Траектория движения в физике, теория и онлайн калькуляторы
Траектория движения
Определение и основные понятия траектории движения
Во многих задачах интерес представлю не только перемещения материальных точек в пространстве, но и траектории их движения.
Определение
Линию, которую описывает частица при своем движении, называется траекторией движения.
В зависимости от формы траектории механическое движение можно разделить на:
- прямолинейное движение, траекторией движения точки в этом случае является прямая линия;
- и криволинейное перемещение (траектория – кривая линия).
Форма траектории зависит от выбора системы отсчета. В разных системах отсчета траектории могут быть представлены разными линиями, могут быть прямыми и кривыми.
При движении точки с постоянным ускорением, которое описывает уравнение:
[overline{r}left(tright)={overline{r}}_0+{overline{v}}_0t+frac{overline{a}t^2}{2}left(1right),]
(где $overline{r}left(tright)$ – радиус-вектор точки в момент времени $t$; ${overline{v}}_0$ – начальная скорость движения точки; $overline{a}$ – ускорение точки,) траектория движения представляет собой плоскую кривую, что означает все точки этой кривой находятся в одной плоскости. Положение этой плоскости в пространстве задают векторы ускорения и начальной скорости. Ориентацию координатных осей чаще всего выбирают так, чтобы плоскость движения совпадала с одной из координатных плоскостей. В этом случае векторное уравнение (1) можно свести к двум скалярным уравнениям.
Уравнение траектории движения
Рассмотрим свободное движение тела около поверхности Земли. Начало координат разместим в точке бросания тела (рис.1). Оси координат направим так, как изображено на рис.1.
Тогда уравнение движения тела (1) в проекциях на координатные оси декартовой системы координат принимает вид системы из двух уравнений:
[left{ begin{array}{c}
x=v_0t{cos alpha left(2right), } \
y=v_0t{sin alpha }-frac{gt^2}{2}left(3right). end{array}
right.]
Для того чтобы получить уравнение траектории движения тела ($y=y(x)$) следует исключить время движения тела из уравнений (2) и (3). Выразим из уравнения (2) $t$ и подставим его в выражение (3), получим:
[t=frac{x}{v_0{cos alpha }}; y=v_0frac{x}{v_0{cos alpha }}{sin alpha }-frac{g}{2}{left(frac{x}{v_0{cos alpha }}right)}^2to y=x tg alpha -frac{gx^2}{2v^2_0{cos}^2alpha }left(4right).]
Выражение (4) это уравнение параболы, проходящей через начало координат. Ее верви направлены вниз, так как коэффициент при $x^2$ меньше нуля.
Вершина этой параболы находится в точке с координатами:
[left{ begin{array}{c}
x=frac{v^2_0{sin alpha {cos alpha } }}{g} \
y=frac{v^2_0{sin}^2alpha }{2g} end{array}
right.left(5right).]
Найти координаты вершины траектории можно при помощи известных правил исследования функций на экстремум. Так, положение максимума функции $y(x)$ определяют, приравнивая к нулю первую производную ($frac{dy}{dx}$) от нее по $x$.
Обратимость движения
Из представления о траектории можно конкретизировать смысл обратимости механического движения.
Пусть частица движется в силовом поле таком, что ее ускорение в любой точке обладает определенной величиной, не зависящей от скорости. Как будет двигаться эта частица, если, в какой то точке ее траектории направление скорости заменить противоположным? С точки зрения математики это эквивалентно замене $t $ на $-t$ для всех уравнений. Уравнение траектории время не содержит, получается, что частица будет перемещаться «вспять» по той же самой траектории. При этом отрезки времени между любыми точками траектории будут одинаковы при прямом и обратном движении. Всякой точке траектории ставится в соответствие определенное значение величины скорости независимо от направления движения по данной траектории. Данные свойства наглядны в колебательных движениях маятника.
Все сказанное выше справедливо тогда, когда можно пренебречь любым сопротивлением движению. Обратимость движения существует, когда выполняется закон сохранения механической энергии.
Параметры траектории движения
Положение точек системы отсчета можно определять при помощи разных способов. В соответствии с этими способами описывают и движение точки или тела:
- Координатная форма описания движения. Выбирается система координат, в ней положение точки характеризуют тремя координатами (в трехмерном пространстве). Это могут быть координаты $x_1=x,x_2=y,x_3=z$, в декартовой системе координат. $x_1=rho ,x_2=varphi ,x_3= z$ в цилиндрической системе и т.д. При перемещении точки координаты являются функциями времени. Описать движение точки – это значит указать эти функции:
- При описании движения в векторной форме положение материальной точки задает радиус-вектор ($overline{r}$) по отношению к точке, которую принимают начальной. В этом случае вводят точку (тело) отсчета. При перемещении точки вектор $overline{r}$ постоянно изменяется. Конец этого вектора описывает траекторию. Движение задает выражение:
- Третьим способом описания движения является описание с помощью параметров траектории.
[x_1=x_1left(tright);; x_2=x_2left(tright);; x_3=x_3left(tright)left(6right).]
[overline{r}=overline{r}left(tright)left(7right).]
Путь – это скалярная величина, равная длине траектории.
Если траектория задана, то задачу описания движения сводят к определению закона движения вдоль нее. При этом выбирается начальная точка траектории. Любая другая точка характеризуется расстоянием $s$ по траектории от начальной точки. В таком случае движение описывают выражением:
[s=sleft(tright)left(8right).]
Пусть по окружности радиуса R равномерно перемещается точка. Закон движения точки по окружности в рассматриваемом методе запишем как:
[s=Atleft(9right),]
где $s$ – путь точки по траектории; $t$ – время движения; $A$ – коэффициент пропорциональности. Известными являются окружность и точка начала движения. Отсчет положительных величин $s$ совпадает с направлением перемещения точки по траектории.
Знание траектории движения тела во многих случаях существенно упрощает процесс описания движения тела.
Примеры задач с решением
Пример 1
Задание: Точка движется в плоскости XOY из начала координат со скоростью $overline{v}=Aoverline{i}+Bxoverline{j} , $где $overline{i}$, $overline{j}$ – орты осей X и Y; $A$,B – постоянные величины. Запишите уравнение траектории движения точки ($y(x)$). Изобразите траекторию. textit{}
Решение: Рассмотрим уравнение изменения скорости частицы:
[overline{v}=Aoverline{i}+Bxoverline{j} left(1.1right).]
Из этого уравнения следует, что:
[left{ begin{array}{c}
v_x=A, \
v_y=Bx end{array}
right.left(1.2right).]
Из (1.2) имеем:
[dx=v_xdt=Adtto dt=frac{dx}{A};;dy=v_ydt=Bxdtto dy=Bxfrac{dx}{A} left(1.3right).]
Для получения уравнения траектории следует решить дифференциальное уравнение (1.3):
[y=intlimits^x_0{frac{B}{A}}xdx=frac{B}{2A}x^2.]
Мы получили уравнение параболы, ветви которой направлены вверх. Эта парабола проходит через начало координат. Минимум этой функции находится в точке с координатами:
[left{ begin{array}{c}
x=0 \
y=0. end{array}
right.]
Пример 2
Задание: Движение материальной точки в плоскости описывает система уравнений: $left{ begin{array}{c}
x=At. \
y=At(1+Bt) end{array}
right.$, где $A$ и $B$ – положительные постоянные. Запишите уравнение траектории точки.
Решение: Рассмотрим систему уравнений, которая задана в условии задачи:
[left{ begin{array}{c}
x=At. \
y=Atleft(1+Btright) end{array}
right.left(2.1right).]
Исключим время из уравнений системы. Для этого из первого уравнения системы выразим время, получим:
[t=frac{x}{A}left(2.2right).]
Подставим вместо $t$ правую (2.2) часть во второе уравнение системы (2.1), имеем:
[y=Atleft(1+Btright)=At+ABt^2=Afrac{x}{A}+AB{(frac{x}{A})}^2=x+frac{B}{A}x^2.]
Ответ: $y=x+frac{B}{A}x^2$
Читать дальше: ускорение тела.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Результирующее движение
Cтраница 3
Таким образом, результирующее движение также является вращением твердого тела вокруг неподвижной точки. Поэтому все сказанное в предыдущем параграфе относительно определения скоростей и ускорений точек твердого тела, нахождения уравнений подвижного и неподвижного аксои-дов, углового ускорения может быть применено в данном случае.
[31]
Таким образом, результирующее движение также является вращением твердого тела вокруг неподвижной точки. Поэтому все сказанное в предыдущем параграфе относительно определения скоростей и ускорений точек твердого тела, нахождения уравнений подвижного и неподвижного аксоидов, углового ускорения может быть применено в данном случае.
[32]
Часто очень сложное результирующее движение материальных точек ( тел) относительно абсолютной системы координат является суперпозицией простых относительных движений реперов ( точек) друг относительно друга. В такой ситуации изучение относительных движений может помочь в анализе и описании результирующего движения.
[33]
Чтобы определить траекторию результирующего движения точки, исключим из этих уравнений время.
[34]
Как изменяется направление результирующего движения D.
[35]
Определим уравнение траектории результирующего движения точки.
[36]
О, то результирующим движением будет также мгновенное вращение с мгновенной угловой скоростью Q, которая представляет собой сумму мгновенных угловых скоростей as и ыг с линией действия, проходящей через точку О.
[37]
Педаль велосипеда в результирующем движении перемещается поступательно. Поступательное движение педали относительно велосипеда осуществляется ее вращением относительно своей оси и вращением вместе с осью вокруг оси шатуна.
[38]
Следовательно, угловая скорость результирующего движения равна сумме угловых скоростей составляющих движений.
[39]
В заключение определим энергию результирующего движения, получающегося при сложении двух взаимно перпендикулярных гармонических колебаний одинаковых частот.
[40]
Фигурами Лиссажу называются траектории результирующего движения при сложении двух взаимно перпендикулярных колебаний.
[41]
Чем отличаются друг от друга результирующие движения, получающиеся при сложении колебаний.
[42]
Отсюда можно заключить, что результирующее движение не является вращательным.
[43]
Отсюда видно, что траектория результирующего движения представляет собой эллипс. Таким образом, в результате участия точки в двух взаимно перпендикулярных колебаниях с одинаковой частотой со получается в общем случае движение по эллипсу.
[44]
В обоих случаях угловая скорость результирующего движения представляет собою сумму угловых скоростей ( векторных) обоих составляющих движений.
[45]
Страницы:
1
2
3
4
Содержание:
Абсолютная и относительная производные от вектора:
При рассмотрении сложного движения точки в общем случае переносного движения приходится рассматривать изменение векторных величин с течением времени по отношению к системам отсчета, движущимся друг относительно друга. Одно изменение имеет векторная величина относительно подвижной системы отсчета, движущейся относительно другой, неподвижной, и другое — относительно неподвижной системы отсчета. Неподвижной системой отсчета считается система, движение которой относительно других систем отсчета не рассматривается.
Введем обозначения производных от векторных величин при рассмотрении их изменения относительно различных систем отсчета, движущихся друг относительно друга. Для любого вектора
Установим зависимость между полной и относительной производными по времени вектора и величинами, характеризующими движение подвижной системы отсчета относительно неподвижной. Для этого разложим вектор на составляющие, параллельные осям подвижной системы координат. Имеем
Рис. 87
Изменение вектора относительно неподвижной системы координат . в зависимости от времени состоит из изменения его проекций на подвижные оси координат и изменения единичных векторов подвижных осей вследствие движения подвижной системы координат относительно неподвижной. Вычислим полную производную по времени от вектора , используя формулу (1). Получим
Первые три слагаемых учитывают изменение вектора при неизменных и поэтому составляют относительную производную, т. е.
Производные по времени единичных векторов определим по формулам Пуассона
так как эти векторы не изменяются от поступательного движения со скоростью вместе с подвижной системой отсчета (рис. 87). Вектор есть угловая скорость вращательной части движения вокруг точки подвижной системы координат относительно неподвижной. Подставляя эти значения производных единичных векторов в (2) и вынося за скобки, получим
или, учитывая (1),
Получена формула зависимости производных векторов в двух системах отсчета, движущихся друг относительно друга. Формула (4) называется формулой Бура.
Известно, что произвольное движение системы координат как свободного твердого тела можно представить как поступательное движение вместе с полюсом, например с точкой , и вращение вокруг этой точки. Из формулы Бура следует, что поступательная часть движения вместе с полюсом не влияет на зависимость между производными, а влияет только вращательная часть движения.
Рассмотрим частные случаи.
1. Если вектор не изменяется относительно подвижной системы координат, то его относительная производная и по формуле (4) получаем
Это формула для производной от вектора постоянного модуля, доказанная ранее для радиуса-вектора при вращении вокруг неподвижной оси. Она справедлива для любого вектора при произвольном движении подвижной системы осей координат. В рассматриваемом случае не только угловая скорость вращения подвижной системы координат, но и угловая скорость вращения вектора , так как вектор можно при этом считать скрепленным с подвижной системой координат.
2. Если вектор не изменяется относительно основной системы координат, то полная производная и, согласно (4), его относительная производная
3. Если , т. е. вектор все время параллелен вектору угловой скорости , то и
В частности, если , то
Полная и локальная производные также равны друг другу в те моменты времени, в которые вектор параллелен вектору угловой скорости .
Сложение скоростей
Если —неподвижная система осей координат, а — подвижная (рис. 88), то, как известно, абсолютным движением точки называют ее движение относительно неподвижной системы осей координат, а относительным — ее движение относительно подвижной. Переносным движением точки называют ее движение в рассматриваемый момент времени вместе с подвижной системой осей относительно неподвижных. Относительные скорость и ускорение обозначают и , переносные — и , а абсолютные — и . Другие характеристики этих движений снабжаются соответствующими значками.
