Хоть деление круга на несколько равных частей входит в школьную программу, но со временем основы забываются. А строителям, сантехникам, жестянщикам и другим представителям рабочих специальностей эти знания необходимы. Рассмотрим, как разделить круг на 3, 6 и 12 частей.
Диаметр круга не имеет значения. Если нужен очень большой размер – вместо циркуля используют веревку и карандаш.
Деление на 3 части
Шаг 1 из 7
Чертим произвольный круг.
Шаг 2 из 7
Радиус окружности делит ее на 6 равных частей. Поэтому выбираем любую позицию на периметре круга, устанавливаем острие циркуля и находим с двух сторон от нее точки, расстояние до которых равно радиусу.
Шаг 3 из 7
Затем грифель оставляем на одной из этих точек, а острие перемещаем на такую же длину.
Шаг 4 из 7
С этой позиции определяем следующую точку.
Шаг 5 из 7
На окружности получится 3 засечки.
Шаг 6 из 7
Соединяем засечки с центральной точкой фигуры.
Шаг 7 из 7
Каждая из трех частей имеет внутренний угол 120°.
Деление на 6 частей
Шаг 1 из 3
Для деления на 6 частей делаем засечки на окружности, не через одну позицию, а последовательно.
Шаг 2 из 3
Получаем 6 точек на окружности.
Шаг 3 из 3
Соединяем точки с центром и параллельной засечкой и получаем 6 частей.
Деление на 12 частей: 1 способ
Шаг 1 из 6
Чтобы разбить на 12 есть, как минимум, 2 способа. Первый способ – расчеты проводятся из круга, деленного на 6 частей.
Для этого из двух ближайших точек окружности проводим 2 дуги за пределы фигуры, навстречу друг другу.
Шаг 2 из 6
Точку пересечения дуг соединяем с центральной точкой окружности.
Шаг 3 из 6
Так мы делим 1/6 на 2 части.
Шаг 4 из 6
Циркулем измеряем длину получившегося сегмента.
Шаг 5 из 6
Эту длину откладываем на других частях.
Шаг 6 из 6
Затем новые засечки соединяем прямыми с центром, получаем деление на 12 частей.
Деление на 12 частей: 2 способ
Шаг 1 из 2
Второй способ – рисуем 2 перпендикулярные прямые через центр окружности, тем самым делим ее на 4 сегмента.
Шаг 2 из 2
От каждой точки пересечения прямой и окружности в 2 стороны отмеряем расстояние, равное радиусу, намечаем. Так мы получаем снова 12 частей.
“Сначала радиусом разбить окружность на 6 частей” – да, можно… но только если этот радиус известен 🙂 Но так бывает не всегда. Вот представьте, что есть ПРОСТО КРУГ, а не круг с уже отмеченным центром. Тогда для начала надо этот центр найти. Как нужно поступать в таком случае: нужно вспомнить школьную геометрию. Два радиуса и хорда образуют равнобедренный треугльник, а в таком треугольнике высота, опущенное на основание, делит его пополам и ему до кучи перпендикулярно. Так что отмечсем на окружности, образующий наш круг, три произвольные точки, и одну из них соединяем с двумя другими. Получится две хорды. Теперь делим эти хорды пополам и к каждой проводим перпендикуляр к середине – это можно сделать циркулем и линейкой, стандартная школьная задачка. Точка пересечения перпендикуляров как раз и даст центр круга. Вот теперь уже можно разбить окружность радиусом на 6 частей… автор вопроса выбрал этот ответ лучшим Booster 5 лет назад Хочу предложить самый простой, как мне кажется вариант. Рисуем окружность, вырезаем или вычерчиваем равносторонний треугольник, который своими углами вписывается ровно в окружность, вписываем его в окружность, при помощи транспортира делим каждый угол пополам. Получится по 30 градусов деление каждого угла и ведем линии в центру треугольника, пока они не встретятся в одной точке. А эти три линии, которые “располовинили” углы треугольника и поделят окружность на три совершенно равные части. Выглядит это вот так: Элементарно: Сначала радиусом разбить окружность на 6 частей Объединив 1/6 по 2 получить 3 части по 1/3. Чтобы поделить круг на три равные части нам понадобится циркуль и транспортир. Вспоминаем, что полный оборот окружности вокруг оси своей будет равняться 360 градусов. Наша задача три равные части. Соответственно если 360 поделить на три получится 120. Это будет угол одной трети. Теперь откладываем на нашей окружности угол трижды по 120 градусов. Потом соединяем все точкой в центре. Таким образом получается наши искомые три части. Кстати такое задание нередко задают в геометрии, и справится с этим достаточно просто. Второй вариант еще проще, в круге рисуем треугольник у которого все стороны равны и так же получим в итоге три части. Go Green 4 года назад Разделить окружность или круг на три равных части можно различными способами, например, сделав простой рассчет градусов окружности – их 360 и треть составляет 120 градусов, можно воспользоваться транспартиром и проведя через центр круга отрезок, отмерить от него 120 градусов, провести еще одину линию по отметке через центр и повторить оперцию еще один раз. Можно также разделить круг на три части с помощью циркуля, проведя окружность такого же радиуса через центр, точки пересечения будут отметками искомых частей, а третья будет расположена на пересечении перпендикулярного