Как найти третью координату точку треугольника

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .

(1)
(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

.

Пример 1. Известны стороны треугольника ABC: Найти (Рис.1).

Решение. Из формул (1) и (2) находим:

И, наконец, находим угол C:

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Найдем сторону c используя теорему косинусов:

.

.

Далее, из формулы

.

. (3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

.

Пример 2. Известны две стороны треугольника ABC: и (Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

,

Из формулы (3) найдем cosA:

.

Поскольку уже нам известны два угла то находим третий:

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Так как, уже известны два угла, то можно найти третий:

.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

Пример 3. Известна одна сторона треугольника ABC: и углы (Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Найдем сторону b. Из теоремы синусов имеем:

Найдем сторону с. Из теоремы синусов имеем:

Найти третью точку правильного треугольника?

Логика у вас правильная – взять середину отрезка AB и отложить от него перпендикуляр длинной sqrt(3)/2*d.

Но не надо искать углы, вектор перпендикуляр находится тривиально – это (Можно доказать перпендикулярность через скалярное произведение, например). Более того, длина этого вектора будет уже d (это ведь повернутый на 90 градусов вектор по стороне треугольника). Значит его остается тупо домножить на sqrt(3)/2.

Таким образом формула x3 = (x1+x2)/2 +sqrt(3)/2*(y2-y1).

Зная координаты точки 1(x1,y1) и координаты точки 2(x2,y2) найти третью точку(x3,y3) правильного треугольника со стороной d.

Безграмотная формулировка. Не точки, а вершины. d вообще лишнее.

Если A(x1,y1), B(x2,y2), то третья вершина C(x3,y3) находится поворотом вершины B вокруг A на 60 градусов по часовой и против часовой стрелки.

Как найти координаты точки?

О чем эта статья:

3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие системы координат

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;
  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Определение координат точки

Каждой точке координатной плоскости соответствуют две координаты.

Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.

Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Смотрим на график и фиксируем: A (1; 2) и B (2; 3).

Особые случаи расположения точек

В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:

  1. Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например,
    точка F (3, 0).
  3. Начало координат — точка O. Ее координаты равны нулю: O (0,0).
  4. Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
  5. Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
  6. Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
  7. Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).

Способы нахождения точки по её координатам

Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.

Способ первый. Как определить положение точки D по её координатам (-4, 2):

  1. Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
  2. Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
  3. Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.

Способ второй. Как определить положение точки D (-4, 2):

  1. Сместить прямую по оси Ox влево на 4 единицы, так как у нас
    перед 4 стоит знак минус.
  2. Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.

Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:

[spoiler title=”источники:”]

http://qna.habr.com/q/872623

http://skysmart.ru/articles/mathematic/kak-najti-koordinaty-tochki

[/spoiler]

39 / 28 / 8

Регистрация: 14.04.2012

Сообщений: 249

1

Как найти координаты третьей вершины треугольника, зная все стороны и две вершины?

07.07.2013, 16:27. Показов 97701. Ответов 19


Студворк — интернет-сервис помощи студентам

Добрый день, подскажите как найти координаты третьей вершины треугольника?
Известны координаты точек А(x1,y1), С(x2,y2).
длины сторон а, в, с
необходимо вычислить координаты точки В(x3,y3)



0



107 / 102 / 9

Регистрация: 29.06.2013

Сообщений: 369

07.07.2013, 17:10

2

Зная то, что расстояние между двумя точками равно: https://www.cyberforum.ru/cgi-bin/latex.cgi?d = sqrt{{(x-x1)}^{2} + {(y-y1)}^{2}},
то составим систему из двух уравнений
https://www.cyberforum.ru/cgi-bin/latex.cgi?a = sqrt{{(x3-x2)}^{2} + {(y3-y2)}^{2}}
https://www.cyberforum.ru/cgi-bin/latex.cgi?b = sqrt{{(x3-x1)}^{2} + {(y3-y1)}^{2}}

Откуда и найдем координаты 3-ей точки



2



39 / 28 / 8

Регистрация: 14.04.2012

Сообщений: 249

07.07.2013, 17:18

 [ТС]

3

А как вывести из формулы нужную?