Движение подвижной системы осей координат относительно неподвижной можно охарактеризовать скоростью ее поступательного движения , например вместе с точкой и вектором угловой скорости ее вращения вокруг . Пусть точка движется относительно подвижной системы координат. Получим теорему сложения скоростей. Для этого проведем векторы и , характеризующие положение точки относительно неподвижной и подвижной систем осей координат, и вектор точки . Для любого момента времени
Рис. 88
Продифференцируем по времени это векторное тождество, учитывая изменения векторов относительно неподвижных осей координат, т. е. вычислим полные производные. Получим
По определению, является абсолютной скоростью точки , — абсолютной скоростью точки . Для вычисления применим формулу Бура. Имеем
Относительная производная является относительной скоростью точки по отношению к подвижной системе отсчета, а — угловая скорость вращения подвижной системы отсчета и, следовательно, радиуса-вектора , если бы он в рассматриваемый момент времени был скреплен с подвижной системой осей координат. Таким образом, из (5) получаем
Скорость
является скоростью точки свободного твердого тела, скрепленного с подвижной системой координат, с которой в данный момент совпадает точка в движении тела относительно неподвижной системы осей координат. Это есть переносная скорость точки . Из (6) получаем следующую теорему сложения скоростей для точки:
т. е. скорость абсолютного движения точки равна векторной сумме переносной и относительной скоростей.
Сложение ускорений точки в общем случае переносного движения
Абсолютное ускорение точки определим вычислением полной производной по времени от абсолютной скорости (6). Имеем
Для полных производных от векторов и применим формулу Бура. Получим
Учитывая, что
получим для абсолютного ускорения
В этой формуле первые три слагаемых составляют ускорение точки свободного твердого тела в общем случае его движения вместе с подвижной системой осей координат относительно неподвижной. Первое слагаемое — ускорение точки , и — соответственно вращательное и осестремительное ускорения точки , если бы она двигалась только вместе с подвижной системой осей координат, не имея в рассматриваемый момент времени относительного движения. После этого (8) примет вид
где
Ускорение называется ускорением Кориолиса. Иногда его также называют добавочным (или поворотным) ускорением.
Формула (9) выражает теорему сложения ускорений точки, или кинематическую теорему Кориолиса: абсолютное ускорение точки является векторной суммой трех ускорений — переносного, относительного и Кориолиса.
Переносное ускорение рассматривалось при изучении движения свободного твердого тела. Относительное ускорение изучалось в кинематике точки. Его можно выразить в двух формах в зависимости от способа задания относительного движения. При координатном способе задания в декартовых координатах
где — координаты движущейся_ точки относительно подвижной системы осей координат; — единичные векторы этих осей. При естественном способе задания движения
причем
где — расстояние от начала отсчета до точки по траектории относительного движения; — радиус кривизны этой траектории. В частном случае, когда переносное движение есть вращение вокруг неподвижной оси, переносное ускорение
где касательное переносное ускорение
причем есть кратчайшее расстояние от движущейся точки до оси вращения. Нормальное переносное ускорение
Абсолютное ускорение в этом случае
Ускорение Кориолиса
Рассмотрим ускорение Кориолиса и его свойства. Оно определяется формулой (10)
Угловую скорость вращательной части движения подвижной системы отсчета, т. е. угловую скорость переносного движения, заменили на .
Ускорение Кориолиса является результатом взаимного влияния двух движений: переносного и относительного. Часть его получается вследствие изменения переносной скорости точки из-за относительного движения. Другая его часть, тоже , есть результат изменения относительной скорости вследствие переносного движения. Это следует из анализа формул при выводе абсолютного ускорения.
Модуль ускорения Кориолиса в соответствии с (10) определяется выражением
Для определения ускорения Кориолиса очень удобно правило Н. Е. Жуковского. Оно основано на формуле (10). Пусть имеем точку , движущуюся с относительной скоростью (рис. 89). Построим плоскость , перпендикулярную угловой скорости переносного вращения и спроецируем на эту плоскость. Проекцию обозначим . Она является вектором; ее модуль
Ускорение Кориолиса выразится в форме
Рис. 89
Учитывая (10) и (12′), получаем правило Жуковского: модуль ускорения Кориолиса равен удвоенному произведению угловой скорости переносного вращения на модуль проекции относительной скорости на плоскость, перпендикулярную оси переносного вращения; чтобы получить направление ускорения Кориолиса, следует вектор проекции относительной скорости повернуть на вокруг оси, параллельной оси переносного вращения, в направлении этого вращения.
Рассмотрим случаи обращения в нуль ускорения Кориолиса. Из (12) следует, что , если:
- , т. е. переносное движение является поступательным;
- , т. е. в те моменты времени, в которые происходит изменение направления относительного движения;
- , т. е. когда скорость относительного движения параллельна угловой скорости переносного вращения .
Следует отметить, что при различном разложении одного и того же абсолютного движения точки на переносное и относительное получим разные ускорения Кориолиса.
Пример №1
Шар радиусом вращается вокруг вертикальной оси по закону . По меридиану шара движется точка по закону (рис. 90,а). Расстояние отсчитывается от точки меридиана.
Определить абсолютные скорость и ускорение точки в момент времени .
Решение. За переносное движение точки примем вращение ее вместе с шаром вокруг оси (рис. 90, б). Тогда относительным движением точки будет ее движение по меридиану шара.
Определим положение точки на меридиане в момент времени . Имеем . Так как , то положение точки определяется углом широты .
Вычислим угловые скорость и ускорение переносного движения. Получаем ; при . Угловая скорость . Знак минус у показывает, что вращение шара происходит в отрицательную сторону угла , т. е. по часовой стрелке.
Так как и при , то угловое ускорение переносного движения . Знак минус у указывает, что оно направлено по часовой стрелке, против положительного направления угла ф. Так как знаки у и одинаковы, то вращение шара в рассматриваемый момент времени является ускоренным.
Рис. 90
Абсолютную скорость точки определяем по формуле
Скорость переносного движения при
Скорость относительного движения точки , где . При . Следовательно, . Знак плюс у указывает, что направлено в сторону возрастания .
В рассматриваемом случае направлена по касательной к параллели шара и перпендикулярна , которая направлена по касательной к меридиану. Следовательно,
Так как переносное движение является вращением шара вокруг неподвижной оси, то абсолютное ускорение точки определяем по формуле
Переносное нормальное ускорение
Ускорение направлено по кратчайшему расстоянию от точки до оси, т. е. по . Переносное касательное ускорение перпендикулярно и направлено в соответствии с направлением углового ускорения по скорости . Числовое значение этого ускорения
Относительное нормальное ускорение
Ускорение направлено к центру кривизны траектории относительною движения, т. е. к центру шара . Относительное касательное ускорение , где . Следовательно, . Так как положительно, то направлено в сторону возрастающих значений по касательной к траектории относительного движения. Относительное движение оказалось ускоренным в рассматриваемый момент времени.
Ускорение Кориолиса определяем по правилу Жуковского. Его модуль , где —проекция на плоскость, перпендикулярную оси переносного вращения . Имеем
После этого находим. Чтобы определить направление , следует повернуть вокруг оси , параллельной , на в сторону переносного вращения, т. е. в рассматриваемом случае по часовой стрелке. Получаем, что ускорение направлено по ускорению .
Для определения абсолютного ускорения выбираем прямоугольные оси координат и проецируем обе части векторного равенства (а) на эти оси, учитывая направление составляющих ускорений (рис. 90, б). Получаем:
Числовое значение абсолютного значения
Пример №2
Колечко (рис. 91), надетое на стержень, движется в плоскости согласно уравнениям
где —в см; — в с. Стержень может вращаться вокруг оси .
Рис.91
Определить в момент угловую скорость и угловое ускорение стержня, а также скорость и ускорение движения колечка по стержню.
Решение. Положение колечка в момент времени определяется координатами
Примем движение колечка вместе с вращающимся стержнем за переносное. Тогда его движение по стержню будет относительным движением.
Вычислим проекции на оси координат абсолютных скорости и ускорения колечка для произвольного момента времени. Имеем:
Для момента времени получаем:
По проекциям изображаем векторы абсолютных скорости и ускорения в рассматриваемый момент времени (рис. 92). По теореме сложения скоростей для колечка,
Скорость переносного движения перпендикулярна стержню , а скорость относительного движения направлена по стержню. Разлагая абсолютную скорость по этим двум направлениям, получаем
Но
поэтому
Угловая скорость вращения стержня определяется по формуле
В соответствии с направлением изображаем на рисунке дуговую стрелку для угловой скорости.
В частном случае переносного вращательного движения по теореме сложения ускорений для абсолютного ускорения имеем
Рис. 92
Вычисляем отдельные составляющие абсолютного ускорения и изображаем их на рис. 93. Для модуля нормального переносного ускорения получаем
Ускорение направлено к оси переносного вращения, т. е. к точке . Составляющая переносного ускорения направлена перпендикулярно а” и по величине неизвестна. Предполагая, что дуговая стрелка для направлена против часовой стрелки, изображаем на рисунке ускорения .
Нормальная составляющая относительного ускорения , так как относительное движение колечка по стержню является прямолинейным. Касательная составляющая относительного ускорения в этом случае равна полному относительному ускорению, т. е. . Предположим, что направлено от точки к .
Ускорение Кориолиса определяем по правилу Жуковского. Для его модуля имеем , где — проекция относительной скорости на плоскость, перпендикулярную оси переносного вращения . В рассматриваемом случае , поэтому . Направление ускорения получаем поворотом на вектора по направлению дуговой стрелки вокруг оси, проходящей через точку параллельно оси вращения стержня .
Выбираем оси координат и проецируем векторы, входящие в уравнение (а) на эти оси. Имеем:
- для
- для .
Из этих уравнений определяем неизвестные ускорения:
Ускорение получилось отрицательным. Следовательно, предположение о направлении его оказалось неверным. В действительности направлено против ранее принятого направления. Ускорение оказалось положительным. Предположение о направлении дуговой стрелки для подтвердилось. Угловое ускорение стержня определяем по формуле
Рис. 93
Составное (сложное) движение. Относительное и переносное движения
Абсолютным движением называют движение точки или системы точек по отношению к основной системе отсчета.
Абсолютное движение
Механическое движение выражается в изменении с течением времени взаимных положений тел (или частей тела). Такое изменение можно отметить только относительно других тел. Так, река течет вдоль берегов, биллиардный шар катится по биллиардному столу, пароход пересекает экватор. Реальные или условные тела (берега, биллиардный стол, экватор), по отношению к которым мы определяем положения других движущихся тел (воды, шара, парохода) и которые мы принимаем за системы отсчета, тоже не неподвижны. Так, системы отсчета, только что приведенные нами в виде примера, находятся на поверхности нашей планеты и вместе с ней вращаются вокруг земной оси, движутся вокруг Солнца и совершают множество других движений. Но и предметы, не связанные непосредственно с Землей, тоже не неподвижны—Солнце движется относительно звезд, которые движутся относительно друг друга.
Однако для целей механики далеко не всегда нужно иметь неподвижную систему отсчета. Так, например, если мы передвигаем какой-либо груз с носа корабля на корму, то нас может интересовать движение груза по палубе независимо от движения корабля. В подобных случаях в кинематике можно условно принять за неподвижную любую систему отсчета и назвать ее основной системой отсчета. Движение же точки (или системы точек) по отношению к основной системе отсчета называют абсолютным движением.
Относительным движением называют движение точки или системы точек по отношению к подвижной системе отсчета
Относительное движение
Встречаются случаи, когда приходится изучать движение (точки или тела) по отношению к системе отсчета, которая сама передвигается относительно другой системы, принятой за основную. При рассмотрении движения точки или тела по отношению к двум системам отсчета ту из этих систем, которая движется относительно основной системы отсчета, называют подвижной системой отсчета.
Так, например, перемещение корабля в море, измеренное при помощи лага, не учитывает снос корабля морским течением. Лагом измеряют движение корабля относительно воды. Можно представить себе подвижную систему координат, плывущую вместе с водой по течению, т. е. передвигающуюся относительно другой системы отсчета, принятой за основную. Движения корабля можно рассматривать по отношению к двум системам отсчета: по отношению к подвижной системе (связанной с водой) и к основной (связанной с материками, принимаемыми за неподвижные). Движение корабля по отношению к подвижной системе координат, измеряемое лагом, будем называть относительным движением корабля. Вообще относительным движением будем называть движение (точки, тела или системы точек) по отношению к подвижной системе отсчета. Относительное движение изучают обычно в тех случаях, когда приходится учитывать не только движение данного объекта по отношению к подвижной системе отсчета, но и движение самой системы отсчета.
Переносным движением называют движение подвижной системы отсчета по отношению к основной системе отсчета
Переносное движение
Так, в данном примере, чтобы знать движение корабля относительно берегов, надо кроме движения корабля относительно воды знать также и движение самой воды, т. е. движение подвижной системы отсчета относительно основной. Движение подвижной системы отсчета по отношению к основной системе отсчета называют переносным движением.
Во многих задачах кинематики переносным бывает движение среды, в которой находится тот объект, движение которого нужно изучить. В только что рассмотренном примере течение воды действительно переносит корабль. Еще один пример: человек идет по поезду. Движение поезда является переносным движением для человека, а движение человека относительно вагонов является относительным. Поезд переносит (в буквальном смысле слова) человека. Но иногда переносное движение не является движением среды, которая увлекает с собой данный объект. Например, рассматривая движение Земли вокруг ее оси и вокруг Солнца, мы можем первое из этих движений считать относительным, а второе — переносным, хотя нет такой среды, которая вращалась бы вокруг Солнца, увлекая с собой и Землю.
Составным движением называют абсолютное движение точки или системы точек, составляемое из их относительного и переносного движений
Составное движение
В первых двух примерах движение объекта (корабля, человека) состоит из двух движений, которые мы назвали относительным и переносным. В третьем примере Земля совершает движение, которое мы искусственно разложили на относительное и переносное. Часто, чтобы упростить изучение какого-либо сложного движения, это движение искусственно раскладывают на более простые, называя одно из них относительный!, другое—переносным. Независимо от того, состоит ли движение в действительности из относительного и переносного или же мы искусственно, для упрощения расчетов, считаем его состоящим из двух движений, мы будем называть сложным или составным движением абсолютное движение точки или системы точек, состоящее (или составляемое) из относительного движения по отношению к подвижной системе отсчета и переносного движения вместе с подвижной системой отсчета.