радиуса с гранью круга, как на картинке внизу: Совсем несложно это сделать: через центр круга О проводим линию АВ (диаметр); в любую из этих точек ставим циркуль (например точку В) и проводим окружность через центр круга; из центра круга проводим линии к точкам пересечения окружностей C и D – эти линии разделят окружность на три ровные части. Если у вас нет центра и вы не знаете как его находить, тогда вам сюда Как найти середину круга? – там все расписано поэтапно и с рисунками. Ксарфакс 6 лет назад Для того, чтобы разделить круг на 3 равные части, необходимо: 1) Отметить радиус OB и диаметр AB. 2) С помощью циркуля провести окружность, её центр должен совпадать с точкой B. Хотя достаточно провести лишь дугу, чтобы она пересекла наш круг. 3) Окружность должна пересечь окружность в 2 точках – C и D. 4) Проводим отрезки OC и OD от этих точек к центру окружности. Тем самым, мы поделим фигуру на 3 равные части. MMM DANONE 4 года назад Для того чтобы поделить круг на три части, нужно проделать немного манипуляций. Я бы порекомендовала использовать вариант с транспортиром и циркулем. Полный оборот круга это 360 градусов. Одна треть – это 120 градусов, а значит отложите три раза угол 120 градусов и пометьте их точкой. Когда соединим точки на окружности с центром, получим три равные части: Элементарно, Ватсон! А вообще, круг можно поделить и на 6, и на 9, и на 5, и на еще множество частей. Mirror9 4 года назад На самом деле это предельно просто можно сделать. Единственное что вам пригодиться, это линейка и транспортир. Благодаря не сложным математическим вычислениям вы можем рассчитать градус и поделить круг на разные части. Делается это следующим образом: в кругу мы знаем, что 360 градусов, если разделить на три, то получаем 120, Вот и берем транспортир, отмечаем эти стороны и линейкой чертим прямую, которая и разграничит эти три части. moreljuba 5 лет назад Для начала на вашей окружности необходимо необходимо провести радиус. Далее отмерьте диаметр – это будет половина радиуса (ОВ). А теперь из точки В просто проведите окружность с таким же диаметром и точки пересечения С и D отметьте на окружности. А затем проведите СO и ОD – таким образом вы и разделите окружность на три равные части: АОС – АОD – DОВ. Чтобы разбить круг на три равномерные куска потребуется:
Также можно вписать равномерный треугольник и точки пересечения будут началом разметки до центра круга. Дементий28 4 года назад разделить круг на три равные части до безобразия просто, я не предлагаю никаких формул , уравнений, и прочего , нам понадобятся обычные часы – кварцевые либо механические, главное наличие табло разделенного на 12 равных секторов. Далее на самих часах делаем пометки перманентным маркером (метить надо по канту часов чтобы положив часы экраном вниз видно было эти пометки) через каждые 4 секторы, И вот мы положили наши часы таблом вниз на лист бумаги с нарисованным кругом , переносим метки с часов на бумагу и вуаля – круг идеально разделен на 3 равные части Знаете ответ? |
Деление круга на равные части
Статья содержит два калькулятора, рассчитывающие параметры деления круга на равные по площади части радиусами и параллельными хордами
Ниже представлены два калькулятора, рассчитывающие параметры разделения круга на равные части. Сначала – традиционный калькулятор, который делит круг на равные части радиусами (примерно так, как режут пиццу или торт), под ним – нетрадиционный калькулятор, который делит круг на равные по площади части параллельными хордами. Оба калькулятора визуализируют результат рисунком. Методы расчета с формулами для обоих калькуляторов приведены ниже, под калькуляторами.
Деление круга на равные по площади части радиусами
Деление круга на равные по площади части параллельными хордами
Деление круга на равные части радиусами
Традиционный и очень простой метод деления круга – по факту, нарезка равных секторов. Метод и формулы очень просты:
- Определяем угловой размер каждого сектора в радианах, путем деления 360 градусов на нужное число секторов.
- Определяем размер дуги сектора, перемножая радиус на угол в радианах
- Определяем размер хорды по теореме косинусов (хорда является основанием равнобедренного треугольника с боковыми сторонами R и противолежащим углом альфа.
Собственно и всё – мы получили все характеристики для N равных секторов
Деление круга на равные части параллельными хордами
Этот способ более любопытен, чем предыдущий. Для простоты будем рассматривать верхнюю половину круга, так как с нижней все будет симметрично.
Задача состоит в определении x-вой координаты точек, через которые нужно проводить хорды (на рисунке это точки x1 и x2). Выведем для начала формулу площади куска, отсекаемого хордой слева.
Верхнюю полуокружность можно представить графиком функции y=f(x), где x – это координата вдоль оси абсцисс, а y – это функция, численно равная y координате соответствующей точки верхней полуокружности.
