Как найти тождественно равную функцию

После того, как мы разобрались с понятием тождеств, можно переходить к изучению тождественно равных выражений. Цель данной статьи – объяснить, что это такое, и показать на примерах, какие выражения будут тождественно равными другим.

Тождественно равные выражения: определение

Понятие тождественно равных выражений обычно изучается вместе с самим понятием тождества в рамках школьного курса алгебры. Приведем основное определение, взятое из одного учебника:

Определение 1

Тождественно равными друг другу будут такие выражения, значения которых будут одинаковы при любых возможных значениях переменных, входящих в их состав.

Также тождественно равными считаются такие числовые выражения, которым будут отвечать одни и те же значения.

Это достаточно широкое определение, которое будет верным для всех целых выражений, смысл которых при изменении значений переменных не меняется. Однако позже возникает необходимость уточнения данного определения, поскольку помимо целых существуют и другие виды выражений, которые не будут иметь смысла при определенных переменных. Отсюда возникает понятие допустимости и недопустимости тех или иных значений переменных, а также необходимость определять область допустимых значений. Сформулируем уточненное определение.

Определение 2

Тождественно равные выражения – это те выражения, значения которых равны друг другу при любых допустимых значениях переменных, входящих в их состав. Числовые выражения будут тождественно равными друг другу при условии одинаковых значений.

Фраза «при любых допустимых значениях переменных» указывает на все те значения переменных, при которых оба выражения будут иметь смысл. Это положение мы объясним позже, когда будем приводить примеры тождественно равных выражений.

Можно указать еще и такое определение:

Определение 3

Тождественно равными выражениями называются выражения, расположенные в одном тождестве с левой и правой стороны.

Примеры выражений, тождественно равных друг другу

Используя определения, данные выше, рассмотрим несколько примеров таких выражений.

Для начала возьмем числовые выражения.

Пример 1

Так, 2+4 и 4+2 будут тождественно равными друг другу, поскольку их результаты будут равны (6 и 6).

Пример 2

Точно так же тождественно равны выражения 3 и 30:10, (22)3 и 26(для вычисления значения последнего выражений нужно знать свойства степени). 

Пример 3

А вот выражения 4-2 и 9-1 равными не будут, поскольку их значения разные.

Перейдем к примерам буквенных выражений. Тождественно равными будут a+b и b+a, причем от значений переменных это не зависит (равенство выражений в данном случае определяется переместительным свойством сложения).

Пример 4

Например, если a будет равно 4, а b – 5, то результаты все равно будут одинаковы.

Еще один пример тождественно равных выражений с буквами – 0·x·y·z и 0. Какими бы ни были значения переменных в этом случае, будучи умноженными на 0, они дадут 0. Неравные выражения – 6·x и 8·x, поскольку они не будут равны при любом x.

В том случае, если области допустимых значений переменных будут совпадать, например, в выражениях a+6 и 6+a или a·b·0 и 0, или x4 и x, и значения самих выражений будут равны при любых переменных, то такие выражения считаются тождественно равными. Так, a+8=8+a при любом значении a, и a·b·0=0 тоже, поскольку умножение на 0 любого числа дает в итоге 0. Выражения x4 и x будут тождественно равными при любых x из промежутка [0, +∞).

Но область допустимого значения в одном выражении может отличаться от области другого.

Пример 5

Например, возьмем два выражения:  x−1 и x-1·xx. Для первого из них областью допустимых значений x будет все множество действительных чисел, а для второго – множество всех действующих чисел, за исключением нуля, ведь тогда мы получим 0 в знаменателе, а такое деление не определено. У этих двух выражений есть общая область значений, образованная пересечением двух отдельных областей. Можно сделать вывод, что оба выражения x-1·xx и x−1 будут иметь смысл при любых действительных значениях переменных, за исключением 0.

Основное свойство дроби также позволяет нам заключить, что x-1·xx и x−1 будут равными при любом x, которое не является 0. Значит, на общей области допустимых значений эти выражения будут тождественно равны друг другу, а при любом действительном x говорить о тождественном равенстве нельзя.

Если мы заменяем одно выражение на другое, которое является тождественно равным ему, то этот процесс называется тождественным преобразованием. Это понятие очень важно, и подробно о нем мы поговорим в отдельном материале.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Alexander Alenitsyn

Высший разум

(754423)


12 лет назад

Функция А, зависящая от каких-то переменных, тождественно
равна функции В, зависящей от тех же переменных, если
значение А равно значению В при всевозможных значениях
переменных. Пример тождественного равенства: x+x=3x-x.
Попросту говоря, А и В – одно и то же, но в разном виде.

Ксюша

Гуру

(3869)


12 лет назад

Если соответственные значения двух выражений, содержащих одни и те же переменные, совпадают при всех допустимых значениях переменных, то выражения называются тождественно равными.