Если в cocтавном движении мы мысленно прекратим одно из составляющих движений, то получим второе составляющее движение. При решении некоторых задач бывает удобно пользоваться таким приемом:
- чтобы определить относительное движение, мысленно остановим переносное;
- чтобы определить переносное движение, мысленно остановим относительное.
Возвращаясь к первому из только что разобранных примеров, мысленно остановим морское течение; корабль будет двигаться относительно воды, но не будет относиться течением; останется только одно движение — относительное. Остановим теперь собственный ходкорабля, но предоставим воде продолжать свое течение, и корабль поплывет по течению; останется только одно движение корабля —переносное.
Также легко выделить относительное и переносное движения во втором примере. Остановим мысленно поезд, но предоставим человеку идги по вагону, и получим относительное движение человека; остановим мысленно человека в его движении по поезду, но не будем останавливать поезд, и найдем переносное движение человека.
Движение точки, тела или системы точек часто рассматривают как составное, мысленно раскладывая его на два или несколько движений более простых
Несколько сложнее третий пример (движение Земли)
Здесь нет движения среды, переносящей Землю, подобно морскому течению, переносящему корабль. Мы лишь мысленно приняли движение Земли за составное, искусственно разложили его на переносное и относительное, чтобы упростить его, чтобы более наглядно себе его представить и легче понять. Мы можем вообразить подвижную систему координат, связанную с Землей и движущуюся относительно основной системы, связанной с Солнцем и звездами, и считать, что движение Земли состоит из переносного и относительного. Поскольку движение земного шара (движение по отношению к основной системе) мы искусственно рас: сматриваем как составное, постольку от нас самих зависит, как разложить это движение на переносное и относительное. Мы можем считать, что подвижная система отсчета движется поступательно или вращательно. В зависимости от этого, конечно, изменится и относительное движение. Земля совершает оборота в год относительно поступательно движущихся осей (рис. 114, а) и на один оборот меньше относительно осей, вращающихся вокруг Солнца (рис. 114, б) и совершающих один оборот в год.
Рис. 114
Такой искусственный метод разложения движения на относительное и переносное широко применяют в различных областях механики. Л. Пуансо в предисловии ко второму изданию своей книги «Элементы статики» (1824) писал даже о невозможности представить наглядно движение тел иначе, как в виде одновременного перемещения и вращения.
Очень часто движение раскладывают не на два, а на большее число составляющих движений. Напомним, что мы уже так поступали, изучая движение точки как составное из трех прямолинейных движений, параллельных осям координат.
Теоремы параллелограмма скоростей и параллелограмма ускорений
Относительными скоростью и ускорением точки называют ее скорость и ускорение по отношению к подвижной системе отсчета
Относительные скорость и ускорение
Пусть некоторая точка M (рис. 115) движется относительно системы координат.x’Ey’z’. Если бы эту систему координат мы считали неподвижной, то движение, скорость и ускорение точки по отношению к этим координатам мы называли бы абсолютными. Но пусть система координатных осей x’Ey’z’ по условиям задачи движется относительно основной системы отсчета xОyz. В таком случае скорость и ускорение точки M относительно системы координат x’Ey’z’ называют относительными.
Рис. 115
Итак:
- относительной скоростью точки называют скорость точки по отношению к подвижной системе отсчета1;
- относительным ускорением точки называют ускорение точки по отношению к подвижной системе отсчета.
Мы будем обозначать относительную скорость буквой υ с индексом r (от латинского слова relativus—относительный). Относительное ускорение будем обозначать буквой а с тем же индексом r.
Для обозначения проекций относительных скорости и ускорения будем ставить рядом с индексом r второй индекс. Так, υrx есть проекция относительной скорости на ось Ox; arN—относительное нормальное ускорение.
Переносными скоростью и ускорением точки называют абсолютные скорость и ускорение той точки подвижной системы отсчета, с которой в данное мгновение совпадает движущаяся точка
Переносные скорость и ускорение
Чтобы определить переносное движение точки М, прекратим мысленно ее относительное движение, закрепив ее относительно координатных осей х’Еу’z’ в том положении, которое она занимает в данное мгновение. Таким образом, мы будем считать, что точка M неизменно скреплена с осями х’Еу’z’ , но оси продолжают двигаться относительно основной системы координат xOyz вместе с точкой М. Тогда скорость и ускорение точки M относительно основных осей координат явятся скоростью и ускорением точки M в ее переносном движении.
Итак:
- переносной скоростью точки M называют абсолютную скорость той точки подвижной системы отсчета, с которой в данное мгновение совпадает движущаяся точка М;
- переносным ускорением точки M называют абсолютное ускорение той точки подвижной системы отсчета, с которой в данное мгновение совпадает движущаяся точка М.
Мы будем обозначать переносную скорость точки буквой υ с индексом е (от французского слова entrainer—увлекать за собой), а переносное ускорение—буквой а с тем же индексом. Для обозначения проекций переносных скорости и ускорения на какую-либо ось будем ставить рядом с индексом е индекс, соответствующий оси.
Вектор абсолютной скорости равен сумме векторов относительной и переносной скоростей:
Параллелограмм скоростей
Ознакомившись с понятиями относительной и переносной скоростей точки, найдем зависимость между этими скоростями и абсолютной скоростью, т. е. скоростью точки по отношению к основной системе отсчета.
Пусть подвижная система координат x’Ey’z’ (рис. 116) движется поступательно. В таком случае оси Ex’, Ey’ и Ez’ будут оставаться параллельными своему начальному направлению. Для простоты выкладок пусть эти оси направлены параллельно осям основной системы координат. Тогда во все время движения будем иметь:
Ex’ ||Ox; Ey’||Oy; Ez’||Oz.
Рассмотрим сначала относительное движение точки M и для этого остановим мысленно движение подвижной системы отсчета.
Напишем уравнения движения точки M относительно подвижной системы отсчета:
x’ = x'(t). y’=y'(t), z’ = z'(t). (102)
Продифференцировав по времени и обозначая, как обычно, точкой производные по времени, найдем проекции относительной скорости на подвижные оси координат:
υrx’=x’; υry’=y’; υrz’ = r’.
Так как оси подвижной системы координат параллельны соответствующим осям основной системы, то проекции относительной скорости на оси Ex’, Ey’ и Ez’ соответственно равны проекциям на параллельные им оси Ox, Oy и Oz основной системы отсчета:
υrx=x’; υry = y’; υrz=z’.
Зная проекции относительной скорости, легко найдем по формулам (64) и (62) величину и направление полной относительной скорости.
Чтобы определить переносное движение, мысленно остановим движение точки относительно подвижной системы координат, но предоставим самой подвижной системе x’Ey’z’ продолжать движение.
Напишем по (77) уравнения переносного поступательного движения:
xЕ=x (t); yЕ = y(t), zЕ=z(t).
Продифференцировав равенства (77), получим проекции переносной скорости точки М, которые при поступательном движении системы равны проекциям скорости точки Е:
υex =xE; υey = yE, υez = zE.
Величину и направление вектора полной переносной скорости точки M легко найти по формулам (64) и (62).
Для определения абсолютной скорости точки M найдем сначала ее координаты х, у и г. Применив формулу преобразования начала координатных осей при сохранении направления осей, получим
х-=х’ + хE, y = y’ + yE, z = z, + zE.
Точка M находится в составном движении, следовательно, х, у и г изменяются с течением времени, причем первые члены правых частей этих равенств изменяются согласно (102), а вторые—согласно (77). Продифференцировав по времени, получим проекции абсолютной скорости точки М:
υx = x’+’xE, υy=y’ + yE, υz = z,+ zE
или
υx =υrχ+υeχ, υy =υry+ υey, υz = υrz +υez. (103)
Эти равенства показывают, что проекция абсолютной скорости на какую-либо ось равна сумме проекций относительной и переносной скоростей на ту же ось. Следовательно, вектор абсолютной скорости точки равен сумме векторов относительной скорости и переносной скорости той же точки:
(103‘ )
Поэтому доказанную теорему называют теоремой параллелограмма скоростей.
Равенства (103) и (103′) выражают связь между тремя скоростями (абсолютной, относительной и переносной) одной и той же точки и позволяют определить любую из этих скоростей, если известны две другие,Они доказаны в предположении, что переносное движение поступательное, но справедливы при всяком переносном движении, как это будет показано в § 31.
Из равенств (103) непосредственно получаем:
- проекция относительной скорости точки на какую-либо ось равна разности проекций абсолютной и переносной скоростей той же точки на ту же ось;
- проекция переносной скорости точки на какую-либо ось равна разности проекций абсолютной и относительной скоростей той же точки на ту же ось.
Из векторного равенства (103) получаем
Отсюда вытекает следующее правило: чтобы найти относительную скорость точки, надо сложить вектор абсолютной скорости точки с вектором, равным по модулю, но обратным по направлению вектору ее переносной скорости. Аналогично, чтобы найти переносную скорость точки, надо сложить вектор абсолютной скорости точки с вектором, равным по модулю, но обратным по направлению вектору ее относительной скорости.
Пример №3
Вертикально падают дождевые капли со скоростью 2 м/сек. Пешеход идет справа налево со скоростью 1,5 м/сек. Найти скорость дождя по отношению к пешеходу (рис. 117, а).
Решение. В данной задаче за основную систему отсчета примем Землю. Подвижная система отсчета связана с пешеходом. Вертикальная скорость дождя является абсолютной скоростью (υ = 2 м/сек); переносной скоростью υe является скорость подвижной системы отсчета, т. е. скорость человека, направленная влево и равная 1,5 м/сек. Чтобы найти вектор относительной скорости, сложим вектор абсолютной скорости (рис. 117,6) с вектором, который по величине равен переносной скорости, а по направлению противоположен ей, т. е. направлен слева направо:
Вектор относительной скорости составляет с вертикалью угол а, тангенс которого равен
Ответ. υr = 2,5 м/сек, α = 37°.
Пример №4
Корабль плывет на юг со скоростью 42,3 км/ч. Второй корабль идет курсом на юго-восток со скоростью 30 км/ч. Найти величину и направление скорости второго корабля, определяемую наблюдателем, находящимся на палубе первого корабля. При вычислении принять .
Решение. Задача аналогична предыдущей, но решать ее будем не в векторной, а в координатной форме, для чего перепишем (103) в следующем виде:
υrx=υx – υex, υry = υy– υey∙
Построим основную систему координат, связанную с Землей, направив ось Ox на юг, а ось Оу— на восток, (рис. 118). Подвижную систему отсчета свяжем с первым кораблем, так как относительно первого корабля надо определить скорость второго. Проекции абсолютной скорости второго корабля на оси основной системы таковы:
Переносным движением мы называем движение подвижной системы отсчета по отношению к основной. Поэтому в данной задаче переносной скоростью является скорость первого корабля. Ее проекции следующие:
Подставляя эти значения в написанные выше уравнения, найдем проекции относительной скорости:
По проекциям находим модуль:
и направляющие косинусы относительной скорости:
Следовательно, относительная скорость второго корабля составляет углы по 45о C положительным направлением оси Oy и с отрицательным направлением оси Ох, т. е. направлена на северо-восток.
Ответ, υr = 30 км/ч н направлена на северо-восток.
Пример №5
Ширина АВ реки (рис. 119,а) равна 900 м, и берега ее параллельны. Моторная лодка, выйдя из пункта В, держала курс перпендикулярно берегам и достигла противоположного берега через 5 мин, но не в пункте А, находящемся против В, а в пункте С, лежащем на 300 м ниже по течению. Во втором рейсе та же моторная лодка, выйдя из того же пункта В, взяла курс под углом О к BA (начальное направление на пункт D, лежащий на 300 м выше пункта А по течению) и сохраняла свое направление (угол δ), но подошла к правому берегу в пункте Е, лежащем ниже А.
Считая скорость лодки относительно воды постоянной и пренебрегая изменением течения воды у берегов, определить расстояние AE, скорость течения, скорость лодки относительно воды и скорости υ1 и υ2 лодки относительно беретов в обоих рейсах.
Решение. Возьмем начало основной системы координат в точке В, направив ось абсцисс перпендикулярно к берегу по BA, а ось ординат — вниз по течению реки (для решения задачи пользуемся формулами 103). Скорость лодки относительно этой системы является абсолютной. Подвижная система координат движется поступательно вместе с водой и скорость течения реки является переносной скоростью лодки.
Тогда, имея в виду, что АC = 300 м = DA, для первого рейса (рис. 119,6)
υ1 cos δ = υr, υ1 sin δ = υe
и для второго рейса (рис. 119, в)
υ2 cos δ’ =υr cos δ, υ2 sin δ, =υe—vr sin δ.
В первом рейсе лодка держала курс перпендикулярно берегам и в относительном движении проплыла 900 я за 5 мин = 300 сек. Следовательно, υr=3 м/сек.
За то же время ее снесло течением на 300 м, а потому υe=l м/сек.
Подставляя эти значения в уравнения, составленные для первого рейса, и деля второе из этих уравнений на первое, найдем
откуда
Из тех же уравнений найдем скорость лодки относительно берегов (т. е. абсолютную скорость) в первом рейсе:
Величина относительной скорости лодки, определенная по ‘данным первого рейса, не изменится и во втором, так как по условию задачи скорость лодки относительно воды постоянна. Также не изменится и переносная скорость лодки — скорость течения реки. Подставляя найденные значения в уравнения, составленные для второго рейса, получим
Из этих уравнении найдем: υ2 = 2,85 м/сек и sin δ’ = 0,018.
Умножая АB = 900 м на tg δ’, найдем AE.
Ответ. υe=l м/сек-, υr=3 м/сек-, υ1 = 3,16 м/сек;
v2 = 2,85 м/сек, АЕ=16 м.
Если переносное движение поступательное, то вектор абсолютного ускорения точки равен сумме векторов ее относительного и переносного ускорений
Параллелограмм ускорений
В отличие от теоремы параллелограмма скоростей, применимой при всяком переносном движении, аналогичная теорема параллелограмма ускорений справедлива только в том случае, если переносное движение поступательное.
Пусть точка совершает составное движение, причем подвижная система отсчета x’Ey’z’ движется поступательно по отношению к основной системе хОуz. Пусть соответствующие оси обеих координатных систем параллельны друг другу, это упростит доказательство.