По теореме Пифагора получаем следующую функцию
Чтобы получить площадь фигуры, отсекаемой хордой слева, надо проинтегрировать эту функцию от -R до x. Первообразная функции равна:
Осталось определиться с константой. Нам надо, чтобы в точке с координатами -R площадь была равна нулю. Подставив -R вместо x в формулу выше, получаем
Итак, полное выражение
Теперь рассмотрим нахождение координат крайней левой точки. Нам известна площадь, которую она должна отсечь (напоминаю, речь идет о полуокружности)
Таким образом мы можем приравнять
Что дает нам такое финальное уравнение
Данное уравнение является трансцендентным, а поэтому находить координату первой точки придется численным методом, например, методом бисекции или методом Ньютона. Калькулятор использует метод Ньютона.
Вторая и последующие точки находится аналогично, путем изменения размера отсекаемой площади. Для второй точки это будет , для третьей и так далее.
Зная координаты точек, несложно рассчитать все остальные параметры, в частности, длину хорды.
Математика
Закажи карту Tinkoff Junior сейчас и получи 200 ₽ на счет
С этой картой можно накопить на мечту, жми ⇒
План урока:
Здравствуйте, ребята. Меня зовут Игрек, я самый умный фиксик.
На уроке вы узнаете новые математические понятия.
Приготовьте тетрадь, ручку, простой карандаш, линейку, циркуль.
Понятие доли
Вы когда-нибудь заглядывали в тетради к старшеклассникам? Смотрите, какой у меня пример.
Видите сложение, вычитание, умножение? Знаки этих действий известны: плюс, минус, точка. Деление же в примере обозначено горизонтальной чертой.На рисунке она выделена красным цветом. Я расскажу, когда в математике используют черту.
Мы умеем делить несколько предметов, но часто деление нужно, чтобы раздробить одно число на равные части — доли от целой величины.
Один разделить на два — это одна вторая. Что же это такое?
В жизни вы часто так делали. Например, один апельсин делили с другом: брали нож и разрезали его пополам.
Каждый из вас получал половину или одну долю.
На лесной полянке собралось девять друзей, апельсин делили на всех. Рассмотрите рисунок. Как называется каждая часть фрукта?
Совершенно верно, это долька. Апельсин поделили на 9 одинаковых долек.Каждая 1 долька апельсина — это одна из девяти равных долей целого фрукта.
Вы теперь поняли, ребята, что в жизни человеку приходится не только пересчитывать предметы, но и делить (дробить) целое на части, вот так появилось в математике понятие доли и дроби.
Знак доли (дроби) обозначают дробной горизонтальной или наклонной чертой. Например, так — 1/9 (одна девятая). Запись придумали арабы в 16 веке.
Доли называют по количеству частей раздробленного одного предмета:
- Разделите, например, яблоко на две равные части, у вас получится название доли «половина» или 1/2 (одна вторая)
- Разрежьте яблоко на три части. Один кусок — это «треть» — 1/3 (одна третья)
- Разломите на четыре доли — «четверть» — 1/4 (одна четвертая)
Знание о долях помогает решить задачи.
Запомните правило по математике нахождения доли.Чтобы найти долю от числа надо число разделить на эту долю. В дроби число, на которое делят, записано под чертой и называется знаменателем. То число, которое надо разделить, пишут над чертой. Это числитель.
Задание 1
Найдите пятую долю от числа 25. Это значит, что надо выполнить действие деления.
Привычный пример 25 : 5 можно записать вот таким образом:
Или так — 25/5. 25 – это числитель, а 5 — знаменатель.
Ответ: одна пятая доля от числа 25 равна пяти.
Задание 2
Чему равна 1/4 доля от полоски длинной 16 см?
Полоску согните пополам, ещё раз пополам. Разверните. На сколько долей линией сгиба разделили полоску? Правильно, на 4.
Закрасьте одну такую долю.
Какую долю вы закрасили? (одну четвёртую)
Ответ: длина одной четвертой доли полоски составляет 4 см.
Задание 3
Решите задачи на понятие доли. Рассмотрите рисунки. Какая доля каждой фигуры закрашена серым цветом?
Рассуждаем так.
На рисунке 1 отрезок разделили на 7 частей.Значит, закрашена одна седьмая (1/7) доля фигуры.
Проверьте:
На следующих рисунках заштрихована 1/16 доля квадрата, 1/6 доля шестиугольника, 1/5 доля круга.
Чтобы разобрать понятие массовой доли, представьте себе килограмм яблок (1000 г), который мама купила своим трем детям.
Из этого килограмма самому младшему ребенку досталась половина всех яблок (несправедливо, конечно!). Старшему — лишь 200 г, а среднему — 300 г.
Значит, массовая доля яблок у младшего ребенка составит половину, или одну вторую (1/2) массовую долю.
У старшего ребенка будет:
1000 : 200 = 5 — одна пятая (1/5) массовая доля
Далее рассуждаем так:
Младшему ребенку дали половину яблок.
Яблоки разделили между детьми по 500г, 200г и 300г. Вы знаете, что 500 — это 5 сотен, 200 — 2 сотни, 300 — 3 сотни.
На сколько сотен разделили все яблоки?
5 сотен + 2 сотни + 3 сотни = 10 сотен.
Сколько граммов будет в одной десятой доле?
1000 : 10 = 100 (г) в одной десятой доле
У среднего ребенка 300 г. Во сколько раз больше, чем 100 г?
В три раза. Значит, у среднего ребенка будет не одна, а три десятых массовых долей 3/10.
