – физиология человека
не меняется.

Следы от резкого торможения на асфальте

Официальная информация:

Тормозной путь — расстояние, которое проходит транспортное средство с момента срабатывания тормозной системы до полной остановки.
Протяжённость тормозного пути зависит от скорости, массы автомобиля, состояния проезжей части, шин, погодных условий. Особое влияние на протяжённость
тормозного пути оказывает эффективность тормозной системы (ТС). Она складывается из технологических особенностей узлов ТС — «Электронных
помощников», логики их работы, диаметра тормозных дисков, материала тормозных колодок, принудительной вентиляции и других параметров.

Схема остановочного пути

Тормозной путь – это одна из двух основных составляющих общего остановочного пути Другой компонент – время от момента
восприятия водителем сигнала о необходимости торможения до совершения необходимых действий, например, переноса ноги на педаль тормоза, нажатия на
неё. Зависит от навыков водителя, положения его тела, рук и ног относительно органов управления автомобилем, также от его психоэмоционального
состояния. Время реакции увеличивается при утомлении, заболеваниях и крайне сильно возрастает при алкогольном или наркотическом опьянении.
Оно колеблется от 0,4 до 1,5 с. Типичной величиной считается 0,8 сек.

Экстренное торможение

От чего зависит расстояние тормозного пути

Подытожим информацию из предыдущего пункта, собрав в единый список, от чего зависит длина общего тормозного пути:

Реакция

  • Видимость
  • Навыки водителя
  • Состояние водителя
  • Положение тела и рук водителя

Торможение

  • Скорость движения
  • Вид траспортного средства
  • Масса траспортного средства
  • Тип и состояние тормозной системы
  • Тип и состояние шин
  • Состояние дорожного покрытия

Как найти тормозной путь – формула

Тормозной путь или пройденное расстояние (d) после начала торможения определяется следующей формулой:

d = v2 / (2 * μ * g) , где

  • v – скорость в начале торможения
  • μ – коэффициент трения между поверхностью дороги и шинами
  • g – сила тяжести Земли.

Тормозной путь – онлайн калькулятор

Загрузка...

Общий тормозной путь или остановочный путь.

Как уже было написано выше, полный остановочный путь состоит еще и из времени реакции водителя на внезапно возникшую опасность.
Формула в этом случае получается следующая:

dtotal = v * (t1 + t2) + v2 / (2 * μ * g)

t1 – время реакции. Исторически эксперты использовали время реакции 0,75 секунды, но теперь включают
восприятие, в результате чего среднее время реакции восприятия составляет: 1 секунда для населения в среднем;
иногда правило двух секунд для имитации пожилого человека или новичка; или даже время реакции 2,5 секунды –
специально для очень пожилых, ослабленных, находящихся в состоянии алкогольного опьянения или рассеянных водителей.

t2 – время срабатывания тормозной системы — время с момента нажатия на педаль тормоза до приведения в действие
всех тормозных механизмов. Зависит от качества и состояния тормозной системы. В среднем считается 0,2 с для гидравлического привода и
0,6 с для пневматического привода тормозной системы.

Примерные средние значения

div

Скорость Расстояние во время реакции Расстояние пока сработает тормоз Тормозной путь Общая длина
40 км/ч 11,11 2,22 8,39 21,73
60 км/ч 16,67 3,33 18,88 38,8
80 км/ч 22,22 4,44 33,57 60,24
100 км/ч 27,78 5,56 52,45 85,79
120 км/ч 33,33 6,67 75,53 115,53
140 км/ч 38,89 7,78 102,81 149,47
Автор статьи

Екатерина Владимировна Мосина

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Ускорение тела, возникающее вследствие силы трения

Известно, что сила трения скольжения направлена в сторону, противоположную направлению относительной скорости движения трущихся тел.

Отсюда следует, что ускорение, которое такая сила сообщает движущемуся телу, тоже направлено против относительной скорости. А это значит, что действие силы трения приводит к уменьшению абсолютного значения скорости тела относительно того тела, по которому оно скользит.

Если на тело, которое скользит по неподвижной поверхности, никакие силы, кроме силы трения не действуют, то оно, в конце концов, останавливается. Рассмотри этот часто встречающийся случай.

Представим себе, что перед движущимся поездом неожиданно появилось некоторое препятствие и машинист отключил двигатель и включил тормоз. Начиная с это момента, на поезд действует только сила трения, так как сила тяжести скомпенсирована реакцией рельсов, а сила сопротивления воздуха мала. Через некоторое время $t$ поезд, пройдя расстояние $l$ – тормозной путь, остановится. Найдем время $t$, нужное для остановки, и расстояние $l$, которое поезд пройдет за это время.