Проекции относительной скорости точки нами уже определены. Продифференцировав эти равенства по времени, найдем проекции относительного ускорения точки:
arx = χ’; ary=y,; arz=z’.
Величину и направление полного относительного ускорения можно определить по формулам (66) и (67).
Продифференцировав по времени равенства (78), найдем проекции ускорения точки в переносном поступательном движении:
Величину и направление полного переносного ускорения можно определить по формулам (66) и (67), применимым для всякого ускорения точки, независимо от того, является это ускорение абсолютным, относительным или переносным.
Чтобы определить проекции абсолютного ускорения точки (в рассматриваемом случае переносного поступательного движения), надо продифференцировать по времени равенства (103). Получим
(104)
Из этих равенств видно, что если переносное движение поступательное, то проекция абсолютного ускорения точки на ось состоит из суммы проекций на ту же ось относительного и переносного ускорений точки. Следовательно, вектор абсолютного ускорения точки в этом случае равен геометрической сумме двух векторов—относительного и переносного ускорений:
(104′)
В этом заключается теорема параллелограмма ускорений.
Равенства (104) и (104′) выражают связь между абсолютным, относительным и переносным ускорениями точки в случае, если переносное движение поступательное, и позволяют определить какое-либо одно из этих ускорений по двум другим.
Если относительное и переносное движения заданы в естественной форме, то для определения ускорений приходится сначала определять их нормальную и касательную составляющие. Так, для определения относительного ускорения надо определить относительное касательное и относительное нормальное ускорения, а уж потом по формулам (75) и (76)—полное относительное ускорение. Аналогично для определения переносного ускорения определяют переносные касательное и нормальное ускорения, а затем полное переносное ускорение. Для получения полного абсолютного ускорения нужно взять геометрическую сумму полного относительного и полного переносного ускорений, которые составляют между собой, вообще говоря, угол, отличный от прямого.
Приводим схему разложения полного абсолютного ускорения точки для случая переносного поступательного движения. При решении задач на параллелограмм ускорений бывает полезно написать эту схему и заполнять ее справа налево:
Часто определяют абсолютное ускорение по его проекциям ах, ay, az на оси основной системы координат и, получив проекции результирующего вектора как алгебраические суммы проекций составляющих и , на те же оси:
(106)
Эти равенства являются лишь некоторым видоизменением равенств (104).
Если переносное движение не поступательное, то абсолютное ускорение точки состоит из суммы трех векторов: относительного ускорения, переносного ускорения и ускорения Кориолиса. Доказательство теоремы Кориолиса дано в § 31.
Пример №6
Кривошипио-кулнсный механизм приводного молота (рис. 120, а) состоит из прямолинейной поступательно движущейся кулисы АВ, в прорези которой скользит звено C (камень), соединенный шарнирно с кривошипом ОС длины e, вращающимся с постоянной угловой скоростью ω. Найти скорость и ускорение кулисы как функции угла поворота кривошипа.
Решение. Будем рассматривать движение камня C как составное, состоящее из относительного движения по прорези кулисы и переносного движения вместе с кулисой. Для решения воспользуемся формулами (103) и (104). Примем неподвижный шарнир О за начало основной системы координат, направив ось Ox вправо и ось Oy вверх (рис. 120,6). Подвижную систему координат неизменно соединим с кулисой, взяв начало в точке E и направив ось Ex’ по прорези вправо, a Ey’- вверх. Движение подвижной системы координат, как и движение кулисы, поступательное. Ось Ex’ передвигается к неподвижной оси Ох, а ось Ey’ скользит по оси Оу.
Абсолютное движение камня есть круговое поступательное движение по отношению к основной системе координат. Для определения абсолютных скорости и ускорения обратим внимание на то, что точка C (шарнир) принадлежит не только камню, но и кривошипу, а потому абсолютная скорость точки C равна ωr. (см. рис. 120, б), а ее проекции:
υx = ωr cos ωt и υy= ωr sin ωt.
Абсолютное ускорение точки C равно ω2r, а его проекции (рис. 120, в):
ах = — ω2r sin ωt и ay = ω2r cos ωt.
Эти равенства можно было бы получить, продифференцировав предыдущие.
Относительное движение камня — это возвратно-поступательное движение по прорези вправо и влево. Такое движение камня мы видели бы, если бы сами двигались вместе с кулисой, не замечая ее движения. Камень движется по горизонтальной оси Ex’, а потому
υrx= ± υr, υry = 0.
Проекции относительного ускорения:
αrx=±ar, αry = 0.
Переносное движение камня (движение подвижной системы отсчета относительно основной) —возвратно-поступательное движение кулисы вверх и вниз. Поэтому проекции переносных скорости и ускорения на вертикальную ось Oy равны модулям скорости и ускорения со знаком «-(-» или «—», а на горизонтальную ось Ох—равны нулю. Имеем
υex = 0, υey= ± υe и αex = 0, αey=± αe.
Из трех движений камня нас интересует переносное движение (движение кулисы). Определив проекции переносной скорости
υex = υx – υrx , υey= υy – υry
и подставив найденные значения, получим переносную скорость из уравнений
0 = ωr cos ωt — υr, υe = ωr sin ωt.
Таким образом, переносная скорость камня (скорость кулисы) определена.
Для определения переносного ускорения мы могли бы продифференцировать по времени выражение, полученное для переносной скорости (так как переносное движение прямолинейно-поступательное). Но мы применим более общий метод — определим из (104) проекции переносного ускорения:
αex = ax—arx, aey=ay – ary
подставим в эти уравнения найденные нами значения проекций переносного и абсолютного ускорений камня:
0 = — ω2r sin ωt-ar, ae = ω2r cos ωt.
Таким образом, переносное ускорение ае камня равно ω2r cos ωt. Оно же является ускорением кулисы.
Ответ. υ = ωr sιnωt; a = ω2r cos ωt.
Теорема сложения ускорений точки при переносном вращательном движении (теорема Кориолиса)
При составном движении точки в случае непоступательиого переносного движения возникает добавочное ускорение, называемое ускорением Кориолиса:
Величина ускорения Кориолиса
Теорема параллелограмма ускорений пригодна только в частном случае, если подвижная система отсчета движется поступательно. Если же переносное движение не поступательное, то у абсолютного ускорения появляется еще одна составляющая, называемая ускорением Кориолиса, или поворотным ускорением. Выведем формулы, позволяющие определить абсолютное ускорение при всяком составном движении точки.
Пусть точка M (рис. 121) движется относительно подвижной системы x’0y’z’ и это движение определяется какими-либо уравнениями
x’=x'(t), y’=y'(t), z’ = z’ (t).
Рис. 121
Пусть подвижная система отсчета вращается вокруг оси Oz основной системы согласно уравнению T==T (О-
Сохраним и в этом параграфе расположение осей координат (см. рис. 101, стр. 165), при котором оси Oz’ и Oz подвижной и неподвижной систем совпадают между собой и с осью вращения, а плоскость х’Оу’ находится в плоскости хОу. Тогда координаты точки M в основной системе определятся соотношениями
(107)
Эти равенства (107) отличаются от уже известных нам равенств (88) тем, что здесь координаты х’, у’ и z’ переменны, тогда как в равенствах (88) они были постоянны.
Если мы мысленно остановим точку M в ее относительном движении, т. е. будем считать ее координаты х’, у’ и z’ постоянными, но сохраним переносное вращение, то, дифференцируя равенства (88) по времени, найдем знакомые нам выражения (89) проекций вращательной скорости, которая в данном случае явится переносной скоростью точки М:
Дифференцируя вторично, найдем проекции переносного ускорения, которые выражаются также известными нам формулами (95):
Чтобы определить относительное движение, мысленно остановим переносное, т. е. будем считать постоянной, a’, x’, у’ и z’ — переменными. Дифференцируя при таких условиях (107) по времени, определим проекции относительной скорости:
Заметим попутно, что, возводя каждое из этих равенств в квадрат, складывая и извлекая квадратный корень, мы определили бы величину относительной скорости (рис. 122). Если же мы возведем в квадрат и сложим лишь два первых равенства, то, извлекая корень, мы получим, очевидно, величину проекции относительной скорости на плоскость хОу:
Напомним, что вектор угловой скорости направлен по оси вращения, а потому угол γr есть угол между векторами относительной и угловой скоростей, и последнее равенство можно записать так:
Это соотношение скоро нам понадобится.
Чтобы получить проекции относительного ускорения, надо продифференцировать по времени выражения, полученные для проекций относительной скорости, по-прежнему считая φ постоянной. Имеем
Чтобы определить проекции абсолютной скорости точки М, надо продифференцировать уравнения (107) по времени, считая все величины переменными. Имеем
или
(103)
Мы получили теорему параллелограмма скоростей, которая, следовательно, остается в силе и при вращательном переносном движении.
Чтобы определить проекции абсолютного ускорения, возьмем вторые производные, опять-таки считая все величины переменными. Имеем:
или
Таким образом, в выражениях проекций абсолютного ускорения, вдобавок к проекциям относительного и переносного ускорений, появляется еще одно слагаемое, выражающее проекции добавочного ускорения ac:
(108)
Это добавочное ускорение называют ускорением Кориолиса.
Определим величину ускорения Кориолиса:
или, заменив корень полученным выше значением, находим окончательно
(109)
Мы вывели формулу (109) в предположении, что переносное движение вращательное. Она остается без изменений и при всяком ином непоступательном переносном движении.
Итак, если переносное движение не поступательное, то абсолютное ускорение точки равно геометрической сумме трех составляющих: относительного ускорения, переносного ускорения и ускорения Кориолиса:
(110)
В случае, если переносное движение непоступательное, необходимо дополнить ускорением Кориолиса и схему (105), которая принимает следующий вид:
(110/)
Пользоваться этой схемой при решении задач надо так же, как и схемой (105), заполняя ее справа и геометрически складывая составляющие.
Ускорение Кориолиса существует только при составном движении, если переносное движение непоступательное
При каком движении бывает ускорение Кориолиса
В выражение (109) ускорения Кориолиса входят множителями относительная скорость точки, угловая скорость подвижной системы отсчета и синус угла между векторами этих скоростей. Но относительная скорость бывает только при составном движении. Поэтому и ускорение Кориолиса может быть только при составном движении. Если нет относительной скорости точки, т. е. если υr = 0, то не может быть и ускорения Кориолиса. Однако ускорение Кориолиса бывает не при всяком составном движении точки. Так, если переносное движение поступательное и ω = 0, то нет и ускорения Кориолиса. Из формулы (109) видно, что и в составном движении точки, и при переносном вращательном движении ускорение Кориолиса равно нулю, если относительная скорость параллельна оси вращения. Так, например, корабль, плывущий по меридиану, имеет ускорение Кориолиса, если рассматривать его движение как составное из относительного движения корабля и переносного движения Земли. Это ускорение равно удвоенному произведению скорости корабля на угловую скорость Земли и на синус географической широты (рис. 123) и равнялось нулю в то время, когда корабль пересекал экватор и его относительная скорость была параллельна вектору угловой скорости Земли.
Рис. 123
Физическая причина ускорения Кориолиса заключается в изменении вектора переносной скорости от относительного движения и вектора относительной скорости от переносного движения
Физическая причина ускорения Кориолиса
Постараемся уяснить физические причины, вызывающие ускорение Кориолиса, для чего представим себе два прямолинейных отрезка O1A1 и O2A2 (рис. 124), рис. 123 по которым движутся точки B1 и B2. Штрихами отмечены положения этих отрезков и точек через промежуток времени Δ t. Первый из отрезков движется поступательно, второй вращается вокруг O2.
Рис. 124
Существуют две физические причины ускорения Кориолиса:
1. Переносная скорость точки B1 не зависит от положения ее на отрезке O1A1, так как, по свойству поступательного движения, скорости всех точек прямой O1X1 между собой равны. Напротив, величина переносной скорости точки B2 равна ω.O2B2 и всецело зависит от ее положения. Переносная скорость точки B2 меняется от ее относительного движения. Чем быстрее движется точка B2 по прямой O2A2 и чем быстрее вращается эта прямая, тем значительнее изменяется переносная скорость точки B2. Таким образом, изменение скорости точки в данное мгновение (т. е. ускорение точки), вызванное указанной причиной, пропорционально величине агносительной и угловой скоростей. В этом заключается один из факторов, порождающих ускорение Кориолиса.
2. Направление относительной скорости точки B1 не меняется, так как, по свойству поступательного движения, прямая O1A1 передвигается параллельно самой себе. Напротив, направление относительной скорости точки B2 непрерывно изменяется по мере вращения O2А2. Даже при прямолинейном относительном движении направление относительной скорости изменяется (вследствие переносного вращения). Изменение вектора скорости точки в данное мгновение (ускорение), вызванное этой причиной, тоже пропорционально величине относительной и угловой скоростей, В этом заключается другой фактор, порождающий ускорение Кориолиса. Ускорение Кориолиса как бы поворачивает вектор относительной скорости в направлении переносного вращения. По этой причине его иногда называют поворотным ускорением.
Вектор ускорения Кориолиса перпендикулярен векторам угловой и относительной скоростей
Направление ускорения Кориолиса
При выводе формулы ускорения Кориолиса мы убедились, что проекция этого ускорения на Oz равна нулю. Отсюда следует, что вектор ускорения Кориолиса лежит в плоскости, перпендикулярной к оси вращения, или, иными словами, к вектору угловой скорости, который направлен по оси вращения Oz.
Уточним теперь направление ускорения Кориолиса в плоскости, перпендикулярной к осп вращения, и обозначим углы, составляемые им с осью Ox и Оу, через αc и βc. Направляющими косинусами являются:
Углы, составляемые относительной скоростью точки с теми же осями, обозначим через ar и βr:
Сравнивая направляющие косинусы ускорения Кориолиса с направляющими косинусами относительной скорости, находим, что удовлетворяется известное из аналитической геометрии условие перпендикулярности двух направлений—сумма произведений соответствующих направляющих косинусов равна нулю:
cos ac cos ar + cos βc cos βr = 0,
следовательно, ускорение Кориолиса перпендикулярно не только к угловой, но и к относительной скорости точки М.