0



107 / 102 / 9

Регистрация: 29.06.2013

Сообщений: 369

07.07.2013, 17:44

4

Например, можно произвести смещение точки А в начало координат.
Или же вычесть у-я и получить линейную связь между координатами.
А дальше алгебра…



0



39 / 28 / 8

Регистрация: 14.04.2012

Сообщений: 249

07.07.2013, 17:46

 [ТС]

5

Извени, но я не понимаю…



0



1765 / 969 / 180

Регистрация: 24.02.2013

Сообщений: 2,783

Записей в блоге: 12

07.07.2013, 19:38

6

А так понимаете?
См.картинку.
http://s53./i141/1307/2e/32805b4d3245t.jpg
Картинка не прикладывается.
Короче, записываем уравнения двух окружностей известных радиусов с центрами в точках С и А, решаем систему и находим координаты точки В,таких точек будет две.



0



39 / 28 / 8

Регистрация: 14.04.2012

Сообщений: 249

07.07.2013, 20:07

 [ТС]

7

Рисунок не доступен пишет.



0



Эксперт по математике/физике

4216 / 3411 / 396

Регистрация: 15.06.2009

Сообщений: 5,818

07.07.2013, 21:35

8

Цитата
Сообщение от kostrorod
Посмотреть сообщение

Известны координаты точек А(x1,y1), С(x2,y2).
длины сторон а, в, с

Условие некорректно – переопределено. Две заданных вершины тем самым уже определяют и длину одной стороны.



0



39 / 28 / 8

Регистрация: 14.04.2012

Сообщений: 249

07.07.2013, 23:27

 [ТС]

9

Цитата
Сообщение от Том Ардер
Посмотреть сообщение

Условие некорректно – переопределено. Две заданных вершины тем самым уже определяют и длину одной стороны.

Длина и координаты две разные вещи.



0



2525 / 1751 / 152

Регистрация: 11.08.2012

Сообщений: 3,349

07.07.2013, 23:52

10

Цитата
Сообщение от kostrorod
Посмотреть сообщение

Длина и координаты две разные вещи.

А Том Ардер другого и не утверждал. Читайте внимательнее.



0



1765 / 969 / 180

Регистрация: 24.02.2013

Сообщений: 2,783

Записей в блоге: 12

08.07.2013, 11:23

11

Лучший ответ Сообщение было отмечено как решение

Решение

Цитата
Сообщение от kostrorod
Посмотреть сообщение

Добрый день, подскажите как найти координаты третьей вершины треугольника?
Известны координаты точек А(x1,y1), С(x2,y2).
длины сторон а, в, с
необходимо вычислить координаты точки В(x3,y3)

Вот картинка.

Миниатюры

Как найти координаты третьей вершины треугольника, зная все стороны и две вершины?
 



3



39 / 28 / 8

Регистрация: 14.04.2012

Сообщений: 249

08.07.2013, 14:48

 [ТС]

12

А как вы выделили x и y из формулы?
то есть сделали запись вида x= … y=…



0



1765 / 969 / 180

Регистрация: 24.02.2013

Сообщений: 2,783

Записей в блоге: 12

09.07.2013, 09:13

13

Справа на картинке записана система двух уравнениий – уравнений окружностей.Решив систему, получаем координаты двух точек. т.е. точек В может быть две.
Систему решает СКМ Маткад, хотя можно решить и в ручную.



0



39 / 28 / 8

Регистрация: 14.04.2012

Сообщений: 249

09.07.2013, 14:03

 [ТС]

14

проблема в том, что я не знаю как решить уравнение окружностей(



0



107 / 102 / 9

Регистрация: 29.06.2013

Сообщений: 369

09.07.2013, 14:11

15

Раскройте скобки, вычтите из 1 уравнения другое. Уйдут квадраты, выразите одну переменную через другую. Подставите в 1 исходное.



0



1765 / 969 / 180

Регистрация: 24.02.2013

Сообщений: 2,783

Записей в блоге: 12

09.07.2013, 15:16

16

Только проще сначала вычесть из первого уравнение второе, затем воспользоваться формулой разности квадратов.