Ребята, вы молодцы. Верное решение.
Окружность. Круг
А сейчас познакомимся с самой совершенной фигурой, как считал древнегреческий математик Пифагор. Ответьте на вопрос: «Какие известные вам геометрические плоские фигуры не содержат углов?»
Правильно, круги, а еще окружности.
Совершенная форма этой геометрической фигуры привлекает внимание художников, дизайнеров, архитекторов. Они используют её в своих изделиях для украшения.
Ограда на набережной реки Невы в Санкт-Петербурге
Назовите предметы из обычной жизни, которые по форме похожи на эти фигуры.Правильно, круглые очки. Вы очень внимательные ребята.
Посмотрите на рисунок. Назовите окружности и круги.
Проверьте себя:
Но как начертить такие ровные окружности? Приглашаю на помощь лучшего друга.
Знакомьтесь, ребята, к нам пришел новый житель страны Геометрии – чертежный инструмент. Он поможет разобраться, как изобразить круг.
Привет, я циркуль. Мое имя произошло от старинного латинского слова «циркулюс», что означает круг.
Давайте потренируемся чертить циркулем:
- В тетради или альбоме поставьте точку карандашом. Это центр окружности.
- Аккуратно раздвиньте «ножки» циркуля, например, на 30 мм. Измерьте расстояние между грифелем и иголкой по линейке.
- Крепко воткните иголку циркуля в центр, а другой «ножкой», вращая головку циркуля большим, указательным и средним пальцем, начертите грифелем замкнутую линию.
Линию, нарисованную грифелем циркуля, называют окружностью.
Точки на окружности А и В расположены от центра на равном расстоянии. Их соединяет отрезки ОА и ОВ – называются радиусами окружности.
Продлите по линейке отрезок ВО поперек всей окружности. Вы начертили диаметр окружности— отрезок ВС. Он прошел через центр и соединил 2 точки на окружности В и С.
Как вы думаете, сколько диаметров можно провести в одной окружности?
Совершенно верно — сколько угодно, как говорят математики — бесконечное число.
Посмотрите на колесо от велосипеда.
Втулка — это центр, а спицы напоминают радиусы и диаметры.
Если величину диаметра умножить на 3, мы получим примерную длину окружности. Точную формулу вычисления вы узнаете в 7 классе на уроках геометрии, а также, что такое вписанная и описанная окружности.
А сейчас возьмите альбомный лист, начертите окружность и по этой границе аккуратно вырежьте фигуру. Её можно закрасить любым цветом, например, синим, как на рисунке. Это круг — часть плоскости, ограниченная окружностью.
У круга есть площадь. Окружность вырезать невозможно, потому что это просто замкнутая кривая линия вокруг круга — его граница.
Решите задачу
На клетчатой бумаге нарисован круг, площадь которого равна 40. Найдите площадь закрашенной части фигуры.
Рассуждайте так: на рисунке закрашена четвертая доля фигуры. Значит надо выполнить деление.
Ответ: площадь равна 10
Диаметр круга
Нарисуйте две окружности с радиусом 3 см. Фигуру справа закрасьте желтым карандашом. Получится круг.В обеих фигурах проведите диаметры и радиусы.
Измерьте диаметр окружности и диаметр круга. Сколько у вас получилось?
Правильно, 6 см. Радиус круга равен 3 см. Он два раза помещается в диаметре, значит это половина или одна вторая доля от целого.
Радиус круга равен половине или 1/2 диаметра.
Путем несложных математических вычислений можно понять, что диаметр в 2 раза больше радиуса.
Решите задачу
Третьеклассник вырезал круг радиусом 50 мм. Сколько сантиметров в его диаметре?
Решение:
Ответ: диаметр круга равен 10 см.
Вы хорошо справились.
Нам пора провести зарядку для глаз, чтобы сберечь зрение.
Физкультминутка
- Зажмурьтесь, потом откройте глаза шире. Лоб остается гладким без морщин. Повторите упражнение три раза.
- Теперь подойдите к окну, посмотрите вдаль. Внимательно вглядитесь, потом попытайтесь увидеть кончик носа. Получилось? Тогда повторяйте упражнение четыре раза. Не спешите.
- Медленно делайте круговые движения снизу вверх, направо, вниз, влево глазами, как будто вращаете большое колесо, 2 раза в одну сторону. Теперь обратно. Не двигайте головой, следите только глазами.
- Найдите взглядом верхний правый угол комнаты, хлопните в ладоши, опустите взор на кончик носа.Смотрите вверхний левый угол, далее на кончик носа. Повторите пять раз.
- Прикройте глаза, 10 секунд постойте спокойно, ровно неглубоко подышите.
Ребята, я тоже люблю укреплять здоровье. Вчера пошел на хоккейную площадку. Но вместо игры попросили начертить круги больших диаметров, чтобы обновить разметку поля.
Задача 1
Как начертить без циркуля круг для вбрасывания шайбы диаметром 300 мм?
Решение:
Радиус круга равен половине диаметра.
Возьмите гвоздь, карандаш, нитку длиной 15 см. Начертите окружность как показано на рисунке.