Отсюда вытекает следующее правило: для определения направления ускорения Кориолиса надо спроецировать вектор относительной скорости на плоскость, перпендикулярную Oz (оси вращения), и затем повернуть эту проекцию вокруг оси вращения на 90° в сторону переносного вращения. Следовательно, если переносное вращение происходит в положительном направлении, то проекцию υrxy относительной скорости надо повернуть на 90° против хода стрелки часов, а если переносное вращение происходит в отрицательном направлении, то по ходу стрелки. Это определяется самой сущностью поворотного ускорения, поворачивающего вектор относительной скорости в направлении переносного вращения. К тому же результату мы пришли бы, сравнивая знаки направляющих косинусов ускорения Кориолиса и относительной скорости.
Таким образом, ускорение Кориолиса по величине и направлению можно выразить удвоенным векторным произведением угловой скорости и относительной скорости:
(109/)
Если относительное движение точки происходит в плоскости, перпендикулярной оси переносного вращения, то угол между векторами угловой и относительной скоростей равен 90°, его синус равен единице и выражение ускорения Кориолиса упрощается:
(109//)
В этом частном, но очень распространенном в технике случае для определения направления ускорения Кориолиса не нужно проецировать вектор относительной скорости точки, а достаточно повернуть его на 90° в плоскости движения точки в сторону переносного вращения. Поясним это следующей задачей.
Пример №7
Стержень OA вращается вокруг оси, перпендикулярной к плоскости чертежа (рис. 125) в точке О. Вдоль стержня движется ползун В. Указать направление ускорения Кориолиса.
Рис. 125
Решение. Ускорение Кориолиса всегда перпендикулярно к угловой скорости к оси вращения и к относительной скорости. Следовательно, ускорение Кориолиса лежит в плоскости чертежа и перпендикулярно к стержню. Четыре возможных случая изображены на рис. 125, а, б, в, г.
Пример №8
Прямая трубка (рис. 126) равномерно вращается с угловой скоростью ω = π рад/сек вокруг осн Oz, перпендикулярной к плоскости чертежа в точке О. Шарик M совершает гармонические колебания вдоль трубки по закону x’ = ОM = A sin πt. Определить ускорение шарика при t=4 сек.
Решение. Будем рассматривать движение шарика как составное, состоящее из движения относительно трубки и движения вместе с трубкой (рис. 126, а). Для решения задачи воспользуемся схемой (110′) (см. стр. 206).
Чтобы определить относительное движение, мысленно остановим переносное вращение трубки. Уравнение относительного движения шарика есть
x’=A sin πt.
Относительная скорость
υr =x’= Aπ2 cos πt.
В относительном движении шарик имеет касательное ускорение
arT =x’=- Aπ2 sin πt.
Относительное движение в данном случае прямолинейное, поэтому относительное нормальное ускорение αrN=0.
Переносное движение обусловлено вращением трубки. Мысленно остановим шарик, предоставив трубке вращаться. Напишем уравнение равномерного вращения трубки, положив φo = 0:
φ=πt.
Переносной скоростью шарика является вращательная скорость той точки среды (трубки), в которой в это мгновение находится шарик:
υe = ωr = Aπ sin πt,
причем в этом выражении время t соответствует тому мгновению, в которое мысленно остановлен шарик, а потому t здесь нельзя рассматривать как переменную величину.
Переносное вращение равномерное, и переносное касательное ускорение равно нулю:
aeT = εr = 0.
Переносное центростремительное ускорение
aeN = ω2r — Aπ2 sin πt,
где t имеет заданное значение, соответствующее данному мгновению, в которое мысленно остановлено относительное движение.
Кроме этих составляющих абсолютного ускорения, имеется ускорение Кориолиса, так как переносное движение вращательное:
ас = 2ωυr = 2Aπ2 cos πt.
Эти составляющие абсолютного ускорения вносим в схему (110′):
В мгновение t = 4 сек имеем:
Таким образом, абсолютное ускорение в это мгновение состоит из ускорения Кориолиса a = ac = 2Aπ2.
При t = 4 сек точка M совпадала с точкой О (x’ = A sin 4π = 0) и имела относительную скорость + Аπ, направленную в положительном направлении Ox’. Чтобы определить направление ускорения Кориолиса, надо повернуть вектор относительной скорости на 90° в сторону вращения трубки, т. е. против хода часовой стрелки.
При t = 4 сек угол поворота трубки φ = 4π и ось Ox’ совпадала с осью Ох. Следовательно, в это мгновение ускорение Кориолиса направлено по положительной оси Оу.
Если мы не станем рассматривать движение шарика как составное, а изучим его непосредственно по отношению к основной системе отсчета, то получим, разумеется, тот же результат.
Составим уравнения движения шарика в основной системе координат (рис. 126, б):
Дифференцируя эти уравнения по времени, найдем проекции скорости:
Дифференцируя по времени второй раз, найдем проекции ускорения:
При t = 4 сек
Мы получили те же значения ускорения точки, не пользуясь ускорением Кориолиса. Из этого примера видно, что ускорение Кориолиса бывает лишь при составном движении точки.
Для определения траектории шарика в основной системе отсчета исключим время из уравнений движения. Из второго уравнения находим , подставляем в первое уравнение и возводим в квадрат (рис. 126, в):
Это уравнение окружности с центром в точке x = 0, . Чтобы убедиться, достаточно перенести в эту точку начало основной системы , положив , тогда уравнение траектории примет вид:
Найдем уравнение движения шарика M по этой окружности:
dx = Аπ cos 2πt dt; dy = Аπ sin 2πt dt;
и, интегрируя,
s = Аπt + С = Аπt .
Следовательно, шарик движется по своей траектории равномерно со скоростью υ= Аπ; при t = 4 сек он находится в наинизшей точке окружности, а нормальное ускорение направлено вертикально вверх.
Резюмируя, убеждаемся, что движение шарика (как и движение всякого тела) можно представить различными способами и ускорение шарика в заданное мгновение (t = 4 сек) можно выразить различными формулами.
Можно представить его как составное, состоящее из колебаний шарика вдоль трубки и одновременного вращения трубки. Тогда ускорение 2Аπt2 шарика в заданное мгновение является ускорением Кориолиса.
Можно представить то же движение шарика уравнениями в декартовых координатах, а ускорение 2Аπt2— проекциями на оси координат.
Можно, наконец, это движение шарика определить как равномерное движение со скоростью υ = Аπ по окружности радиуса и ускорение 2Аπt2 представить как нормальное ускорение .
Различные способы лишь выражают объективно существующее движение и позволяют определить его характеристики.
Ответ. a = 2Аπt2.
Задача №1
Окружность радиуса г равномерно вращается по ходу стрелки часов с угловой скоростью ω вокруг оси, перпендикулярной к ней в одной из ее точек C (рис. 127, а). По окружности движется точка M со скоростью υr = ωr, обходя окружность против вращения часовой стрелки. Определить ускорение точки М.
Решение. Движение точки будем рассматривать как составное, состоящее из относительного равномерного движения по окружности и переносного равномерного вращения самой окружности.
Напишем схему (110′) и будем заполнять ее справа (см. стр. 208).
Чтобы определить относительное движение точки М, мысленно остановим вращение окружности. Относительная скорость равна υr = ωr и направлена по касательной к окружности. Относительное касательное ускорение αrT = 0, а относительное нормальное направлено к центру О окружности и равно
Чтобы определить переносное движение, мысленно закрепим точку M на окружности. Проведем хорду MC (рис. 127, б) и обозначим через δ угол, составляемый ею с диаметром, проходящим через С. Так как окружность вращается равномерно, то αeT = 0 и
αeN = ω2CM = ω22r cos δ
и направлено по хорде MC к точке С.
Величина ускорения Кориолиса в нашем случае равна
ac = 2ωυr-2ω2r.
Переносное вращение происходит по ходу стрелки часов, следовательно, для определения направления ускорения Кориолиса повернем вектор относительной скорости на 90° по ходу стрелки часов.
Рис. 127
Скорости и ускорения точки изображены на рис. 127, б, а ускорения записаны по схеме (110′):
Чтобы определить абсолютное ускорение точки М, надо сложить его составляющие. Сложив ускорение Кориолиса с противоположным ему по направлению нормальным относительным ускорением, найдем, что результирующий вектор этих двух ускорений равен ω2r и направлен в сторону ускорения Кориолиса:
2ω2r-ω2r = ω2r.
Чтобы сложить этот результирующий вектор с вектором переносного ускорения, воспользуемся теоремой косинусов (рис. 127, в). Имеем
a2 = (ω2r)2+ (2ω2r cos δ)2 — 2 (ω2r) (2ω2r cos δ) cos δ = (ω2r)2.
Как видно из чертежа (рис. 127, в), абсолютное ускорение направлено параллельно ОС независимо от угла δ, т. е. независимо от положения точки M на окружности. Иными словами, независимо от положения точки M на окружности вектор ее абсолютного ускорения равен вектору ускорения центра окружности в его движении вокруг оси С.
Ответ. a = ω2r.
Задача №2
В ручке молочного сепаратора по ее длине просверлен цилиндрический канал, закрытый с одной стороны металлической пластинкой (звонком) (рис. 128). В канале помещен металлический шарик. Если вращать ручку с недостаточной скоростью (менее 45 об/мин), то шарик ударится о звонок и даст соответствующий сигнал. Определить ускорение Кориолиса сигнального шарика, если ручка сепаратора наклонена к своей оси вращения под углом 75°, рабочий вращает ручку, делая 45 об/мин, а шарик движется по каналу по закону х’= 220 sin φ + 357e-φ мм.
Решение. Вектор угловой скорости ручки направлен по оси вращения, а относительная скорость шарика —вдоль канала, составляя с ним угол 75°. Ускорение Кориолиса определяем по формуле (105). Угловая скорость Синус 75° берем из таблиц или подсчитываем как sin (45°+30°) = 0,966.
Чтобы определить относительную скорость, надо продифференцировать по времени уравнение движения, в котором φ=ωt=1,5πt.
Рис. 128
Таким образом, имеем
αс = 2 • 1, 5π (330π cos φ—535πe – φ) 0,966.
Ответ. Ускорение Кориолиса равно 9420 cos φ—15300e-φ мм/сек2 и направлено перпендикулярно к ручке и к ее оси.
Сложное движение точки и тела
При решении задач, в которых рассматривается сложное движение точки или тела, необходимо уметь правильно расчленить сложное (составное), или так называемое абсолютное движение, на переносное и относительное.
При расчленении сложного движения рекомендуется учитывать следующее. Абсолютное (составное) движение происходит относительно неподвижной системы координат. Обычно эту систему координат связывают с Землей или с неподвижными относительно Земли предметами: зданием, деревом, полотном дороги и т. д.
Переносное движение точки или тела происходит вместе с некоторой материальной средой (телом), внутри или на поверхности которой находится рассматриваемое в задаче тело или рассматриваемая точка. Таким образом, переносное движение — это движение
материальной среды вместе с точкой также относительно неподвижной системы координат.
Относительное движение точки или тела — это перемещение их внутри материальной среды, или по ее поверхности, независящее от движения самой материальной среды.
В тех случаях когда заданы движения двух (или более) тел (точек) относительно неподвижной системы координат и необходимо определить движение одного из этих тел относительно другого, удобно пользоваться теми же приведенными выше соображениями.
Тело, относительно которого требуется рассмотреть движение, мысленно остановим, а неподвижную систему координат заставим двигаться по его закону, но в обратном направлении. Тогда для второго тела это движение станет переносным, а движение второго тела — относительным. После этого очень просто понять, как будет двигаться второе тело по отношению к первому.
Этот последний прием использован при решении задач 177-36 и 184-37 и обычно его используют при рассмотрении планетарных механизмов (см. ниже § 40-9).
Решение всех задач на сложное движение необходимо иллюстрировать рисунком.
Сложение движений точки, когда переносное и относительное движения направлены вдоль одной прямой
При изучении сложного движения точки будем рассматривать только перемещение и скорость.
Если переносное и относительное движения направлены вдоль одной прямой, то:
- перемещение точки в абсолютном движении равно алгебраической сумме перемещений в переносном и относительном движениях;
- скорость точки в абсолютном движении равна алгебраической сумме переносной и относительной скоростей.
Условимся направление переносного перемещения и соответственно направление переносной скорости считать положительными. Тогда относительное перемещение и соответственно относительная скорость будут также положительными, если они направлены в ту же сторону, что и переносное. Если же относительное перемещение (и скорость) имеют направление, противоположное переносному, то будем считать их отрицательными.
Таким образом, при совпадении направлений переносного и относительного движений
При противоположных друг другу направлениях переносного и относительного движений
Задача №3
Вниз по течению реки равномерно плывет лодка, приводимая в движение гребным винтом от мотора. Скорость течения реки 4 км/ч, скорость лодки, сообщаемая ей гребным винтом по отношению к воде, составляет 8 км/ч. Определить скорость лодки относительно берегов и расстояние, которое проходит лодка вдоль берегов за 20 мин.
Решение иллюстрировать рисунком, считая берега реки на данном участке прямолинейными и параллельными.
Решение.
1. Лодку принимаем за материальную точку, а водную массу реки —за материальную среду.
Движение лодки относительно берегов или, иначе говоря, движение лодки, наблюдаемое с берега, — это абсолютное движение.
Переносное движение лодки—ее перемещение вместе с рекой; скорость = 4 км/ч, которую сообщает лодке река, — ее переносная скорость.
Относительное движение— перемещение лодки по поверхности воды, создаваемое гребным винтом; скорость относительного движения = 8 км/ч.
2. Так как в данном случае переносное и относительное движения направлены в одну и ту же сторону, то скорость лодки относительно берегов (абсолютная скорость)
3. За время лодка вдоль берегов проходит расстояние
4. Иллюстрируем решение задачи следующим образом (рис. 211).