Давыдова Наталья

Гуру

(3230)


12 лет назад

либо тождественно либо равно. еще говорят тождество верно
То́ждество (в математике) — равенство, выполняющееся на всём множестве значений входящих в него переменных (равенство, верное при любых значениях переменной),

Mikhail Levin

Искусственный Интеллект

(614570)


12 лет назад

значит – при любых значениях переменной.

знак равно может означать как у уравнении – “при некоторых неизвестных” (потом просят найти эти неизвестные.

например, равенство x+x=4 верно только при х, равном двум, это не тождественное равенство.
а вот равенство х+х=2х – верно при любом х, это тождественное равенство.

VS

Профи

(711)


12 лет назад

что то мне это напоминает дискретную математику…. это что то типа одно значение или уравнение точно такое, равняется другому))

_0Gamer _001

Ученик

(193)


6 лет назад

Функция А, зависящая от каких-то переменных, тождественно
равна функции В, зависящей от тех же переменных, если
значение А равно значению В при всевозможных значениях
переменных. Пример тождественного равенства: x+x=3x-x.
Попросту говоря, А и В – одно и то же, но в разном виде.

Если соответственные значения двух выражений, содержащих одни и те же переменные, совпадают при всех допустимых значениях переменных, то выражения называются тождественно равными.

либо тождественно либо равно. еще говорят тождество верно
То́ждество (в математике) — равенство, выполняющееся на всём множестве значений входящих в него переменных (равенство, верное при любых значениях переменной).

значит – при любых значениях переменной.

знак равно может означать как у уравнении – “при некоторых неизвестных” (потом просят найти эти неизвестные.

например, равенство x+x=4 верно только при х, равном двум, это не тождественное равенство.
а вот равенство х+х=2х – верно при любом х, это тождественное равенство.!. 🙂

Тождественные преобразования

Что такое тождественные преобразования

Тождество — это равенство, выполняемое на всем множестве значений переменных, которые в него включены.

К примеру, тождествами являются, в том числе, квадратные выражения:

a 2 − b 2 = ( a + b ) ( a − b )

( a + b ) 2 = a 2 + 2 a b + b 2

В рассмотренных выражениях любые значения a и b обращают их в верные равенства, что полезно знать при решении примеров.

Тождественно равными выражениями называют такие два выражения, которые обладают равными значениями при всех значениях переменных.

Данное равенство существует только в том случае, когда:

Рассматриваемое равенство не является тождеством, а представляет собой уравнение. Для обозначения тождественного равенства принято использовать символ тройного равенства: ≡ .

Разница между тождеством и уравнением заключается в том, что тождество является верным при любом из значений переменных. Уравнение же верно лишь в том случае, когда имеется одно или несколько значений переменных.

Это уравнение верное только, когда ответ соответствует х = 10 .

В этом случае тождество не включает в себя переменные.

Замена чисел и выражений тождественно равными им выражениями

Тождественное преобразование выражения (преобразование выражения) представляет собой замену одних выражений на другие, которые тождественно равны между собой.

Данное объяснение преобразований позволяет значительно упростить решение задач. К примеру, для этого используют законы сокращенного умножения, арифметические свойства и другие тождества.

Рассмотрим конкретный пример:

Выполним работу по тождественным преобразованиям этой дроби:

x 3 – x x 2 – x = x ( x 2 – 1 ) x – 1 = x ( x – 1 ) ( x + 1 ) x ( x – 1 ) = x + 1

x 3 – x x 2 – x = x + 1

В результате получили тождество, которое существует, если х ≠ 0 и х ≠ 1 . То есть необходимо исключить недопустимые значения, так как знаменатель слева не должен принимать нулевые значения:

Доказательство тождеств

В процессе доказательства тождества необходимо выполнить ряд действий:

  • тождественно преобразовать обе или только одну часть равенства;
  • получить в обеих частях идентичные алгебраические выражения.

В качестве самостоятельного примера для тренировки докажем следующее тождество:

x 3 – x x 2 – x = x 2 + x x

В первую очередь избавимся от х , записав его за скобками:

x ( x 2 – 1 ) x ( x – 1 ) = x ( x + 1 ) x

Заметим, что можно сократить х :

x 2 – 1 x – 1 = x + 1

( x – 1 ) ( x + 1 ) x – 1 = x + 1

Выполним сокращение на х – 1 :

Заключим, что рассмотренное равенство является тождеством, если х ≠ 0 и х ≠ 1

Когда требуется доказать, что равенство не относится к тождеству, следует определить одно допустимое значение переменной, при котором полученные числовые выражения обращаются в неравные друг другу. К примеру:

x 2 – x x = x 2 + x x → x ≠ 0

Упростим вычисления с помощью сокращения х :

Выполним подстановку какого-то числа вместо х , например, числа 5:

Данное равенство не является тождеством.