Логотип iqutor

Сделаем домашку
с вашим ребенком за 380 ₽

Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online

Бесплатное пробное занятие

*количество мест ограничено

Под действием сила трения $overline{F}_{mp} $поезд будет двигаться с ускорением, равным:

Выберем координатную ось $x$ так, чтобы ее положительное направление совпадало с направлением скорости движения поезда.

Рисунок 1.

Так как сила трения $overline{F}_{mp} $направлена в противоположном направлении, ее проекция на ось х отрицательна. Отрицательна и проекция вектора ускорения на ось $x$. Поэтому если абсолютное значение силы трения равно $left|overline{F}_{mp} right|$, то:

Но ускорение определяется также формулой:

где $v_{0} $- скорость поезда до начала торможения.

Время торможения при движении тела под действием силы трения

Так как нас интересует промежуток времени $t$ от начала торможения до остановки поезда, то конечная скорость $v=0$. Тогда:

«Движение тела под действием силы трения» 👇

Таким образом:

Получим выражения для времени торможения:

Нахождение пути, пройденного телом под действием силы трения

А теперь найдем тормозной путь $l$. Для этого воспользуемся формулой:

Так как $v=0$, то:

Так как $overline{a}=-frac{left|overline{F}_{mp} right|}{m} $, получим:

Из этой формулы видно, что пройденный до остановки путь пропорционален квадрату скорости. Если увеличить скорость вдвое, то потребуется вчетверо больший путь для остановки.

Пример 1

С какой скоростью двигался автомобиль, если после выключения двигателя он прошел до остановки путь равный $80$ м? Коэффициент трения принять равным $0,25$.

Дано: $l=80$м, $mu =0,25$.

Найти: $v$-?

Решение:

Воспользуемся раннее выведенными формулами для нахождения тормозного пути:

$l=frac{mv_{0}^{2} }{2overline{left|F_{mp} right|}} $. (1)

Так как $F_{mp} =mu mg$, подставим в формулу (1) и получим:

$l=frac{mv_{0}^{2} }{2mu mg} $. (2)

Выразив из формулы (2) $v_{0} $найдем величину искомой скорости:

$v_{0} =sqrt{2mu gl} =20$м/с

Ответ: Скорость автомобиля до выключения двигателя $v_{0} =20$ м/с.

Пример 2

Сноубордист массой $80$ кг, имеющий в конце спуска скорость $20$ м/с, останавливается через $40$ с после окончания спуска. Определите силу трения и коэффициент трения.

Дано: $m=80$кг, $v_{0} =20$м/с, $t=40$с.

Найти: $F_{mp} $, $mu $-?

Решение:

Уравнение движения сноубордиста будет иметь вид:

[ma=F_{mp} .]

Используя выражения для нахождения ускорения (конечная скорость $v=0$), получим:

[a=-frac{v_{0} }{t} .]

Тогда:

$F_{mp} =ma=-mfrac{v_{0} }{t} =40H$.

Так как сила трения $overline{F}_{mp} $равна $F_{mp} =mu Bg$, находим коэффициент трения $mu $:

[mu =frac{F_{mp} }{mg} =0,05.]

Ответ: $F_{mp} =40H$, $mu =0,05$.

Пример 3

Сани массой $16$ кг перемещают по горизонтальной плоскости под действием силы $180 H$, направленной под углом $30^circ$ к горизонтали. Коэффициент терния саней о плоскость $0,5$. Определить ускорения, с которым движутся сани.

Дано: $m=16$кг, $F=180 H$, $alpha =30^circ$, $mu =0,5$.

Найти: $a$-?

Решение:

Рисунок 2.

Уравнение движения тела:

[moverline{a}=moverline{g}+overline{N}+overline{F}+overline{F}_{mp} .]

Выберем направление осей $x$ и $y$ и спроецируем на них силы и ускорение:

[begin{array}{l} {ma=Fcos alpha -F_{mp} } \ {0=-Bg+N+Fsin alpha } end{array}]

Поскольку $F_{mp} =mu N$, а из второго уравнения $N=mg-Fsin alpha $, то $F_{mp} =mu (mg-Fsin alpha )$. Тогда из первого уравнения ускорение:

$a=frac{1}{m} [Fcos alpha -mu (mg-Fsin alpha )]approx 7,6м/с^2$

Ответ: $a$=$7,6м/с^2$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Добавить комментарий