Изобразим на рисунке тот участок водного пространства, который проходит лодка независимо от того, перемещается этот участок воды или нет. За 20 лодка успевает пройти по этому пространству из положения в положение расстояние
За эти же 20 мин, или
показанное водное пространство
переместится на расстояние
Таким образом, лодка, находившаяся в начале рассматриваемого движения относительно берегов в точке через 20 сек оказывается в точке т. е. проходит расстояние
Следовательно, скорость абсолютного движения
Задача №4
Два автомобиля 1 и 2 движутся параллельно друг другу в одну и ту же сторону со скоростями (рис. 212, а). С какой скоростью второй автомобиль двигается относительно первого? Решение.
1. Ответ «по соображению» получается мгновенно: т. е. относительно первого второй автомобиль двигается со скоростью 20 км/ч, но в обратную сторону.
2. Объясним это решение с точки зрения теории сложного движения точки. Условно остановим первый автомобиль. Но тогда, чтобы не изменились условия движения, необходимо мысленно представить, что полотно дороги под вторым автомобилем и вместе с ним получает движение в обратную сторону со скоростью (рис. 212, б).
Находясь в условном переносном движении со скоростью второй автомобиль относительно дороги движется со скоростью
Поэтому результирующая обеих скоростей численно равна их разности:
Как видно на рис. 212, а, результирующая направлена в сторону, противоположную скорости
Задача №5
Расстояние s = 90 км между двумя пристанями, расположенными на роке, теплоход проходит без остановки в одном направлении (по течению) за = 3 ч и в обратном направлении (против течения) за= 5 ч. Определить скорость течения реки и собственную скорость теплохода.
Решение.
1. Теплоход, который принимаем за материальную точку, двигаясь по течению, имеет абсолютную скорость (скорость относительно берегов):
где — искомая собственная скорость теплохода (относительная скорость);
— скорость течения реки (переносная скорость).
При движении против течения абсолютная скорость теплохода
2. Движение теплохода по течению описывается уравнением (рис. 213, а)
Движение теплохода против течения происходит по уравнению (рис. 213, б)
2. Решаем полученную систему уравнения. Из (а) и (б)
Сложим правые и левые части этих уравнений:
Вычитаем из верхнего равенства нижнее:
Таким образом, собственная скорость теплохода составляет 24 км/ч и скорость течения реки равна 6 км/ч.
Следующую задачу рекомендуется решить самостоятельно.
Задача №6
Расстояние между двумя пристанями, расположенными на реке, теплоход, двигаясь равномерно без остановки, проходит по течению реки за а против течения (двигаясь в обратном направлении) — За какое время проплывает это же расстояние плот, передвигаемый только течением реки?
Задачу надо решить в общем виде, а потом подставить числовые значения.
Ответ.
Сложение движений точки, когда переносное и относительное движения направлены под углом друг к другу
Когда переносное и относительное движения направлены под углом друг к другу, то перемещения и скорости складываются геометрически.
Таким образом, абсолютная скорость точки определяется как геометрическая сумма переносной и относительной оог„ скоростей;
т. е. либо как диагональ параллелограмма, построенного на переносной и относительной скоростях (рис. 214, а), либо как замыкающий вектор треугольника скоростей (рис. 214, б).
При решении задач на определение скоростей наиболее удобно применять графо-аналитический способ (см. § 3-1 настоящего пособия).
Если применяется правило параллелограмма, то модуль абсолютной скорости определяется по формуле, выведенной из теоремы косинусов
Если применяется правило треугольника, то модуль абсолютной скорости определяется по теореме синусов.
Направление абсолютной скорости по отношению к можно найти также при помощи теоремы синусов.
В частном случае, когда параллелограмм скоростей превра шается в прямоугольник или когда треугольник скоростей получается прямоугольным, для решения задачи используются тригонометрические функции и теорема Пифагора (см. ниже задачи 181-37, 182-37, 185-37).
Бели в частном случае то при геометрическом сложении таких скоростей образуется ромб (рис. 215, а) или равнобедренный треугольник (рис. 215, б), тогда
Задача №7
Вертикально падающие капли дождя оставляют на боковых стеклах автомобиля полосы под углом к вертикали. Скорость движения автомобиля 40 км’ч. Определить, с какой скоростью надают капли дождя.
Решение.
1. Изобразим движение капли дождя на рисунке (рис. 216). Капли падают вертикально, следовательно, скорость ик какой-либо капли К относительно Земли является скоростью абсолютного (составного) движения. И эту скорость можно представить в виде геометрической суммы горизонтально направленной переносной скорости автомобиля — относительно скорости капли при ее движении по стеклу автомобиля.
2. Получившийся параллелограмм скоростей диагональ делит на два прямоугольных треугольника. Рассмотрев любой из этих треугольников, найдем
Переводим полученную скорость падения капель в м/сек:
Задача №8
От одного берега реки к другому плывет лодка, держа курс перпендикулярно к берегам. Ширина реки 800 м лодка достигает противоположного берега через 12 мин после начала переправы. За это время лодку сносит вниз по течению на расстояние 600 м. Определить скорость течения реки; собственную скорость лодки: скорость лодки относительно берегов. Скорость течения у берегов и на середине реки считать одинаковой.
Решение.
1. Изобразим на рисунке движение лодки (рис. 217). Представим, что лодка отплывает из точки А на правом берегу. Если бы
не было течения, она достигла бы противоположного берега в точке В; известно, что ширина реки Но лодку сносит вниз по течению (переносное движение) на расстояние 0,6 км и поэтому движение лодки относительно берегов (абсолютное движение) происходит но прямой АС.
Обозначим точкой L положение лодки через некоторое время после начала движения. Скорость лодки относительно берегов — абсолютная скорость — направлена вдоль прямой АС и складывается из собственной скорости сообщаемой гребным винтом или веслами, и из переносной скорости течения реки
2. Допустим, что нет течения реки, тогда лодка будет перемещаться относительно берегов так же, как и относительно воды, по прямой АВ и ее движение опишется уравнением
где t — время переправы (t=12 мин =0,2 ч).
Отсюда находим собственную скорость лодки (скорость лодки относительно воды — относительную скорость)
3. Если лодка будет плыть, подчиняясь только течению реки, ее движение опишется уравнением
Из этого уравнения найдем скорость течения реки:
4. Теперь из прямоугольного треугольника скоростей (см. рис. 217) легко найти скорость лодки относительно берегов — абсолютную скорость:
Задача №9
Трассы двух воздушных лайнеров пересекаются над поселком А. Первый лайнер летит точно на север, второй лайнер — на юго-восток. Скорости обоих лайнеров численно равны (). Определить, чему равна и как направлена в этот момент скорость второго лайнера относительно первого.
Решение 1—методом «остановки» одного из тел.
1. Обозначим точкой А поселок, над которым” в определенный момент находятся оба лайнера. Покажем страны света: С —север, Ю — юг, В —восток и 3 —запад. Изобразим скорости лайнеров относительно Земли: —скорость первого лайнера и — скорость второго (рис. 218, а).
2. Так как нужно определить скорость второго лайнера относительно первого, то мысленно первый лайнер остановим над пунктом А, а воздушной среде вместе со вторым лайнером сообщим скорость но в обратную сторону по отношению к скорости рис. 218, б). Тогда скорость второго лайнера приобретет значение относительной скорости (скорости относительно перемещающейся воздушной среды).
3. Сложив по правилу параллелограмма скорости (см. рис. 218, б), получим скорость ( изображающую скорость второго лайнера по отношению к первому.
4. Так как скорости лайнеров численно равны то параллелограмм скоростей на рис. 218, б — ромб и, следовательно [см. формулу (3) в начале этого параграфа], числовое значение равно:
Таким образом, второй лайнер движется относительно первого со скоростью, численно равной и, как видно из рис. 218, б, удаляется от него на юго-юго-запад, т. е. под углом 157°30′ (903 + 45° + 22‘30′) к направлению скорости первого лайнера.
* Когда будет определен этот угол, его нужно сравнить с углом между векторами из предыдущей задачи.
Решение 2 —методом разности скоростей.
1. Из выражения геометрической суммы скоростей
следует, что
2. Для определения скорости второго лайнера относительно первого примем за абсолютную скорость — скорость первого лайнера и за переносную скорость – скорость второго лайнера; тогда искомую относительную скорость получим как разность (см. рис. 3)
3. Чтобы произвести вычитания векторов, необходимо конец вычитаемого вектора соединить с концом уменьшаемого вектора в направлении от первого ко второму искомым вектором (рис. 218, в).
4. В результате построения имеем равнобедренный треугольник скоростейиз которого легко найти, что числовое значение
Угол определяющий в данный момент направление вектора относительно определяется непосредственно по рис. 218, в.
Задача №10
В кривошипно-кулисном механизме с поступательно движущейся кулисой ВС кривошип ОА (расположенный позади кулисы) длиной l= 400 мм вращается с постоянной угловой скоростью =10 рад/сек. Концом А, соединенным шарнирно с камнем, скользящим в прорези кулисы, кривошип сообщает кулисе ВС возвратно-поступательное движение. Определить скорость кулисы в момент, когда кривошип образует с осью кулисы угол (рис. 219, а).
Решение.
1. В данном случае движение точки А вместе с кривошипом можно считать сложным, т. е. получающимся в результате сложения:
а) движения точки А вместе с кулисой в ее возвратно-поступательном (переносном) движении вдоль оси х;
б) относительного движения точки А вместе с камнем, движущимся возвратно-поступательно в прорези кулисы в направлении, перпендикулярном к оси х.
2. Абсолютная скорость точки А, модуль которой легко определяется по формуле направлена перпендикулярно к кривошипу ОА. Переносная скорость точки А равна поступательной скорости кулисы направлена по прямой АО (рис. 219, б). Относительная скорость точки А, равная скорости камня в прорези кулисы, направлена по прямой Ас.
3. Изобразим скорость вектором, перпендикулярным к ОА. Разложим ее на составляющие уоти и как показано на рис. 219, б. Вектор изображает искомую скорость кулисы.
4. (как углы с взаимно перпендикулярными сторонами) и, следовательно,
Таким образом, в данный момент кулиса перемещается вниз со скоростью 2 м,сек.
Чтобы лучше проанализировать движение кулисы, необходимо знать, когда кулиса двигается ускоренно, когда замедленно, при каких положениях кривошипа кулиса имеет максимальную скорость и чему равна эта скорость, при каких положениях кривошипа скорость кулисы равна нулю?
Следующие задачи рекомендуется решить самостоятельно.
Задача №11
Кривошип 0С=30 см вращается равномерно с угловой скоростью и приводит в возвратно-поступательное движение кулису АВ при помощи ползуна С, передвигающегося в прорези кулисы. Определить скорость ползуна в прорези кулисы и скорость самой кулисы в тот момент, когда кривошип составляет с горизонталью угол а = 35° (рис. 220). Ответ.
Задача 187-37. Кривошип ОС = 20 см вращается равномерно с угловой скоростью n = 180 об/мин и приводит в движение качающуюся кулису АВ при помощи ползуна С, двигающегося в прорези кулисы. Определить скорость ползуна в прорези кулисы и угловую скорость кулисы в тот момент, когда кривошип составляет с вертикалью угол а=40°. Расстояние /40 = 40 см (рис. 221).
Ответ.
Сложное движение точки в плоскости
постановка задачи. Геометрическая фигура вращается вокруг оси, перпендикулярной ее плоскости по известному закону. В канале, расположенном на фигуре, движется точка М по закону Найти абсолютную скорость и абсолютное ускорение точки в заданный момент времени
План решения:
Сложное движение точки М представляется в виде суммы относительного и переносного. Характерной особенностью этой задачи является то, что траектории относительного, переносного и абсолютного движения лежат в одной плоскости. Ось z, на которую проектируются векторы переносной угловой скорости и переносного углового ускорения, перпендикулярна этой плоскости и направлена на наблюдателя. Угол поворота считается положительным, если со стороны оси он виден против часовой стрелки.
Искомые величины получаем из векторных равенств:
где — соответственно относительные и переносные скорости и ускорения: — ускорение Кориолиса .
1. Вычисляем значение дуговой координаты при и определяем положение точки в подвижной системе координат.
2. Дифференцируя по времени, находим относительную скорость (скорость точки относительно фигуры):
Кориолис Гаспар Гюстав (1792-1843) французский механик и математик.
Вектор направляем по касательной к относительной траектории в сторону увеличения, если и в обратную сторону в противном случае;
3. Вычисляем радиус траектории переносного движения — расстояние от точки М в положении до оси переносного вращения.
4. Находим переносную скорость где переносная угловая скорость
Вектор направляем перпендикулярно в сторону переносного вращения.
5. Определяем вектор абсолютной скорости, вычисляя компоненты векторной суммы (1) на произвольно выбранные оси, и модуль
6. Вычисляем относительное ускорение. В случае криволинейной относительной траектории
где
R — радиус кривизны относительной траектории в точке М. Для прямолинейной траектории относительного движения Вектор направляем по касательной к относительной траектории, вектор — к центру кривизны этой же кривой.
7. Вычисляем переносное ускорение:
Вектор направляем перпендикулярно , вектор — к оси переносного вращения (вдоль ).
8. Находим ускорение Кориолиса Так как в задачах этого типа вектор переносной угловой скорости перпендикулярен вектору относительной скорости, то
Направление вектора ускорения Кориолиса можно определить по правилу Жуковского поворотом на 90° вектора относительной скорости по направлению переносного вращения. В результате вектор ускорения Кориолиса в таких задачах будет лежать на одной прямой с при криволинейном относительном движении, а в случае прямолинейного относительного движения перпендикулярен относительной траектории.
9. Вычисляем абсолютное ускорение по формуле (2) в проекциях на оси координат. Модуль абсолютного ускорения
Задача №12
Прямоугольник ABCD вращается вокруг оси, проходящей через вершину А, по закон Ось вращения перпендикулярна плоскости прямоугольника (рис. 109). По круговому каналу радиуса R = 10 см с центром в точке С, расположенному на прямоугольнике, движется точка М. Дуговая координата точки меняется по закону Дано: АВ = 12 см, ВС = 15
Найти абсолютную скорость и абсолютное ускорение точки М при
Решение
Движение точки М представим в виде относительного движения по круговому каналу и переносного движения вместе с вращающимся прямоугольником.