Примеры тождеств

Изучить тождества на практике можно с помощью решения задач на различные тождественные преобразования алгебраических выражений. Ключевой целью таких действий является замена начального выражения на выражение, которое ему тождественно равно.

От перестановки местами слагаемых сумма не меняется:

От перестановки местами сомножителей произведение не меняется:

Согласно данным правилам, можно записать примеры тождественных выражений:

128 × 32 = 32 × 128

При наличии в сумме более двух слагаемых допускается группировать их путем заключения в скобки. Также можно предварительно переставлять эти слагаемые местами:

a + b + c + d = ( a + c ) + ( b + d )

Аналогичным способом группируют сомножители в произведении:

a × b × c × d = ( a × d ) × ( b × c )

Приведем примеры таких тождественных преобразований:

15 + 6 + 5 + 4 = ( 15 + 5 ) + ( 6 + 4 )

6 × 8 × 11 × 4 = ( 6 × 4 × 8 ) × 11

При увеличении или уменьшении обеих частей тождества на одинаковое число, данное тождество остается верным:

( a + b ) ± e = ( c + d ) ± e

Равенство сохраняется также при умножении или делении обеих частей этого равенства на одно и то же число:

( a + b ) × e = ( c + d ) × e

( a + b ) ÷ e = ( c + d ) ÷ e

Запишем несколько примеров:

35 + 10 = 9 + 16 + 20 ⇒ ( 35 + 10 ) + 4 = ( 9 + 16 + 20 ) + 4

42 + 14 = 7 × 8 ⇒ ( 42 + 14 ) × 12 = ( 7 × 8 ) × 12

Какую-либо разность допускается записывать, как сумму слагаемых:

Аналогичным способом можно выполнить замену частного на произведение:

Рассмотрим примеры тождественных преобразований:

76 – 15 – 29 = 76 + ( – 15 ) + ( – 29 )

42 ÷ 3 = 42 × 3 – 1

Заменить математическое выражение на более простое можно с помощью арифметических действий:

Преобразования следует выполнять с соблюдением алгоритма:

  1. В первую очередь выполняют возведение в степень, извлекают корни, вычисляют логарифмы, тригонометрические и прочие функции.
  2. Далее можно приступать к действиям с выражениями, заключенными в скобки.
  3. На последнем этапе, начиная с левой стороны, двигаясь вправо, выполняют действия, которые остались. При этом умножение и деление являются приоритетными, выполняются в первую очередь. Затем можно приступить к сложению и вычитанию. Данное правило распространяется и на выражения, записанные в скобках.

Пример 7

14 + 6 × ( 35 – 16 × 2 ) + 11 × 3 = 14 + 18 + 33 = 65

20 ÷ 4 + 2 × ( 25 × 3 – 15 ) – 9 + 2 × 8 = 5 + 120 – 9 + 16 = 132

В арифметических выражениях можно избавляться от скобок при необходимости. Исходя из знаков в выражении, определяются правила, согласно которым раскрывают скобки.

Рассмотрим несколько примеров преобразований с помощью раскрытия скобок:

117 + ( 90 – 74 – 38 ) = 117 + 90 – 74 – 38

1040 – ( – 218 – 409 + 192 ) = 1040 + 218 + 409 – 192

22 × ( 8 + 14 ) = 22 × 8 + 22 × 14

18 ÷ ( 4 – 6 ) = 18 ÷ 4 – 18 ÷ 6

Другим распространенным действием при упрощении выражений, содержащих скобки, является вынесение за них общего множителя. В результате в скобках остаются слагаемые, поделенные на вынесенный множитель. Данный способ преобразования можно применять в выражениях, которые содержат буквенные переменные.

3 × 5 + 5 × 6 = 5 × ( 3 + 6 )

28 + 56 – 77 = 7 × ( 4 + 8 – 11 )

31 x + 50 x = x × ( 31 + 50 )

В процессе тождественных преобразований часто применяют формулы для сокращенного выражения.

Примеры тождественных преобразований:

( 31 + 4 ) 2 = 31 2 + 2 ⋅ 31 ⋅ 4 + 4 2 = 1225

Решение тождественных уравнений примеры решений

Пример 5. Решите уравнение 3у + у 2 = у.
Решение:
3у + у 2 = у – неполное квадратное уравнение; у 2 + 3у – у = 0;
у 2 + 2у =0; у∙(у + 2) = 0.

x 2 – 5х = – 6 или х 2 – 5х = 36;
х 2 – 5х + 6 = 0 или х 2 – 5х – 36 =0.
По теореме Виета:
х1 = 2, х2 = 3, х3 = – 4, х4 =9.
Ответ: – 4, 2, 3, 9.