Задача 2
Из центра поля нужно нарисовать круг синей краской диаметром 9 метров.
Рассуждаем: диаметр круга 9 м, значит радиус — половина.
900 : 2 = 450 (см) = 4 м 50 см.
На центральную точку встает друг Гвоздик, крепко держит конец веревки, а к другому концу нужно закрепить кисть с краской. Фиксик Игрек на коньках едет вокруг Гвоздика, рисует линию окружности. Главное — туго натягивать веревку, чтобы радиус в 450 см не уменьшался. Вот такая разметка получается в центре хоккейной площадки:
После работы пора поиграть в хоккей.
Похожим способом можно начертить 7 окружностей больших диаметров на картоне для новогодней елки. Посмотрите на рисунок, какая красавица получается.
Поделку делайте вместе с родителями. Для больших кругов возьмите карандаш, гвоздик и нитку. Маленькие — нарисуйте циркулем. Понадобится начертить всего 11 окружностей для десяти обручей елки.
Задача 3
Диаметр первого нижнего круга елки равен 80 см, а каждого следующего уменьшается на 8 см. Найдите, чему равны диаметры следующих кругов.
Какой диаметр маленького круга наверху у елки?
Для решения задачи вспомните таблицу умножения на 8.
Обратный отсчет диаметров круга по таблице 80, 72, 64, 56, 48, 40, 32, 24, 16, 8.
Диаметр маленького круга 8 см.
Вы отлично выполнили вычисления.
Теперь отгадайте новую загадку. Что идет, не двигаясь с места? (Правильно, это время.)
Единицы времени
Каждый человек хочет понять время. Оно нам нужно, потому что мы живем по режиму, а магазины, библиотеки, вокзалы — по расписанию. Определенное количество дел намечаем сделать в единицу времени.
Давайте познакомимся с единицами измерения времени.
Земля обращается вокруг Солнца за 365 суток. Это год. Один раз в 4 года он увеличивается на сутки, и называется високосным.
С глубокой древности круг считается символом годовых сезонных циклов: зимы, весны, лета и осени. Рассмотрите рисунок годового круга: он поделен на 4 доли — четыре времени года.
Единица величины каждого времени года делится на 3 месяца.
В году 3 ∙ 4 = 12 месяцев. Месяц — единица времени, за которую Луна обходит планету Земля вокруг.
В каждом месяце 30 или 31, а в феврале 28 или 29 суток.
Исторически основной единицей для времени были сутки (часто говорят «день»). За одни сутки Земля поворачивается вокруг своей оси.
В результате деления суток на меньшие временные интервалы возникли часы, минуты и секунды. Сутки – единица времени, равная 24 часам. Один час — это 60 минут. Минута состоит из 60 секунд.
Выполните задания
1. Выразите время в указанных единицах измерения
8 ч 25 мин. = … мин.
95 мин. = … ч … мин.
2 мин. 14 сек. = … сек.
187 сек. = … мин. … сек.
Решение:
1 час = 60 мин. Значит, в восьми часах будет в 8 раз больше. Нужно выполнить умножение.
В 8 часах — 480 минут да еще 25 мин. Действие сложения.
480 + 25 = 505 (мин.)
Ответ: 8 ч 25 мин. = 505 мин.
Дальше решайте аналогично:
2 мин. 14 сек. = 60 ∙ 2 + 14 = 134 сек.
95 мин. = 1 ч 35 мин.
187 сек. = 3 ч. 7 сек.
2. Выберите единицы времени, которые расположены в порядке возрастания
а) час, минута, секунда
б) секунда, минута, час
в) минута, час, секунда
Проверьте себя.
Правильный ответ — б.
3. Автомобиль до Москвы едет 2 суток, а обратно 48 часов. Почему такая разница?
Проверьте себя.
2 сут. = 48 ч. Разницы нет.
Наш урок подходит к концу. Я надеюсь, что вы будете ценить свое время, не будете терять его зря.
Я с вами прощаюсь, а вы проверьте свои знания.
В материалах урока использованы кадры из м/с “Фиксики”, 2010
Деление окружности на любое число равных частей
Как разделить окружность на заданное количество одинаковых частей, терминология при построении окружности, деление окружности на 3, 4, 5, 6, 8, 10 частей.
Термины при построениях окружности
Окружностью называется замкнутая кривая линия, каждая точка которой расположена на одинаковом расстоянии от одной точки О, называемой центром.
Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.
Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.
Части окружностей называются дугами.
Прямая СD, соединяющая две точки на окружности, называется хордой.
Прямая МN,которая имеет только одну общую точку с окружностью называется касательной.
Часть круга, ограниченная хордой СD и дугой, называется сигментом.
Часть круга, ограниченная двумя радиусами и дугой, называется сектором.
Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности.
Угол, образованный двумя радиусами КОА, называется центральным углом.
Два взаимно перпендикулярных радиуса составляют угол в 90 0 и ограничивают 1/4 окружности.
Деление окружности на 4 и 8 одинаковых частей
Проводим окружность с горизонтальной и вертикальной осями, которые делят её на 4-ре равные части. Проведённые с помощью циркуля или угольника под 45 0 , две взаимно перпендикулярные линии делят окружность на 8-мь равных частей.