1



0 / 0 / 0

Регистрация: 10.04.2016

Сообщений: 7

28.04.2016, 22:07

17

А можно решить как-нибудь без системы уравнений?



0



0 / 0 / 0

Регистрация: 08.04.2019

Сообщений: 6

10.04.2019, 13:19

18

Я тоже был бы не против без системы уравнений



0



1471 / 826 / 140

Регистрация: 12.10.2013

Сообщений: 5,456

10.04.2019, 21:50

19

del Для чего тут система уравнений?

 Комментарий модератора 
Правило 3.1: “Уважительно относитесь к другим участникам форума.”

Нормализуем вектор AC и множим на длину AB стороны и крутим матрицей поворота в 2д на нужный угол. Угол треугольника найти по трем сторонам.

Эх раньше бы и рис и формулы кинул…но теперь лень =). Может кто из гуру не полениться…



0



pro4vayder

1 / 1 / 0

Регистрация: 25.05.2016

Сообщений: 2

04.11.2020, 09:49

20

Прошу глянуть решение здесь. Ответ выше был близок к ответу, но человеку далекому от математики (мне) – это не особо было понятно.
Решение задачи в js

P.S решение выводит 2 ответа точек пересечения

Кликните здесь для просмотра всего текста

http://algolist.ru/maths/geom/… rcle2d.php

Javascript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
function calcDistance(firstPos, secondPos) {
    if (secondPos.x && secondPos.y && firstPos.x && firstPos.y) {
        var distance = Math.sqrt((secondPos.x - firstPos.x) ** 2 + (secondPos.y - firstPos.y) ** 2);
        return distance
    } else {
        return 'error!!!!!!!'
    }
}
 
 
function calcMiddle (firstPoint, secondPoint, target) {
    // a = (r0^2 - r1^2 + d^2 ) / (2d)
    // h^2 = r0^2 - a^2
    // P2 = P0 + a ( P1 - P0 ) / d
    //"p0" is first receiver
    //"p1" is second receiver
    // "r0" is distance to target from p0
    // "r1" is distance to target from p1
    // "a" - distance to the point of intersection between two circles  as will be named "p2"
    // "d" - distance between two receivers
    // "h" - distance between two receivers p2 point
    r0 = calcDistance(firstPoint, target);
    r1 = calcDistance(secondPoint, target);
    d = calcDistance(firstPoint, secondPoint);
    a = (r0**2-r1**2+d**2)/(2*d);
    h = r0**2 - a**2;
    p2x = firstPoint.x+a*(secondPoint.x-firstPoint.x)/d;
    p2y = firstPoint.y+a*(secondPoint.y-firstPoint.y)/d;
    //x3 = x2 +- h ( y1 - y0 ) / d
    // y3 = y2 -+ h ( x1 - x0 ) / d
    p3x1 = p2x-Math.sqrt(h)*(secondPoint.y-firstPoint.y)/d;
    p3y1 = p2y+Math.sqrt(h)*(secondPoint.x-firstPoint.x)/d;
    p3x2 = p2x+Math.sqrt(h)*(secondPoint.y-firstPoint.y)/d;
    p3y2 = p2y-Math.sqrt(h)*(secondPoint.x-firstPoint.x)/d;
    console.log(r0, "- is distance to target from p0" );
    console.log(r1, "- is distance to target from p1");
    console.log(d, "- distance between two receivers");
    console.log(a, "- distance to the point of intersection between two circles");
    console.log(Math.sqrt(h), "- distance between two receivers 'p2' point");
    console.log("Координаты передатчика вычислена: ", p3x1, p3y1);
    console.log("Координаты передатчика вычислена: ", p3x2, p3y2);
    console.log("Координаты передатчика на самом деле: ", target.x, target.y);
 
}



1



IT_Exp

Эксперт

87844 / 49110 / 22898

Регистрация: 17.06.2006

Сообщений: 92,604

04.11.2020, 09:49

20

Автор Сообщение

Заголовок сообщения: Координаты третьей вершины треугольника

СообщениеДобавлено: 26 мар 2013, 05:26 

Не в сети
Начинающий


Зарегистрирован:
26 мар 2013, 05:23
Сообщений: 2
Cпасибо сказано: 3
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации

Здравствуйте, уважаемые форумчане. Помогите пожалуйста с формулой

Как найти координаты третьей вершины треугольника по длинам трёх сторон и двум координатам вершин?