Тождество

Тема урока: § 4. Тождество.

Тождественные выражения

Сравним значения выражений ( 2x+3x^<2>) и ( 5x^<3>) при некоторых значениях переменной ( x.) При ( x=2) значение первого выражения ( 16,) а второго ( 40.) Числа ( 16) и ( 40) — соответственные значения выражений: ( 2x+3x^<2>) и ( 5x^<3>.) Некоторые пары соответственных значений этих выражений показаны в таблице:

$$textcolor<#ed5fa6>$$ $$-0,4$$ $$-0,1$$ $$ 0 $$ $$0,1$$ $$ 1 $$
$$2x+3x^<2>$$ $$-0,32$$ $$-0,17$$ $$0$$ $$0,23$$ $$5$$
$$5x^<3>$$ $$-0,32$$ $$-0,005$$ $$0$$ $$0,005$$ $$5$$

Легко заметить, что не при всех значениях переменной ( x) значения выражений ( 2x+3x^<2>) и ( 5x^<3>) равны, а значит нельзя сказать, что выражения тождественно равны.

Что такое тождество?

Выражения ( x+5) и ( 5+x) тождественно равны, поэтому равенство ( x+5=5+x) верно при любых значениях ( x.) Такое равенство называют тождеством.

Определение:
Тождеством называется такое равенство двух выражений, которое верно при любых значениях переменных.

Примеры тождеств

Верное числовое равенство также называют тождеством.

Тождественные преобразования выражений

Рассмотрим выражения ( x(y+7)) и ( xy+7x.) Вычислим их значения при ( x=9) и ( y=-2)

Мы видим что при ( x=9) и ( y=-2) соответственные значения выражений ( x(y+7)) и ( xy+7x) равны. Из распределительного и переместительного свойств умножения следует, что соответственные значения этих выражений равны при любых значениях переменных. О таких выражениях говорят, что они тождественно равны.

При решении уравнений, вычислении значений выражений и ряде других случаев одни выражения заменяют другими, тождественно равными им. Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения.

Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами. Мы уже встречались с тождественными преобразованиями выражений. К ним относятся, например, приведение подобных слагаемых, раскрытие скобок.

Пример 1. Приведем подобные слагаемые в сумме (5x+2x-3x.)

Чтобы привести подобные слагаемые, надо, как известно, сложить их коэффициенты и результат умножить на общую буквенную часть.

Имеем: $$5x+2x-3x=(5+2-3)x=4x$$ Выполненное преобразование основано на распределительном свойстве умножения.

Пример 2. Раскроем скобки выражения (2a+(b-3c).)

Воспользуемся правилом раскрытия скобок, перед которыми стоит знак “плюс”: если перед скобками стоит знак “плюс”, то скобки можно опустить, сохранив знак каждого слагаемого, заключенного в скобки.

Получим: $$2a+(b-3c)=2a+b-3c$$ Проведенное преобразование основано на сочетательном свойстве сложения.

Пример 3. Раскроем скобки в выражении (a-(4b-c).)

Применим правило раскрытия скобок, перед которыми стоит знак “минус”: если перед скобками стоит знак “минус”, то скобки можно опустить, изменив знак каждого слагаемого, заключенного в скобки.

Выполненное преобразование также основано на свойствах действий над числами. Действительно, представим данное выражение в виде суммы: $$a-(4b-c)=a+(-1)cdot(4b-c)$$ Применим распределительное и сочетательное свойства умножения:

Доказательство тождеств

Если в выражении (textcolor<#ed5fa6><5(b-c)-3c>) раскрыть скобки, а затем привести подобные слагаемые, то получится тождественно равное ему выражение (textcolor<#ed5fa6><5b-8c.>)

верно при любых значениях переменных. Такие равенства называют тождественными.

Свойства действий над числами также являются тождествами, приведем некоторые из них:

Чтобы доказать, что некоторое равенство является тождеством, или, как говорят иначе, чтобы доказать тождество, используют тождественные преобразования выражений.

Докажем, например, тождество $$tag <1>7(2+b)-(14-b)=8b$$ Преобразуем левую часть равенства ((1):)

[smallbegin <2>7(2+b)-(14-b)= \ 14+7b-14+b= \ 8b end] В результате тождественных преобразований мы получили правую часть равенства ((1).) Значит, это равенство есть тождество.

Для доказательства тождества иногда преобразуют каждую его часть. Докажем, например, тождество $$tag <2>d(c-a)+ab=a(b-d)+cd$$ Выполним преобразования: [smallbegin <2>d(c-a)+ab=cd-ad+ab, \ a(b-d)+cd= \ ab-ad+cd= \ cd-ad+ab end]

Левая и правая части равенства ((2)) тождественно равны одному и тому же выражению. Поэтому они тождественно равны между собой. Значит, равенство ((2)) — тождество.