Деление окружности на 3 и 6 равных частей (кратные 3 трём)
Для деления окружности на 3, 6 и кратное им количество частей, проводим окружность заданного радиуса и соответствующие оси. Деление можно начинать от точки пересечения горизонтальной или вертикальной оси с окружностью. Заданный радиус окружности последовательно откладывается 6-ть раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шести-угольник. Соединение точек через одну даёт равносторонний треугольник, и деление окружности на три равные части.
Деление окружности на 5 и 10 равных частей
Построение правильного пятиугольника выполняется следующим образом. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1. Из полученной точки “а” в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке “b”. Радиусом R3 из точки “1” проводят дугу окружности до пересечения с заданной окружностью (т.5) и получают сторону правильного пятиугольника. Расстояние “b-О” даёт сторону правильного десятиугольника.
Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)
Выполняется следующим образом. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки “1” окружности проводим под произвольным углом к вертикальной оси прямую линию. На ней откладываем равные отрезки произвольной длины, число которых равно числу частей на которое мы делим данную окружность, например 9. Конец последнего отрезка соединяем с нижней точкой вертикального диаметра. Проводим линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей. Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности. Из точек M и N проводим лучи через чётные ( или нечётные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т.к. точки 1, 2, …. 9 делят окружность на 9-ть ( N ) равных частей.
Нахождение центра дуги окружности
Для нахождения центра дуги окружности нужно выполнить следующие построения: на данной дуге отмечаем четыре произвольные точки А, В, С, D и соединяем их попарно хордами АВ и СD. Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров даёт центр данной дуги и соответствующей ей окружности.
[spoiler title=”источники:”]
http://100urokov.ru/predmety/doli-okruzhnost-krug
http://v3c.ru/arifmetika/delenie-okruzhnosti-na-ravnye-chasti
[/spoiler]
Термины при построениях окружности
Окружностью называется замкнутая кривая линия, каждая точка которой расположена на одинаковом расстоянии от одной точки О, называемой центром.
Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.
Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.
Части окружностей называются дугами.
Прямая СD, соединяющая две точки на окружности, называется хордой.
Прямая МN,которая имеет только одну общую точку с окружностью называется касательной.
Часть круга, ограниченная хордой СD и дугой, называется сигментом.
Часть круга, ограниченная двумя радиусами и дугой, называется сектором.
Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности.
Угол, образованный двумя радиусами КОА, называется центральным углом.
Два взаимно перпендикулярных радиуса составляют угол в 900 и ограничивают 1/4 окружности.
Деление окружности на 4 и 8 одинаковых частей
Проводим окружность с горизонтальной и вертикальной осями, которые делят её на 4-ре равные части. Проведённые с помощью циркуля или угольника под 450, две взаимно перпендикулярные линии делят окружность на 8-мь равных частей.
Деление окружности на 3 и 6 равных частей (кратные 3 трём)
Для деления окружности на 3, 6 и кратное им количество частей, проводим окружность заданного радиуса и соответствующие оси. Деление можно начинать от точки пересечения горизонтальной или вертикальной оси с окружностью. Заданный радиус окружности последовательно откладывается 6-ть раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шести-угольник. Соединение точек через одну даёт равносторонний треугольник, и деление окружности на три равные части.
Деление окружности на 5 и 10 равных частей
Построение правильного пятиугольника выполняется следующим образом. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1. Из полученной точки “а” в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке “b”. Радиусом R3 из точки “1” проводят дугу окружности до пересечения с заданной окружностью (т.5) и получают сторону правильного пятиугольника. Расстояние “b-О” даёт сторону правильного десятиугольника.
Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)
Выполняется следующим образом. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки “1” окружности проводим под произвольным углом к вертикальной оси прямую линию. На ней откладываем равные отрезки произвольной длины, число которых равно числу частей на которое мы делим данную окружность, например 9. Конец последнего отрезка соединяем с нижней точкой вертикального диаметра. Проводим линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей. Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности. Из точек M и N проводим лучи через чётные ( или нечётные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т.к. точки 1, 2, …. 9 делят окружность на 9-ть ( N ) равных частей.
Нахождение центра дуги окружности
Для нахождения центра дуги окружности нужно выполнить следующие построения: на данной дуге отмечаем четыре произвольные точки А, В, С, D и соединяем их попарно хордами АВ и СD. Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров даёт центр данной дуги и соответствующей ей окружности.
Записи по теме
Площади фигур
Формулы для расчёта площадей двумерных геометрических фигур. Площадь треугольника, квадрата, параллелограмма, ромба, трапеции, правильного многоугольника.
_______
Пусть дан круг радиуса R. Надо поделить его на три равные части с помощью циркуля. Раскройте циркуль на величину радиуса круга. Можно воспользоваться при этом линейкой, а можно поставить иглу циркуля в центр круга, а ножку отвести до окружности, описывающей круг. Линейка в любом случае еще пригодится позже.
Повторяйте эти действия, пока следующая точка пересечения не совпадет с самой первой. Вы получите шесть точек на окружности, расположенных через равные промежутки. Остается выбрать три точки через одну и линейкой соединить их с центром круга, и вы получите поделенный натрое круг.