Известны координаты точек А(x1,y1), С(x2,y2).
длины сторон а, в, с
необходимо вычислить координаты точки В(x3,y3)

Использовать для вычислений Косинус и Синус угла АСВ и смещение прямой АС относительно системы координат нельзя из-за получающейся огромной погрешности при вычислениях. Я про формулу такого вида: x3 = x2 + a*cosС, y3 = y2 + a*sinС

Последний раз редактировалось Andy 11 дек 2019, 10:12, всего редактировалось 1 раз.
Название темы изменено модератором.

Вернуться к началу

Профиль  

Cпасибо сказано 

Avgust

Заголовок сообщения: Re: Найти координаты третьей вершины треугольника по длинам трёх

СообщениеДобавлено: 26 мар 2013, 08:29 

Точка А – центр окружности радиусом с

Точка С – центр окружности радиусом a

Пересечение двух окружностей дадут точку B, то есть ее координаты.

Всего-то нужно решить систему относительно [math]x,[/math] и [math]y[/math]

[math](y-y_1)^2+(x-x_1)^2=c^2[/math]

[math](y-y_2)^2+(x-x_2)^2=a^2[/math]

Получим два решения при допустимых соотношениях параметров (при которых треугольник может существовать)

Последний раз редактировалось Avgust 26 мар 2013, 09:10, всего редактировалось 1 раз.

Вернуться к началу

Профиль  

Cпасибо сказано 

За это сообщение пользователю Avgust “Спасибо” сказали:
panda

panda

Заголовок сообщения: Re: Найти координаты третьей вершины треугольника по длинам трёх

СообщениеДобавлено: 26 мар 2013, 08:47 

Спасибо за ответ. А не могли бы вы оформить его в виде формулы?

Вернуться к началу

Профиль  

Cпасибо сказано 

Avgust

Заголовок сообщения: Re: Найти координаты третьей вершины треугольника по длинам трёх

СообщениеДобавлено: 26 мар 2013, 09:34 

Формулы я получил. Но они такие громоздкие, что писать полчаса надо. Вот численно элементарно делается. Например, зададим параметры пифагорова треугольника:
[math]x_1=0,;, y_1=0, ; , x_2=4,;, y_2=3 ,;, a=3, ;, c=4[/math]

Тогда по команде Maple

solve({(y-y1)^2+(x-x1)^2 = c^2, (y-y2)^2+(x-x2)^2 = a^2}, [x, y]);

получим два решения:

1) [math]x=4 , ; , y=0[/math]

2) [math]x=frac{28}{25}, ; , y=frac{96}{25}[/math]

Графическое представление этой задачи:
Изображение

Вернуться к началу

Профиль  

Cпасибо сказано 

За это сообщение пользователю Avgust “Спасибо” сказали:
panda

Avgust

Заголовок сообщения: Re: Найти координаты третьей вершины треугольника по длинам трёх

СообщениеДобавлено: 26 мар 2013, 10:00 

Я добавил рисунок…
Вот формулы только для одного из решений:

x:=(1/2)*((y1-y2)*sqrt(-(-x1^2+2*x2*x1-x2^2+(-c+a-y1+y2)*(-c+a+y1-y2))*(-x1^2+2*x2*x1-x2^2+(c+a-y1+y2)*(c+a+y1-y2))*(x1-x2)^2)+(x1^3-x1^2*x2+(y2^2-2*y1*y2-c^2+y1^2+a^2-x2^2)*x1-x2*(a^2-c^2-x2^2-y2^2+2*y1*y2-y1^2))*(x1-x2))/((x1-x2)*(x1^2-2*x2*x1+x2^2+(y1-y2)^2));