1. Вычисляем значение дуговой координаты при
Жуковский Николай Егорович (1847-1921) русский ученый, основоположник гидроаэродинамики. Преподавал теоретическую механику в МГУ. Правило Жуковского для общего случая см. с. 204
Гл.9.Сложное движение точки
и определяем положение точки в подвижной системе координат. За время точка проходит по дуге окружности путь Центральный угол, соответствующий этой дуге, Изображаем точку в этом положении (рис.110).
2. Дифференцируя по времени, находим относительную скорость. Находим ее значение при t = 1с:
Вектор направлен по касательной к окружности.
3. Вычисляем радиус траектории переносного движения
4. Находим переносную скорость Переносной скоростью точки является скорость точки прямоугольника, совпадающей в данный момент с М .Угловая скорость фигуры, при t =1с,
Отсюда
5. Определяем вектор абсолютной скорости по формуле (1). Модуль абсолютной скорости находим, проецируя
это равенство на неподвижные оси координат х, у (можно воспользоваться также теоремой косинусов):
Тригонометрические функции угла вычисляем по формулам
Модуль абсолютной скорости
Иногда переносная скорость обозначается (от французского слова emporter), реже (от английского слова transport), а относительная — (от английского слова relativ). Эти же индексы используются и для других компонентов сложного движения.
6. Вычисляем относительное ускорение. Ускорение точки, движущейся относительно прямоугольника по окружности, имеет нормальную и тангенциальную составляющую:
Модуль относительного ускорения
Вектор ускорения направляем по радиусу окружности к точке — по касательной, в сторону увеличения дуги КМ, так как (рис.11)
7. Вычисляем переносное ускорение Траектория переносного движения точки — окружность радиуса с центром А. Прямоугольник вращается с угловой скоростью и угловым ускорением
Отсюда получаем
Вектор направлен против часовой стрелки перпендикулярно радиусу Вектор — к центру А. Модуль переносного ускорения
8. Находим ускорение Кориолиса . Модуль вектора ускорения определяем по формуле где — угол междуВектор перпендикулярен плоскости чертежа, следовательно, угол равен 90°. Имеем
Направление вектора ускорения Кориолиса получаем по правилу Жуковского — поворотом на 90° вектора относительной скорости
Это ускорение называют иногда поворотным, а в англоязычной литературе — supplementary (дополнительным).
по направлению переносного вращения, т.е. против часовой стрелки (рис. 112).
9. Вычисляем абсолютное ускорение по формуле (2) в проекциях на оси координат (рис. 111):
Находим модуль ускорения:
Ответы заносим в таблицу. Радиус траектории переносного движения — в см, скорости — в см/с, ускорения — в
Сложное движение точки в пространстве
Постановка Задачи. Геометрическая фигура вращается по заданному закону вокруг неподвижной оси, лежащей в ее плоскости. По каналу, расположенному на фигуре, движется точка М по известному закону Найти абсолютную скорость и абсолютное ускорение точки.
План решения:
Искомые величины получаем из векторных равенств
где — соответственно относительные и переносные скорости и ускорения; — ускорение Кориолиса. Решение задачи о сложном движении точки в пространстве отличается от аналогичной задачи, где точка движется в плоскости (с. 195) тем, что векторные суммы для абсолютных величин вычисляются по трем компонентам, а ускорение Кориолиса содержит синус угла между вектором переносной угловой скорости и относительной скоростью. Относительная скорость в этих задачах всегда перпендикулярна переносной, что упрощает вычисление модуля их суммы.
1. Вычисляем значение дуговой координаты при и определяем положение точки в подвижной системе координат.
2. Дифференцируя по времени, находим величину относительной скорости Вектор направляем по касательной к относительной траектории в сторону увеличения если и в обратную сторону в противном случае;
3. Вычисляем радиус траектории переносного движения — расстояние от точки М в расчетном положении до оси переносного вращения.
4. Находим модуль переносной скорости где переносная угловая скорость Вектор располагается в плоскости перпендикулярной оси вращения и направлен перпендикулярно в сторону переносного вращения.
5. Определяем величину абсолютной скорости
6. Вычисляем относительное ускорение. В случае криволинейной относительной траектории
где — радиус кривизны относительной траектории в точке М. Для прямолинейной траектории относительного движения Вектор направляем по касательной к относительной траектории, вектор — к центру кривизны этой же кривой.
7. Вычисляем переносное ускорение:
Вектор направляем перпендикулярно вектор — к оси переносного вращения (вдоль ).
8. Величину вектора ускорения Кориолиса определяем по формуле
Направление вектора ускорения Кориолиса можно определить по правилу Н.Е. Жуковского поворотом на 90° проекции вектора относительной скорости на плоскость, перпендикулярную по направлению переносного вращения.
9. Вычисляем абсолютное ускорение по формуле (2) в проекциях на оси координат. Ось направляем по оси вращения. Модуль абсолютного ускорения
- Заказать решение задач по теоретической механике
Задача №13
Прямоугольник ABCD вращается вокруг неподвижной оси, проходящей по стороне DC (рис. 113). По круговому каналу радиуса R = 12 см с центром в точке О, расположенному на прямоугольнике, движется точка М по законуНайти абсолютную скорость и абсолютное ускорение точки при
Решение
1. Вычисляем значение дуговой координаты при и определяем положение точки в подвижной системе координат:
Находим центральный угол, соответствующий дуге ВМ:
Изображаем точку в этом положении (рис. 114).
9.2.Сложное движение точки в пространстве
2. Дифференцируя по времени, находим относительную скорость:
3. Траекторией переносного движения является окружность с центром N. Относительна скорость точки М направлена по касательной к этой окружности. Траектория лежит в плоскости ху, перпендикулярной к оси вращения Находим радиус окружности:
4. Находим переносную скорость. Вычисляем угловую скорость вращения прямоугольника ABCD:
Вычисляем переносную скорость
5. Определяем величину абсолютной скорости. Вектор лежит в плоскости направлен по оси х, следовательно, они перпендикулярны. Модуль скорости
6. Вычисляем относительное ускорение. Находим нормальную составляющую ускорения точки, движущейся по окружности радиуса R:
Тангенциальная составляющая
Оба вектора лежат в плоскости (рис.115.),
7. Вычисляем компоненты переносного ускорения. Прямоугольник вращается с угловой скоростью и угловым ускорением
Получаем
Вектор направлен по оси х, вектор — к оси вращения вдоль оси у.
8. Величину вектора ускорения Кориолиса определяем по формуле Вектор всегда направлен по оси вращения в ту сторону, откуда вращение видно против часовой стрелки. В нашем случае — вверх.
Угол между равен 150°. Определяем
Для того, чтобы найти направление вектора ускорения Кориолиса, воспользуемся правилом Жуковского (рис. 116). Проецируем вектор относительной скорости на плоскость перпендикулярную оси вращения, т.е. на плоскость ху. Повернув проекцию по направлению переносного вращения на 90°, получаем направление вектора ускорения Кориолиса. Вектор лежит на оси х и направлен в сторону отрицательных значений.
9. Вычисляем абсолютное ускорение по формуле (2) в проекциях на оси координат:
Окончательно, абсолютное ускорение точки М
Ответы заносим в таблицу. Радиус траектории переносного движения — в см, скорости — в см/с, ускорения — в
Движение точки по звену механизма
Постановка Задачи. Плоский шарнирно-стержневой механизм приводится в движение кривошипом, который вращается с заданной угловой скоростью. Вдоль одного из стержней по известному закону движется тючка М. Найти абсолютную скорость и абсолютное ускорение точки М.
План решения:
Представляем движение точки в виде суммы относительного движения по звену механизма и переносного движения вместе со звеном.
1. Вводим неподвижную систему координат ху, совмещая се начало с положением одного из шарниров механизма в заданный момент времени. Вдоль стержня, по которому движется точка, располагаем подвижную ось направляя ее в сторону движения точки. Зная закон относительного движения (он задан в условии), определяем положение точки относительно звена и неподвижных осей ху в расчетный момент. Определяем координаты х и у шарниров.
2. Дифференцируя по времени, находим проекции относительной скорости и относительного ускорения на ось и:
Зная угол между осями находим проекции векторов на оси ху.
3. Решаем задачу о скоростях точек многозвенного механизма, используя аналитические методы (§ 8.3, с. 179, § 8.5, с. 188). Вычисляем вектор скорости той точки механизма, в которой в данный момент находится подвижная точка М. Эта скорость является переносной скоростью для точки М.
4. Определяем вектор абсолютной скорости, и его модуль,
5. Решаем задачу об ускорениях точек многозвенного механизма, используя аналитические методы (§ 8.4, с. 183, § 8.5, с. 188). Вычисляем вектор ускорения той точки механизма, в которой в данный момент находится подвижная точка М. Это ускорение является переносным для точки М.
6. Находим ускорение Кориолиса:
где — вектор угловой скорости звена, по которому движется точка.
7. Находим абсолютное ускорение, и его модуль:
Задача №14
Плоский шарнирно-стержневой механизм ОABC приводится в движение кривошипом OA =60 см, который вращается с постоянной угловой скоростью Вдоль стержня АВ движется точка М по закону
Положение механизма при с указано на рис. 117; АВ =120 см, ВС =80 см, Найти абсолютную скорость и абсолютное ускорение точки М в этот момент.
Решение
Абсолютное движение точки представляем в виде суммы относительного движения по звену АВ и переносного движения вместе с ним. Переносные скорость и ускорение являются соответственно скоростью и ускорением той точки звена, в которой в данный момент располагается точка М.
1. Вводим неподвижную систему координат ху, совмещая ее начало с положением шарнира А механизма в заданный момент времени. Вдоль стержня АВ, по которому движется точка, располагаем подвижную ось направляя ее в сторону движения точки (рис. 118). Зная закон относительного движенияопределяем положение точки относительно звена при t = 2 с: т.е. точка находится в центре звена АВ. Определяем координаты шарниров в неподвижных осях координат:
Проекция угловой скорости на ось перпендикулярную плоскости чертежа, следовательно, кривошип вращается против часовой стрелки.
2. Дифференцируя по времени, находим проекции относительной скорости и относительного ускорения на ось
Угол между осями равен Находим проекции:
3. Решаем задачу о скоростях точек многозвенного механизма, используя уравнения трех угловых скоростей (§ 8.3, с. 179):
где по условию Решаем систему двух уравнений относительно Подставляя численные значения, получаем Скорость определяем из
равенства
Переписываем это равенство в виде
Получаем
Модуль переносной скорости
4. Определяем проекции.
и модуль абсолютной скорости:
5. Решаем задачу об ускорениях точек многозвенного механизма, используя уравнения трех угловых ускорений (уравнение (2), с. 184), где
Находим Вычисляем вектор ускорения той точки механизма, в которой в данный момент находится подвижная точка М. Это ускорение является переносным для точки М. Учитывая, что записываем векторное равенство
Раскрывая векторные произведения по аналогии с (1), вычисляем
Это ускорение является переносным для точки М:
Модуль переносного ускорения
6. Находим ускорение Кориолиса — вектор угловой скорости звена АВ, по которому движется точка:
Вычисляем
Модуль ускорения Кориолиса
7. Вычисляем абсолютное ускорение
и его модуль
Результаты заносим в таблицу. Скорости в м/с, ускорения — в угловая скорость — в рад/с, угловое ускорение — в
Механизм с муфтой
Постановка Задами. Плоский механизм с одной степенью свободы состоит из шарнирно соединенных стержней и муфты, скользящей по направляющему стержню и шарнирно закрепленной на другом стержне или на неподвижном шарнире. Задана угловая скорость ведущего звена механизма. Найти скорость муфты относительно направляющего стержня.
План решения:
1. Представляем движение муфты М в виде суммы относительного движения по направляющему стержню механизма и переносного движения вместе с этим стержнем. Траекторией относительного движения муфты является прямая. Задачу решаем, используя координатную запись векторных соотношений для скоростей при плоском движении. Выбираем систему координат и определяем координаты всех шарниров механизма и муфты.
2. Мысленно снимаем муфту с механизма и находим скорости шарниров и угловые скорости звеньев получившегося механизма (§ 8.1, с. 158, § 8.3, с. 179, § 8.5, с. 188).
3. Записываем уравнение сложения скоростей: где абсолютная скорость или относительная скорость выражается через скорости шарниров механизма. Составляем уравнение
Это векторное уравнение содержит две неизвестные величины. Одна из них — искомый модуль вектора относительной скорости Направление этого вектора всегда известно и задается направлением стержня, по которому скользит муфта . В зависимости от варианта задачи второй неизвестной может быть угловая скорость или где N и К — точки механизма с известными скоростями.
Если муфта скользит по стержню КМ, угловая скорость которого известна, то неизвестной величиной будет угловая скорость звена, шарнирно соединяющего муфту с неподвижной точкой или с шарниром N механизма с известной скоростью.
Если муфта шарнирно закреплена на стержне NM с известной угловой скоростью то неизвестной величиной будет угловая скорость звена, по которому скользит муфта, где точка К неподвижна или является шарниром с известной скоростью.
Если муфта закреплена на неподвижном шарнире, то абсолютная скорость равна нулю
3. Решаем векторное уравнение (1). Определяем
Задача №15
Плоский механизм с одной степенью свободы состоит из шарнирно соединенных стержней и муфты D, скользящей по направляющему стержню (кривошипу) OA. Муфта шарнирно закреплена на стержне BD. Кривошип вращается против часовой стрелки с постоянной угловой скоростью Даны длины: OA = 40 см, АВ = 111 см, ВС = 43 см, ОС = 62 см. Найти скорость муфты относительно направляющего стержня в тот момент, когда а муфта находится на середине кривошипа: OD = ОА/2 (рис. 119).
Направляющий стержень.
Решение
1. Представляем движение муфты М в виде суммы относительного движения по направляющему стержню OA и переносного движения вместе с .этим стержнем. Выбираем систему координат и определяем координаты всех шарниров механизма и муфты. Помещаем начато координат в точку С (рис. 120) и вычисляем координаты:
Координаты точки В найдем из системы уравнений
Система имеет два решения (задача о точках пересечения двух окружностей с радиусами АВ и ВС). Выбираем то решение, у которого
Нелинейную систему уравнений удобно решать на компьютере, например, в системе Maple V. Программа решения имеет вид
Числа заносятся в десятичной форме: АВ: =111.0 и т.д.