Не всякое равенство есть тождество. Так, равенство (x+2=2x) не является тождеством. Действительно, если бы это равенство было тождеством, то оно было бы верным при всех значениях (x.) Однако, например, при (x=1) это равенство не является верным. Значит, оно не является тождеством.

Задачи для самостоятельного решения

№1. Являются ли выражения тождественно равными:

Первые два выражения тождественно равны. Т.е. равны при любых значениях переменной (footnotesize c. )

Вторая пара является тождеством, можно понять с помощью сочетательного закона сложения: $$a+(b+c)=(a+b)+c$$

Тождество, т.к. (footnotesize -2a+2a=2a-2a=0 )

Тождество, т.к. (footnotesize (x-x)a=0cdot a=0 )

Пятая пара выражений не будет являться тождеством. Предположим обратное:

Видно что равенство верно при (footnotesize x=y,) но если (footnotesize x) и (footnotesize y) отличны друг от друга, то равенства достигаться не будет.

Тождество. Рассмотрим первое выражение

Видно, что первое выражение в точности является вторым.

№2. Упростите выражение, используя переместительное и сочетательное
свойства умножения:

[spoiler title=”источники:”]

http://www.sites.google.com/a/ssga.ru/ssga4school/matematika/tema-3

http://reshu.su/algebra/04/

[/spoiler]

Тождественно равные выражения: определение, примеры

После того, как мы разобрались с понятием тождеств, можно переходить к изучению тождественно равных выражений. Цель данной статьи – объяснить, что это такое, и показать на примерах, какие выражения будут тождественно равными другим.

Тождественно равные выражения: определение

Понятие тождественно равных выражений обычно изучается вместе с самим понятием тождества в рамках школьного курса алгебры. Приведем основное определение, взятое из одного учебника:

Тождественно равными друг другу будут такие выражения, значения которых будут одинаковы при любых возможных значениях переменных, входящих в их состав.

Также тождественно равными считаются такие числовые выражения, которым будут отвечать одни и те же значения.

Это достаточно широкое определение, которое будет верным для всех целых выражений, смысл которых при изменении значений переменных не меняется. Однако позже возникает необходимость уточнения данного определения, поскольку помимо целых существуют и другие виды выражений, которые не будут иметь смысла при определенных переменных. Отсюда возникает понятие допустимости и недопустимости тех или иных значений переменных, а также необходимость определять область допустимых значений. Сформулируем уточненное определение.

Тождественно равные выражения – это те выражения, значения которых равны друг другу при любых допустимых значениях переменных, входящих в их состав. Числовые выражения будут тождественно равными друг другу при условии одинаковых значений.

Фраза «при любых допустимых значениях переменных» указывает на все те значения переменных, при которых оба выражения будут иметь смысл. Это положение мы объясним позже, когда будем приводить примеры тождественно равных выражений.

Можно указать еще и такое определение:

Тождественно равными выражениями называются выражения, расположенные в одном тождестве с левой и правой стороны.

Примеры выражений, тождественно равных друг другу

Используя определения, данные выше, рассмотрим несколько примеров таких выражений.

Для начала возьмем числовые выражения.

Так, 2 + 4 и 4 + 2 будут тождественно равными друг другу, поскольку их результаты будут равны ( 6 и 6 ).

Точно так же тождественно равны выражения 3 и 30 : 10 , ( 2 2 ) 3 и 2 6 (для вычисления значения последнего выражений нужно знать свойства степени).

А вот выражения 4 — 2 и 9 — 1 равными не будут, поскольку их значения разные.

Перейдем к примерам буквенных выражений. Тождественно равными будут a + b и b + a , причем от значений переменных это не зависит (равенство выражений в данном случае определяется переместительным свойством сложения).

Например, если a будет равно 4 , а b – 5 , то результаты все равно будут одинаковы.

Еще один пример тождественно равных выражений с буквами – 0 · x · y · z и 0 . Какими бы ни были значения переменных в этом случае, будучи умноженными на 0 , они дадут 0 . Неравные выражения – 6 · x и 8 · x , поскольку они не будут равны при любом x .

В том случае, если области допустимых значений переменных будут совпадать, например, в выражениях a + 6 и 6 + a или a · b · 0 и 0 , или x 4 и x , и значения самих выражений будут равны при любых переменных, то такие выражения считаются тождественно равными. Так, a + 8 = 8 + a при любом значении a , и a · b · 0 = 0 тоже, поскольку умножение на 0 любого числа дает в итоге 0 . Выражения x 4 и x будут тождественно равными при любых x из промежутка [ 0 , + ∞ ) .

Но область допустимого значения в одном выражении может отличаться от области другого.