y := (-sqrt(-(-x1^2+2*x2*x1-x2^2+(-c+a-y1+y2)*(-c+a+y1-y2))*(-x1^2+2*x2*x1-x2^2+(c+a-y1+y2)*(c+a+y1-y2))*(x1-x2)^2)+y1^3-y1^2*y2+(a^2+x1^2-c^2+x2^2-2*x2*x1-y2^2)*y1+y2^3+(x2^2-2*x2*x1+c^2-a^2+x1^2)*y2)/(2*y1^2-4*y1*y2+2*y2^2+2*(x1-x2)^2);

Второе решение:

x := (1/2)*((-y1+y2)*sqrt(-(-x1^2+2*x2*x1-x2^2+(-c+a-y1+y2)*(-c+a+y1-y2))*(x1-x2)^2*(-x1^2+2*x2*x1-x2^2+(c+a-y1+y2)*(c+a+y1-y2)))+(x1-x2)*(x1^3-x1^2*x2+(y1^2-2*y1*y2+y2^2+a^2-c^2-x2^2)*x1-x2*(-c^2-x2^2+a^2-y1^2+2*y1*y2-y2^2)))/((x1^2-2*x2*x1+x2^2+(y1-y2)^2)*(x1-x2));

y := (sqrt(-(x1-x2)^2*(-x1^2+2*x2*x1-x2^2+(c+a+y1-y2)*(c+a-y1+y2))*(-x1^2+2*x2*x1-x2^2+(-c+a+y1-y2)*(-c+a-y1+y2)))+y1^3-y1^2*y2+(a^2+x1^2-c^2+x2^2-2*x2*x1-y2^2)*y1+y2^3+(x2^2-2*x2*x1+c^2-a^2+x1^2)*y2)/(2*y1^2-4*y1*y2+2*y2^2+2*(x1-x2)^2);

Формулы проверил – работают отлично. Вот если бы их суметь упростить!

Вернуться к началу

Профиль  

Cпасибо сказано 

За это сообщение пользователю Avgust “Спасибо” сказали:
amjava, panda, Realdreamer

Realdreamer

Заголовок сообщения: Re: Найти координаты третьей вершины треугольника по длинам трёх

СообщениеДобавлено: 10 дек 2019, 17:11 

Уважаемые математики
Чтобы не плодить темы, разрешить поднять текущую.

Пишу программу, но к сожалению не очень силен в математических науках. Нужно как раз вершины треугольника
Но исходные данные немного другие.
Есть длина стороны равностороннего треугольника и угол между ними.
Строится всё из начала координат в сторону x (вверх)

Вообще в итоге мне нужно написать симуляцию работы вентилятора. Крутится то я его заставлю.
Нарисовать не могу ((
Изображение
вот такой должен получится.
Стороны 70
Угол лопасти 30 град
Угол между лопастями 120
Три лопасти.
У меня получается есть только координаты центра.
Чтобы нарисовать треугольники мне нужны остальные координаты вершин

Пытался сам найти, но видимо не так запрос формирую.

Вернуться к началу

Профиль  

Cпасибо сказано 

Realdreamer

Заголовок сообщения: Re: Найти координаты третьей вершины треугольника по длинам трёх

СообщениеДобавлено: 11 дек 2019, 16:20 

vvvv
Большое спасибо за потраченное время.
К сожалению ваше решение только добавило мне вопросов ((

Координат всего должно быть 9 для каждой оси, но в таблице их 10
Так же вижу на графике что есть координата с х = -70 но в таблице для Х такого значения нет.