2. Мысленно снимаем муфту с механизма (рис. 120) и находим скорости шарниров и угловые скорости звеньев получившегося механизма. Записываем уравнения трех угловых скоростей четырехзвенника ОABC (§8.3, с. 179):
При
Получаем решение: Зная находим
Компоненты скорости имеют следующие значения:
3. Записываем уравнение сложения скоростей где абсолютная скорость выражается через известную скорость шарнира В. Составляем векторное уравнение
Это уравнение содержит две неизвестные величины. Одна из них — искомый модуль вектора относительной скорости Направление этого вектора известно и задается направлением стержня OA, по которому скользит муфта. Вторая неизвестная — угловая скорость Подставляем численные значения. Уравнение (2) принимает вид
где — проекция относительной скорости муфты на ось, направленную от О к А. Находим решение системы: Таким образом, в указанный момент муфта движется по стержню OA вверх со скоростью
Замечание. Эту задачу можно решить по крайней мере ещё двумя способами. Во-первых, методами аналитической геометрии можно найти расстояние от шарнира О до муфты D как функцию времени. Дифференцируя найдем относительную скорость. Во-вторых, можно найти скорость стержня OA относительно муфты. Подвижная система координат будет связана с муфтой. В этом случае абсолютная скорость точки стержня OA под муфтой — это скорость точки тела при вращательном движении с угловой скоростью переносная — скорость муфты, выраженная через скорость шарнира В.
Замечание. В ответах, помимо искомой относительной скорости, даны промежуточные результаты — скорости точек А, Б и D. Причем в вариантах 1,2,7,8 — это скорость той точки направляющего стержня, в которой в этот момент находится муфта.
- Сложение движение твердого тела
- Кинематика сплошной среды
- Аксиомы классической механики
- Дифференциальные уравнения движения материальной точки
- Мгновенный центр скоростей
- Мгновенный центр ускорений
- Мгновенный центр вращения
- Вращение твердого тела вокруг неподвижной точки
Уравнения
движения являются одновременно
уравнениями траектории точки в
параметрической форме. Для получения
уравнения траектории из уравнений
движения необходимо исключить параметр
t
:
sin
(t
) =
;
cos
(t
) =
. (1)
Если
обе части каждого равенства возвести
в квадрат и сложить, то получим уравнение
эллипса:
–
= 1. (2)
Горизонтальная
полуось эллипса =
2 м, вертикальная полуось эллипса b
= 4 м, а координаты его центра
= 3 м; =
0. Траекторию точки строим в масштабе
на рисунке (рисунок 3).
4.2.2 Определение положения точки на траектории
Для
определения положения точки на траектории
в уравнения ее координат подставляем
соответствующее время.
В
начальный момент времени при t
= 0 из этих уравнений получим:
=
3 м , =
4 м.
В
заданный момент времени при =
1 c:
=
2 sin
+ 3 = 4,4 м ;
=
4 cos
= 2,8 м.
По
вычисленным координатам показываем
положения точек ,
на
траектории (рисунок 3).
3.3.2.3 Определение скорости и ускорения точки
Скорость
и ускорение точки найдем по их проекциям
на оси координат
;
;
(3)
;
.
(4)
Тогда
начальный момент времени при t
= 0 получим:
м/с;;
=
1,57 м/с .;м/;
.
Рисунок 3
В
заданный момент времени при
: ; ;
;
; ;
.
Выбираем
масштаб скорости и ускорения и строим
векторы скорости и ускорения и их
проекции для точек
(рисунок 46). Величину выбранного масштаба
необходимо указать на рисунке.
4.2.4 Определение касательного, нормального ускорения точки
и радиуса кривизны траектории
При
движении точки по криволинейной
траектории ускорение точки можно
выразить через проекции на естественные
оси: касательную и нормаль ,
где
– касательное ускорение точки
;
(5)
–
нормальное ускорение ;
(6)
где
–
радиус кривизны траектории.
Нормальное
ускорение можно вычислить, зная полное
ускорение точки и его касательную
составляющую
.
(7)
Подставляем
в формулы (3.17), (3.18), (3.19) значения величин,
найденных для соответствующих моментов
времени. В начальный момент времени при
:
; ;
.
В
заданный момент времени при :
;
;
.
В
выбранном масштабе ускорений показываем
проекции ускорения точек
на естественные оси координат (рисунок
46), что позволяет осуществить проверку
решения.
На
графике необходимо иметь соблюдение
условия:
.
-
Пример решения
задачи К2
Механизм
состоит из ступенчатых колес 1 и 2,
связанных между собой ременной передачей,
колеса 2 и 3 находятся в зацеплении,
колесо 1 находится в зацеплении с зубчатой
рейкой 4, груз 5 находится на конце нити,
намотанной на шкив 3 радиуса
(рисунок 4).
Определить
скорости точек В и С, ускорение груза
5, ускорение точки А и угловое ускорение
колеса 2 в момент времени t
= 2 c,
если заданы закон движения рейки
и
размеры колес
Решение
1. Рейка 4 совершает поступательное движение по закону
Определим
скорость движения рейки .
При
Ускорение
рейки найдем из соотношения .
Знак
ускорения не совпадает со знаком
скорости, следовательно, рейка движется
замедленно.
2.
Точка К, лежащая на ободе колеса ,
движется со скоростью,
равной скорости
рейки, находящейся в зацеплении с
колесом, т.е.
Учитывая,
что ,
определим угловую скорость колеса 1:
.
При
.
Определим
угловое ускорение колеса 1: .
Ускорение точки
А ступенчатого колеса 1найдем из
выражения :
,
Скорость точки С, лежащей на ободе
колеса 3 радиуса ,
находим по формуле: .
5.Ускорение
груза 5 равно касательному ускорению
точки N
колеса 3:
.
6.
Найденные параметры движения точек и
звеньев механизма изображаем на рисунке
(рисунок 4).
где
.
.
.
Рисунок 4
3.
Колеса радиусов
и
связаны бесконечным ремнем. При отсутствии
проскальзывания скорости всех точек
ремня одинаковы, т.е.
а
угловые скорости и угловые ускорения
валов 1 и 2 обратно пропорциональны
радиусам колес:
, тогда
;
Скорость точки В,
лежащей на ободе колеса 2, рассчитываем
по формуле
.
4.
Колеса радиусов
и
находятся в зацеплении друг с другом,
поэтому угловую скорость и угловое
ускорение колеса 3 найдем из соотношений:
;
.
Изучением движения тела в пространстве занимается большой раздел в физике — кинематика. Причём причины, заставляющие объект двигаться, исследует динамика. Путь, который проходит физическая точка, называют траекторией тела. Уравнение, описывающее этот процесс, зависит от направления, заданного действием, вызывающим изменение её положения. Форма же перемещения определяется выбранной системой координат и местом начального отсчёта.
Общие сведения
Под движением тела понимают процесс его перемещения из одной точки пространства в другую. Произошедшее действие исследуют относительно другого объекта или выбранных начальных координат. При этом положение вовсе не обязательно может изменяться сразу ко всем окружающим его телам. Например, стоящий человек на Земле находится в состоянии покоя по отношению к планете, но движется относительно Солнца.
В физике принято любое изменение определять в системе пространственных координат. За оси принимают перпендикулярные линии x, y, z. Совокупность данных, используемых для изучения движения, называют системой отсчёта.
Существует несколько видов механического перемещения (во времени) физической точки:
- равномерное и равноускоренно прямолинейное;
- по дуге;
- гармоническое колебание.
При движении тело проходит определённый путь. Описать его можно виртуальной линией, при этом она может быть как прямой, так и кривой. Именно она и называется траекторией движения. По сути, эта линия соединяет последовательно все положения точки в пространстве — от начальной до конечной. Длина отрезка является пройденным путём и считается векторной величиной.
Изменение радиус-вектора r (значения, задающего положение точки в пространстве относительно другого тела) описывает кинематический закон: r = r (t). В трёхмерных декартовых координатах его можно записать так: r = xe + ye + ze = (x, y, z). Вектор, построенный из начальной точки движущегося тела в расположение её в данный момент времени, то есть приращение радиус-вектора за определённый промежуток t, как раз и называют перемещением.
Результирующее движение же равно векторной сумме последовательных изменений положения. При прямолинейном перемещении вектор пути совпадает с соответствующим участком траектории, а модуль перестановки равняется пройденному расстоянию.
Время, за которое тело пройдёт по установленной траектории пути, называют скоростью. Фактически это быстрота изменения координаты. Физики, исследуя передвижение, изучают не только положение материальной точки в начальный и конечный момент времени, но и закон, по которому происходит перемещение. Другими словами, они определяют зависимость радиус-вектора от времени.
Горизонтальное перемещение
Пусть имеется тело, брошенное горизонтально поверхности. Высота падения равняется h, а начальная скорость V0. Здесь систему отсчёта удобно связать с Землёй. Объект будет передвигаться под действием силы тяжести. Остальными силами, например, сопротивлением воздуха, можно пренебречь. Тело перемещается в плоскости, содержащей вектора ускорения и свободного падения (g).
Таким образом, система начальных условий будет выглядеть так: x (t = 0) = 0; y (t = 0) = 0; v0x = v0; voy = 0. Вектор ускорения постоянный, поэтому a = g. Если тело представить как совокупность материальных точек, движущихся по одинаковому пути, то путь можно определить как сумму перемещений по прямым. Уравнение скорости примет вид: v (t) = v0 + gt. Об изменении положения можно сказать, что оно выполняется с постоянной скоростью и ускорением в горизонтальной плоскости, являясь равномерным. Значит, проекцию на оси ординаты и абсциссы можно записать как vx = v0; vy = -gt.
Скорость перемещения рассчитывают по формуле: V = √(V 2 x + V2 y). После подстановки полученных ранее выражений равенство примет вид: V = √(V 2 0 + g 2 t 2). Отсюда следует, что уравнение для вектора движения материальной точки будет: s (t) = s0 + V0t + (g t 2) / 2, где: s0 — смещение тела, соответствующее начальному моменту времени.
Так как s0 = y (t = 0) = h0, то скалярные выражения для координат изменяющей положение частицы можно представить в виде системы: x = V0t; y = h0 — (gt2 / 2). Перемещение происходит по прямой как отдельное движение в двух плоскостях, при этом из формулы следует, что изменение положения будет соответствовать правой половине направленной вниз параболы. Учитывая то, что время можно определить из отношения икса к начальной скорости (t = x /V0), можно записать окончательную формулу для вычисления траектории движения тела: y = h0 — (gx2) / (22V0) .
Можно сделать вывод, что уравнение траектории не записывается через время, поэтому частица будет и перемещаться обратно по той же самой траектории. Временные отрезки между точками пути будут одинаковы как при прямом, так и при обратном движении.
Каждому положению соответствует определённое значение скорости, которое не зависит от направления перемещения. Нужно отметить, что наибольшей величиной в горизонтальной траектории полёта будет начальная точка.
Движение тела под углом
Свободное падение является частным случаем равноускоренного, то есть на перемещаемый объект действует только сила притяжения. Если физическая точка перемещается, то кривая, которая описывается её радиус-вектором, обозначает пройденный путь. Эту траекторию можно описать некоторой математической функцией.
Итак, вектор скорости точки определяется как производная по времени: V = dr / dt = r. Ускорение же можно найти, продифференцировав скорость: a = dV / dt = d 2 r / dt. Если обозначить производную времени точкой, то формулу можно переписать так: a = V = r.
Для того чтобы вывести формулу, нужно воспользоваться основными выражениями, определяющими проекции:
- ускорения: ax = 0, ay = — g, az = 0;
- радиус-вектора: rx (t) = V0 * cosat, ry (t) = v * sin (at — (g * t2)/2)), rz (t) = 0;
- скорости: vx (t) = V0 * cosa, vy (t) = V0 * sin (a — gt), vz (t) = 0.
Чтобы запись зависимости вертикальной оси от горизонтальной была как можно более компактной, соответствующие координаты rx и ry можно обозначить через икс и игрек. Из уравнения, связывающего координатную ось X и время, можно определить t как функцию ординаты. Линейное выражение будет иметь вид: t = x / (Vo * cosa).
Если полученную формулу для времени подставить в уравнение для игрек координаты, то вместо временного параметра появится икс. То есть можно будет вывести зависимость абсциссы от ординаты: y = V 0 * sinat — (g * t2) / 2 = (tga) * x — (g / 2 * V0 * cos2a) * x2. Значение t нужно подставить в каждое слагаемое, но при этом учесть, что отношение синуса к косинусу называют тангенсом. Альфа в формуле — это угол между направлением начальной скорости и горизонтальным направлением (угол броска). После исключения времени из этих уравнений получим уравнение траектории.
В итоге останется два слагаемых. Первое будет линейно по иксу, а второе квадратично. Таким образом, зависимость игрека от икса в уравнении траектории — это парабола (справа стоит квадратичная функция). Она проходит через начало координат. Если верно равенство x = 0, то игрек тоже будет равняться нулю.
Следует обратить внимание на то, что в квадрате стоит отрицательный коэффициент. Известно, что если перед квадратичным слагаемым в уравнении параболы стоит отрицательное число, то концы кривой будут направлены вниз.
Решение задач
Решение практических заданий лучше всего помогает закрепить полученные знания. Существуют физические сборники, которые интересны тем, что включают в себя различные примеры, приближенные к реалистичным задачам. Прорешивая их самостоятельно, ученик не только лучше разберётся в теме, но и научится применять полученные знания на практике.
Вот два таких задания:
Таким образом, чтобы успешно решать задачи, нужно знать несколько основных формул для определения местоположения тела, а также то, как выглядят уравнения параболы и прямой.
Стоит отметить, что существующие онлайн-калькуляторы не умеют вычислять формулы, описывающие траекторию пути. Но вместе с тем их можно использовать для выполнения расчётов или как справочники.
Предыдущая
ФизикаЗависимость силы тока от напряжения – формула, график и законы
Следующая
ФизикаФормула тонкой линзы – свойства, применение и расчеты