Например, возьмем два выражения: x − 1 и x — 1 · x x . Для первого из них областью допустимых значений x будет все множество действительных чисел, а для второго – множество всех действующих чисел, за исключением нуля, ведь тогда мы получим 0 в знаменателе, а такое деление не определено. У этих двух выражений есть общая область значений, образованная пересечением двух отдельных областей. Можно сделать вывод, что оба выражения x — 1 · x x и x − 1 будут иметь смысл при любых действительных значениях переменных, за исключением 0 .

Основное свойство дроби также позволяет нам заключить, что x — 1 · x x и x − 1 будут равными при любом x, которое не является 0 . Значит, на общей области допустимых значений эти выражения будут тождественно равны друг другу, а при любом действительном x говорить о тождественном равенстве нельзя.

Если мы заменяем одно выражение на другое, которое является тождественно равным ему, то этот процесс называется тождественным преобразованием. Это понятие очень важно, и подробно о нем мы поговорим в отдельном материале.

Тождество. Тождественные преобразования. Примеры.

Тождества в основном применяются для решения линейных уравнений.

Тождеством называется равенство, которое верно при всех значениях переменных.

Или другими словами, тождество — это равенство, которое выполняется на всём множестве значений переменных, входящих в него, например:

В этих выражениях при всех значениях a и b равенство верное.

2 выражения с равными значениями при всех значениях переменных являются тождественно равными.

Равенство x+2=5 может существовать не при всех значениях x, а лишь при x=3. Это равенство не будет тождеством, это будет уравнением. Кроме того, тождеством будет равенство, которое не содержит переменные, например 25 2 =625.

Тождественное равенство обозначают символом «≡» (тройное равенство).

Примеры тождеств.

— Тождество Эйлера (кватернионы);

— Тождество Эйлера (теория чисел);

— Тождество четырёх квадратов;

— Тождество восьми квадратов;

Тождественные преобразования.

Тождественное преобразование выражения (преобразование выражения) – это подмена одних выражений другими, тождественно равными друг другу.

Для тождественных преобразований используют формулы сокращенного умножения, законы арифметики и другие тождества.

Выполним тождественные преобразования с такой дробью: .

Полученное тождество, при х ≠ 0 и х ≠ 1 (недопустимые значения), т.к. знаменатель левой части не может быть равен нулю.

Доказательство тождеств.

Для того, чтоб доказать тождество нужно сделать тождественные преобразования обеих или одной части равенства, и получить слева и справа одинаковые алгебраические выражения.

Например, доказать тождество:

Вынесем х за скобки:

Это равенство есть тождество, при х≠0 и х≠1.

Чтоб доказать, что равенство не является тождеством, нужно найти 1-но значение переменной (которое допустимо) у которой числовые выражения (которые были получены) станут не равными друг другу.

5−1 ≠ 5+1 — подставим, к примеру, 5.

Это равенство не тождество.

Разница между тождеством и уравнением.

Тождество верно при всех значениях переменных, а уравнение – это равенство, которое верно только при одном либо нескольких значениях переменной.

Это выражение верно лишь при х = 10.

Тождеством будет равенство, которое не содержит переменных.

Тождество — принцип, закон и примеры преобразования выражений

Основные законы логики

Логика — это раздел философии. Он представляет собой науку о формах и законах правильного мышления. Закон логики — необходимая связь между логическими формами в процессе построения последовательного рассуждения. Цель его состоит в формулировании правил и рекомендаций, с помощью которых можно найти путь к истине. Это не законы самого окружающего мира, а правила мышления о нём.

Аристотель, который создал классификацию свойств бытия, всесторонне определяющих субъект, впервые сформулировал три из четырёх логических законов и подразумевал под этим предпосылку для объективной связи мыслей в процессе размышления. Основными в формальной логике считаются законы:

  • тождества;
  • исключённого третьего;
  • непротиворечия;
  • достаточного основания.

Без этого закона невозможно установить, что такое логическое следование, и понять смысл доказательства.

Логический принцип тождественности

Тождество — это примерное равенство, сходство объектов по какому-либо показателю. Принцип (синоним слова закон) его — один из основных логических законов формальной логики как науки, в соответствии с которым в процессе размышления любое суждение должно оставаться тождественными самому себе.

Аристотель формулировал это положение так: «Иметь не одно значение — значит, не иметь ни одного значения». В виде формулы этот принцип записывается следующим образом: А есть А или А = А, где А — мысль, которая может быть любой. На этом законе основаны многие положения логики. Например, следующие:

  • пусть установлено: по определённым признакам мысль А тождественна В. Тогда верно и утверждение, что В по тем же признакам тождественна А;
  • если А по какому-то показателю равна В, а В при этом соответствует С, то А будет равна С.