В итоге я пошёл по другому пути
Нарисовал первую лопасть вверх от начала координат и посчитал основание равнобедренного треугольника зная его стороны и угол между ними

a = 70
b = a * sin(30) / 2

и разделил её пополам. Получил координату по Y в обе стороны
Лопасть это два прямоугольных треугольника в которых по теореме пифагора нашёл вторую сторону которая и является второй коорлинатой

y1 = sqrt(a ** 2 – b ** 2)

А потом по формуле окружности просто сдвинул на 120 градусов влево и вправо

xn1 = sin(120 – 15) * a
yn1 = cos(120 – 15) * a
xn2 = sin(120 + 15) * a
yn2 = cos(120 + 15) * a

xn1 = sin(-120 – 15) * a
yn1 = cos(-120 – 15) * a
xn2 = sin(-120 + 15) * a
yn2 = cos(-120 + 15) * a

От меня вам всё равно спасибо что откликнулись!

Вернуться к началу

Профиль  

Cпасибо сказано 

Координаты третьей вершины….

Ламер



Мастер

(1322),
закрыт



13 лет назад

Дано: координаты двух вершин треугольника (x1,y1) и (x2,y2) и длины его сторон a,b,c.
Требуется найти координаты третей вершины треугольника.

Может кто помнит ?

Дополнен 13 лет назад

Нужна формула.

Марина Тесленко

Просветленный

(22061)


13 лет назад

Расстояние между точками (x1, y1) и (x2,y2) равно корень кв ((х2-х1)^2+( y1-y2)^2). У вас есть 2 неизвестных х3, и y3. Значит нужно 2 уравнения. Расстояния нам даны. Напишем 2 уравнения с расстояниями и координатами и из них найдём неизвестные. Надеюсь, понятно)

ЛамерМастер (1322)

13 лет назад

Расстояния между всеми точками известны.

Марина Тесленко
Просветленный
(22061)
Но нам это никак не мешает!)

Ирина Андреева

Гуру

(4497)


13 лет назад

Сначала Вы находите расстояние между точками (x1,y1) и (x2,y2) по формуле
z=корень ((x2-x1)^2+(y2-y1)^2)
и, затем, выясняете, что это за сторона
Предположим z=a, тогда две другие стороны b и c
получаете уравнения
b^2 = ((x2-x3)^2+(y2-y3)^2)
c^2 = ((x1-x3)^2+(y1-y3)^2)
решаете и находите координаты (x3,y3) искомой точки

ЛамерМастер (1322)

13 лет назад

Надо бы формулу вида :
x3=…
y3=…

Ирина Андреева
Гуру
(4497)
Я думаю, что Вы так и будете о ней мечтать. Хотя посмотрим.

Найти третью точку правильного треугольника?

Зная координаты точки 1(x1,y1) и координаты точки 2(x2,y2) найти третью точку(x3,y3) правильного треугольника со стороной d. Соответственно углы у правильного треугольника равны.
Есть такие мысли :
x3=|(x2-x1)/2| + (d*sqrt(3)) / 2* sin(a)
проблема как раз-таки в найти угол (a), были догадки, что он равен=90градусов – арксинус(|y2-y1|/d)


  • Вопрос задан

    более двух лет назад

  • 629 просмотров

Логика у вас правильная – взять середину отрезка AB и отложить от него перпендикуляр длинной sqrt(3)/2*d.

Но не надо искать углы, вектор перпендикуляр находится тривиально – это {y2-y1, x1-x2} (Можно доказать перпендикулярность через скалярное произведение, например). Более того, длина этого вектора будет уже d (это ведь повернутый на 90 градусов вектор по стороне треугольника). Значит его остается тупо домножить на sqrt(3)/2.

Таким образом формула x3 = (x1+x2)/2 +sqrt(3)/2*(y2-y1).

Пригласить эксперта

Зная координаты точки 1(x1,y1) и координаты точки 2(x2,y2) найти третью точку(x3,y3) правильного треугольника со стороной d.

Безграмотная формулировка. Не точки, а вершины. d вообще лишнее.

Если A(x1,y1), B(x2,y2), то третья вершина C(x3,y3) находится поворотом вершины B вокруг A на 60 градусов по часовой и против часовой стрелки.


  • Показать ещё
    Загружается…

18 мая 2023, в 17:26

1500 руб./за проект

18 мая 2023, в 17:26

5000 руб./за проект

18 мая 2023, в 17:00

1500 руб./за проект

Минуточку внимания

Добавить комментарий