Окружность можно поделить на три части, если, используя циркуль, из точки пересечения прямой, проведенной через центр окружности O, сделать циркулем засечки B и C на линии окружности величиной, равной радиусу этой окружности.
Таким образом, будут найдены две искомые точки, а третья – это противоположная точка A, где пересекаются окружность и прямая.
Далее, если это необходимо, при помощи линейки и карандаша
можно вычертить встроенный треугольник.
Для разметки на три части используем радиус окружности.
Переворачиваем циркуль наоборот концами. Иглу устанавливаем на
пересечение осевой линии с окружностью, а грифель в центр. очерчиваем
дугу, пересекающую окружность.
Места пересечения и будут вершинами треугольника.
Источник
Деление окружности на любое число равных частей
Как разделить окружность на заданное количество одинаковых частей, терминология при построении окружности, деление окружности на 3, 4, 5, 6, 8, 10 частей.
Термины при построениях окружности
Окружностью называется замкнутая кривая линия, каждая точка которой расположена на одинаковом расстоянии от одной точки О, называемой центром.
Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.
Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.
Части окружностей называются дугами.
Прямая СD, соединяющая две точки на окружности, называется хордой.
Прямая МN,которая имеет только одну общую точку с окружностью называется касательной.
Часть круга, ограниченная хордой СD и дугой, называется сигментом.
Часть круга, ограниченная двумя радиусами и дугой, называется сектором.
Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности.
Угол, образованный двумя радиусами КОА, называется центральным углом.
Два взаимно перпендикулярных радиуса составляют угол в 90 0 и ограничивают 1/4 окружности.
Деление окружности на 4 и 8 одинаковых частей
Деление окружности на 3 и 6 равных частей (кратные 3 трём)
Для деления окружности на 3, 6 и кратное им количество частей, проводим окружность заданного радиуса и соответствующие оси. Деление можно начинать от точки пересечения горизонтальной или вертикальной оси с окружностью. Заданный радиус окружности последовательно откладывается 6-ть раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шести-угольник. Соединение точек через одну даёт равносторонний треугольник, и деление окружности на три равные части.
Деление окружности на 5 и 10 равных частей
Построение правильного пятиугольника выполняется следующим образом. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1. Из полученной точки «а» в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке «b». Радиусом R3 из точки «1» проводят дугу окружности до пересечения с заданной окружностью (т.5) и получают сторону правильного пятиугольника. Расстояние «b-О» даёт сторону правильного десятиугольника.
Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)
Выполняется следующим образом. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки «1» окружности проводим под произвольным углом к вертикальной оси прямую линию. На ней откладываем равные отрезки произвольной длины, число которых равно числу частей на которое мы делим данную окружность, например 9. Конец последнего отрезка соединяем с нижней точкой вертикального диаметра. Проводим линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей. Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности. Из точек M и N проводим лучи через чётные ( или нечётные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т.к. точки 1, 2, …. 9 делят окружность на 9-ть ( N ) равных частей.
Нахождение центра дуги окружности
Для нахождения центра дуги окружности нужно выполнить следующие построения: на данной дуге отмечаем четыре произвольные точки А, В, С, D и соединяем их попарно хордами АВ и СD. Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров даёт центр данной дуги и соответствующей ей окружности.
Источник
Деление окружности, или Геометрия для чайников
Приветствую всех мастеров и мастериц!
Очень многие из нас, учась в школе, думали, что очень многие предметы школьной программы в жизни нам никогда не понадобятся. Я так думала про геометрию. Однако жизнь сложилась так, что именно геометрия мне оказалась и нужна.
Одной из основных сложностей при создании круглого орнаменты является его симметричность. Иногда хочется, чтобу у нас был точный 8-ми гранник, иногда 5-ти конечная звезда, а иногда нужен 7-ми конечный цветок.
Эту глобальную проблему симметричного деления окружности на равное количество частей можно решить просто при помощи циркуля, линейки, листа бумаги и геометрии.
Деление окружности на 3 равных сектора.
Для начала нам понадобиться сама окружность. Рисуем ее при помощи циркуля
Ставим наш циркуль с набранным радиусом в точку, которую мы на окружности отметили и проводим дугу до пересечения с нашей основной окружностью.
Через точку на окружности и центр окружность проводим линию до пересечения с гранью.
Таким образом мы получили 3 точки на нашей окружности.
Теперь из центра проводим линии, соединяя центр с этими точками и у нас образовались 3 одинаковых сектора.
Деление окружности на 4 равных сектора.
Начинаем опять с окружности, необходимого нам диаметра. Назову ее окружность 1.
Через центр окружности 1 проводим линию до пересечения с обеими сторонами окружности 1.
Ставим ножку циркуля в точку на пересечении наше прямой линии и окружности 2 и из нее проводим дугу. Расстояние от точки на окружности до дуги равно диаметру окружности 1. (диаметр = 2 радиусам). Ту же процедуру повторяем с точкой на другой стороны окружности.
У нас есть 2 новые точки, появившиеся на пересечении дуг. Соединяем их и получаем окружность, разбитую на 4 ровных сектора.
Деление окружности на 5 равных секторов.