Нарушение закона тождества — пример, который привёл к логической ошибке. Ученик на уроке спрашивает учителя: «Можно наказывать человека за то, чего он не сделал?». «Конечно, нельзя», — отвечает учитель. «В таком случае не наказывайте меня, — говорит ученик, — я не сделал домашнюю работу». В этом диалоге нарушен логический принцип тождества, так как понятие «не сделал» применяется в разных значениях:

  1. Не сделал, то есть не совершил что-то плохое, за что можно наказать.
  2. Не сделал что-то, что должен был выполнить.

Получилось, что в одно и то же понятие было вложено два различных смысла. Нарушение закона может выражаться в следующих формах:

  1. Подмена или потеря предмета мысли.
  2. Намеренное искажение.
  3. Замена тезиса — нетождественность положения, которое пытаются доказать, исходному тезису.

Нарушение закона тождества ведёт к неясности мысли, что совершенно недопустимо во многих областях, например, в юриспруденции. Неточное определение или неправильно истолкованное понятие в сфере права способствует появлению беззакония и произвола, поэтому в процессе мышления принцип тождественности выступает в виде важного правила.

Этот закон вводит требование об отсутствии в ходе размышлений подмены или смешения мысли об объекте или замены предмета мысли. Нужно учитывать, что даже в законодательных актах часто попадаются двусмысленности, а это обязательно приводит к разночтениям в истолковании и неоднозначности в применении.

Виды преобразований

Тождеством в математике называется равенство, которое верно при всех значениях, входящих в него переменных для различных классов функций. Значение этого слова — полное сходство, подобие объектов, явлений друг другу или самим себе. К тождествам можно отнести:

  1. Формулы сокращённого умножения в алгебре.
  2. Тождество параллелограмма. Оно гласит, что сумма квадратов длин сторон параллелограмма равна сумме квадратов длин его диагоналей.
  3. Основное тригонометрическое тождество sin 2 α + cos 2 α = 1, которое связывает квадраты функций синуса и косинуса для любых значений углов.
  4. Тождество Эйлера (комплексный анализ).

Тождество Эйлера — e iπ + 1 = 0 — часто приводят как пример феноменального результата, который устанавливает неочевидную зависимость между геометрией (число пи) и математическим анализом (экспонента). Формула связывает пять фундаментальных математических констант:

  • число e — основание натурального логарифма;
  • i — мнимую единицу;
  • число пи — соотношение длин окружности и диаметра;
  • 1 и 0 — нейтральные элементы по операциям умножения и сложения соответственно.

Тождественным преобразованием называются операции, которые проводятся для замены исходного выражения на тождественно равное. Например, x 3 — xy 2 = x (x — y)(x + y) — это тождество, так как вынесение за скобки общего множителя и применение формул сокращённого умножения являются тождественными преобразованиями. Для демонстрации подставим вместо переменных x и y произвольные значения. Пусть x = 5; y = 4. Получим слева: 125 — 5 x 16 = 45, справа 5 (5 — 4)(5 + 4) = 45. Совпадение обеих частей равенства доказывает тождественность.

Способы доказательства

Равенство и тождество, которое относится к предельному случаю равенства, — это термины, используемые в математике при решении уравнений. Для доказательства тождества нужно сделать тождественные преобразования выражений в одной или обеих частях равенства и получить одинаковые результаты. При выполнении преобразований необходимо обращать внимание на область допустимых значений (ОДЗ) переменных. Эти операции могут суживать ОДЗ или оставлять её прежней.

При переходе от выражения x + (-y) к выражению (x — y) область допустимых значений переменных x и y будет прежняя. Переход от выражения (x — 5) к отношению (x — 5) 2 / (x — 5) приводит к сужению ОДЗ переменной x от (-ꚙ, +ꚙ) до (-ꚙ, 5) U (5, +ꚙ). Способы доказательства:

  1. Применить тождественные преобразования к левой части. Если получится выражение, стоящее в правой части, то тождество считается доказанным.
  2. Преобразовать таким же способом правую часть равенства. Если в результате получится выражение, стоящее в левой части, то доказательство получено.
  3. Сделать тождественные преобразования левой и правой части равенства. Если будет достигнут одинаковый результат, то это служит доказательством тождественности обеих частей.
  4. От правой части равенства отнять левую. Выполнить над разностью равносильные преобразования. Получение в итоге нуля считается доказательством тождественности частей.
  5. Из левой части равенства вычесть правую и произвести над разностью тождественные преобразования. В итоге должен получиться нуль. Тождество будет верным.

В теории множеств для доказательства тождественности часто используются круги или диаграммы Эйлера.

В них графическими методами наглядно можно представить различные операции над множествами: пересечение, объединение, разность, симметрическую разность. Существуют методы построения пересекающихся кругов Эйлера для любого выражения онлайн. Это тоже упрощает доказательство тождественности.

Чтобы доказать нетождественность двух частей выражения, требуется найти хотя бы одно значение переменной из области допустимых значений. При ее подстановке числовые выражения частей получатся неравными друг другу. Разница между уравнением и тождеством заключается в том, что первое может быть выполнено только при некоторых значениях переменных, которые будут его решением, а второе — при всех значениях.

Тождество — это многозначный термин, применяемый в философии, математике, физике. Понятие тождественности уникально по охвату им различной проблематики. С ним сталкиваются и школьники на уроках алгебры и геометрии, и крупные учёные при проведении многочисленных исследований в современной науке.

источники:

http://www.calc.ru/Tozhdestvo-Tozhdestvennyye-Preobrazovaniya-Primery.html

http://nauka.club/filosofiya/tozhdestv%D0%BE.html

Популярные ответы

  • Когда буквы е, ё, ю, я обозначают два звука?
  • Каким членом предложения может быть местоимение?
  • Как правильно произносятся слова термин, шинель, темп?
  • Как найти точки экстремума функции по графику производной?
  • Как правильно: по средам (ударение на «а» или на «е»)?
  • Какой официальный сайт Московского энергетического института (МЭИ)?
  • На какие вопросы отвечает наречие?
  • Где найти примеры сравнительных оборотов и других конструкций со словом «как»?
  • Как в физике обозначается скорость движения?
  • Где скачать задания по английскому языку олимпиады для школьников «Покори Воробьевы горы!»?

Тождественность в математике является частным случаем общего философского понятия тождественности.

Тождественным оборажением называется функция, которая любому значению своего аргумента ставит в соответствие это же самое значение (отображает на себя).

Тождественными выражениями называют алгебраические выражения, которые при любых значениях входящих в них переменных приобретают одинаковое значение. Например, тождественны выражения x·x и x2, т.к. они равны между собой при любых значениях x. Соответственно, тождеством называется равенство, верное при всех допустимых значениях входящих в него переменных: x·x = x2.

Когда надо подчеркнуть тождественность выражений в отличие от их равенства, используется математический знак «тождественно равно»: .

  • Запись f(x) = g(x)+1 может рассматриваться как уравнение относительно x, которое надо решить, т.е. определить те значения x, при которых данная запись превращается в истинное равенство.
  • Запись f(x) ≡ g(x)+1 — это утверждение, что функции f(x) и g(x)+1 совпадают при всех значениях x, т.е., фактически, это определение функции f(x) через функцию g(x).

Тождественным преобразованием в алгебре называется любая замена алгебраического выражения другим тождественным выражением. Значения получаемых при тождественных преобразованиях выражений совпадают при всех значениях входящих в них переменных, однако алгебраическая форма записи выражений может значительно различаться. Целью тождественных преобразований обычно является приведение выражения к такой форме, в которой упрощается решение поставленной задачи.

Например, если стоит задача узнать, при каких значениях x выраженние x2 − 2x + 1 обращается в нуль, достаточно заметить, что данное выражение тождественно (x − 1)2. Сразу становится ясно, что ответ будет x=1, что было совершенно неочевидно в исходной записи.

Важно знать, что тождественное преобразование должно сохранять не только значение выражения при любом значении переменных, но и его область определения. Например, часто применяемая операция сокращения алгебраической дроби несет опасность изменения области определения, если сокращаемое подвыражение при некоторых значениях переменных обращается в нуль. Например:

(x2 + 2x + 1) / (x − 1) ≡ ( x + 1) ( x − 1) / (x − 1).

Кажется, что теперь можно сократить дробь на  (x − 1):

( x + 1) ( x − 1) / (x − 1) => (x + 1),

но такое преобразование не будет тождественным. Дело в том, что подвыражение (x − 1) обращается в нуль при x=1. При этом эначении x исходное выражение не имеет смысла, т.е. точка x=1 не входит в область определения исходного выражения. Между тем, результирующее выражение (x + 1) такого ограничения не содержит. И хотя при всех остальных значениях x исходное и результирующее выражения совпадают, они не тождественны, так как различаются в одной точке: при x=1 исодное выражение не определено, а результирующее равно 2. Чтобы последнее преобразование было тождественным, необходимо добавить к результирующему выражению ограничение:

(x2 + 2x + 1) / (x − 1) ≡ (x + 1), x≠1.

Источники: 

  • ru.wikipedia.org — Википедия: тождество (математика);
  • ru.wikipedia.org — Википедия: тождественное отображение; 
  • mmmf.msu.ru — брошюра «Тождественные преобразования: Методическая разработка для учащихся 8 и 9 классов заочного отделения МММФ» под редакцией А.В. Деревянкина. — М.: Изд-во центра прикладных исследований при механико-математическом факультете МГУ, 2007. — 16 с. 

Дополнительно на Геноне:

  • Что такое тождественность?

Добавить комментарий