Начало работы с делением окружности на 5 частей очень схожа с делением окружности на 4 части, поэтому я начну уже с разделенного круга на 4 части.
Циркулем набираем радиус нашей окружности и ставим ножку в одну из имеющихся у нас точек. В моем случае это левая точка. Проводим дугу до пересечения ее с основной линии окружности.
Соединяем получившиеся точки при помощи линейки и находим новую точку пересечения (точка Н)
Циркулем набираем расстояние от верхний точки на окружности до точки Н. Ставим ножку в точку Н и проводим дугу и получаем еще одну точку (точка М)
Ставим ножку циркуля в верхнюю точку окружности и набираем расстояние до точки М.
Ставим ножку циркуля в верхнюю точку и откладываем набранное нами расстояние на нашей окружности.
Ставим циркуль в получившуюся точку и еще раз откладываем это расстояние. Таким же образом ставим еще 2 точки.
У нас получилось 4 отложенных точки и 1 верхняя точка окружности. Соединяем центр окружности с этими точками и получаем 5 равных секторов.
Деление окружности на 6 равных секторов.
Нам снова нужна окружность.
Берем любую точку на этой окружности, ставим в нее ножку циркуля с набранным расстоянием радиуса и проводим дугу до пересечения с нашей окружностью.
Далее соединяем выбранную нами точку с центром окружности и находим еще одну точку с противоположной стороны.
Из этой точки таким же расстоянием проводим еще одну дугу.
Деление окружности на 7 равных секторов.
Чтобы не повторяться и не описывать уже знакомые алгоритмы, берем за основу момент нахождения точки Н для разбития окружности на 5 частей.
Отмеряем циркулем расстояние от точки Н до точки на окружности.
Ставим ножку циркуля в верхнюю точку и набранным на циркуле расстоянием откладываем точки, аналогично как мы делали в случае разбивки окружности на 5 частей
Соединяем наши новые точки с центром и получаем 7 равных секторов.
Используя эти простые приемы можно создавать геометрические орнаменты различной сложности
Источник
Деление окружности на 3 равные части
Чтобы разделить окружность на 3 равные части, воспользуемся для этого циркулем. Итак, чертим окружность.
Линейкой от центра под углом 90 0 проводим линию (радиус окружности) к нижней части дуги окружности.
Затем место пересечение радиуса и дуги окружности — это центр новой окружности с таким же радиусом. Опять циркулем чертим окружность.
Две точки пересечения окружностей и точка, образованная пересечением радиуса (проведённого линейкой от центра первой окружности под углом 90 0 к верхней части дуги первой окружности).
По сути, получаем треугольник.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.5 / 5. Количество оценок: 15
Источник
Bau-enginer
Июнь 2012
Пн | Вт | Ср | Чт | Пт | Сб | Вс |
---|---|---|---|---|---|---|
« Май | ||||||
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 |
Деление окружности на равные части
Окружность — геометрическое место точек плоскости, равноудалённых от заданной точки, называемой центром, на заданное ненулевое расстояние, называемое её радиусом.
В данной статье Вы узнаете как разделить окружность на 3-6, 4-8, 5-10 и n частей.
Как разделить окружность на 3 и 6 частей
Для деления окружности на 3, 6 и кратное им количество частей проводим окружность заданного радиуса и со ответствующие оси. Деление можно начинать от точки пересечения вертикальной или горизонтальной оси с окружностью. Заданный радиус окружности последовательно откладывается 6 раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шестиугольник. Соединение точек через однудает равносторонний треугольник, и деление окружности на 3 равные части.
Деление окружности на 3-6 равных частей
Как разделить окружность на 5 и 10 частей
Деление окружности на 5-10 равных частей
Как разделить окружность на n — равных частей
Деление окружности на n равные части
Деление окружности на произвольное число равных частей можно производить с помощью таблицы хорд, численное выражение которых определяется умножением радиуса данной окружности на коэффициент, соответствующий числу деления, представленный в таблице.
Таблица хорд (коэффициентов для деления окружности)
Число частей делений окружности | Коэффициент | Число частей делений окружности | Коэффициент | Число частей делений окружности | Коэффициент |
1 | 0,000 | 11 | 0,282 | 21 | 0,149 |
2 | 1,000 | 12 | 0,258 | 22 | 0,142 |
3 | 0,866 | 13 | 0,239 | 23 | 0,136 |
4 | 0,707 | 14 | 0,223 | 24 | 0,130 |
5 | 0,588 | 15 | 0,208 | 25 | 0,125 |
6 | 0,500 | 16 | 0,195 | 26 | 0,120 |
7 | 0,434 | 17 | 0,184 | 27 | 0,116 |
8 | 0,383 | 18 | 0,178 | 28 | 0,112 |
9 | 0,342 | 19 | 0,165 | 29 | 0,108 |
10 | 0,309 | 20 | 0,156 | 30 | 0,104 |
Как найти центр дуги окружности
Необходимо выполнить следующее: на данной дуге отмечаем четыре произвольные точки A, B, C, D и соединяем их попарно хордами AB и CD.
Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров дает центр данной дуги и соответствующей ей окружности.
Приближенное деление дуги окружности на произвольное число равныx частей можно выполнить при помощи циркуля методом последовательного приближения.
Источник