Калькулятор
Инструкция
Примечание: π записывается как pi; корень квадратный как sqrt().
Шаг 1. Введите в ячейку калькулятора заданную функцию.
Шаг 2. Нажать кнопку “Найти”.
Шаг 3. Получите результат.
Третья производная функция
Вычисление производной функции третьего порядка – это довольно-таки частая задача по высшей математике. Понятие производной – ого порядка вычисляется последовательно, начиная с первого порядка. Переход производной к более высоким порядкам производится при помощи формулы:
Важно! Чтобы порядок производной не путать с показателем степени, пишут или в круглых скобках, или римскими цифрами. Например, производная третьего порядка: или .
bold{mathrm{Basic}} | bold{alphabetagamma} | bold{mathrm{ABGamma}} | bold{sincos} | bold{gedivrightarrow} | bold{overline{x}spacemathbb{C}forall} | bold{sumspaceintspaceproduct} | bold{begin{pmatrix}square&square\square&squareend{pmatrix}} | bold{H_{2}O} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Подпишитесь, чтобы подтвердить свой ответ
Подписаться
Войдите, чтобы сохранять заметки
Войти
Номер Строки
Примеры
-
frac{d^3}{dx^3}(frac{3x+9}{2-x})
-
(sin^2(theta))”’
-
frac{d^3}{dy^3}(a^y)
-
frac{d^3}{dx^3}(frac{sqrt{x}}{2x+3})
-
frac{d}{dx^3}(e^{x^n})
-
(xln(x))”’
- Показать больше
Описание
Дифференцируйте функции шаг за шагом
third-derivative-calculator
ru
Блог-сообщения, имеющие отношение к Symbolab
High School Math Solutions – Derivative Calculator, the Basics
Differentiation is a method to calculate the rate of change (or the slope at a point on the graph); we will not…
Read More
Введите Задачу
Сохранить в блокнот!
Войти
Производной функции называется предел отношения приращения функции к приращению аргумента при условии, что последний стремится к нулю:
Для того чтобы вычислить производную некоторой функции необходимо применить основные правила дифференцирования или воспользоваться нашим онлайн калькулятором, который вычисляет производную с описанием действий на русском языке.
Калькулятор также может вычислить производные высшего порядка (вторую, третью и т.д.), для этого необходимо задать порядок производной. Также предусмотрен выбор переменной дифференцирования, таким образом, возможно вычисление частной производной в случае функции многих переменных.
Отличительной особенностью нашего калькулятора является подробное решение на русском языке, соответствующее стандартам образования, принятым в российских ВУЗах и ВУЗах бывшего постсоветского пространства. С преимуществами нашего подробного решения Вы можете ознакомиться
здесь.
Посмотреть пример подробного решения производной можно
здесь.
Данный онлайн калькулятор вычисляет производную функции. Программа не только вычисляет ответ, она производит пошаговое решение. Выбирается порядок дифференцирования.
Как пользоваться калькулятором для нахождения производных онлайн:
1. Введите математическое выражение с переменной x, в выражении используйте стандартные операции: + сложение, –
вычитание, / деление, * умножение, ^ – возведение в степень, а также математические функции.
2. Выберите порядок дифференцирования (решения производных от первого до пятого порядка включительно).
3. Нажмите кнопку – Вычислить производную.
4. Через несколько секунд внизу отобразится пошаговое решение производной с подробными комментариями.
При помощи нашего калькулятора вы можете найти производную онлайн как от элементарной функции, так и от сложной, не имеющей решения в аналитическом виде.
Калькулятор поможет найти производную функции онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.
- : x^a
модуль x: abs(x)
Для того, чтобы найти производную функции
нужно написать в строке: f[x], x. Если Вам требуется
найти производную n-го порядка, то следует написать: f[x], {x, n}. В
том случае, если Вам требуется найти частную производную функции напишите в окне гаджета: f[x, y, z,…,t], j, где
— интересующая Вас переменная. Если нужно найти частную производную по
некоторой переменной порядка n, то следует ввести: f[x, y, z,…,t], {j,
n}, где означает тоже, что и Выше.
Важно подчеркнуть, что калькулятор выдает пошаговое нахождение
производной при нажатии на «Show Steps» в правом верхнем углу
выдаваемого ей ответа.
- Примеры
- x*E^x, x;
- x^3*E^x, {x,17};
- x^3*y^2*Sin[x+y], x;
- x^3*y^2*Sin[x+y], y,
- x/(x+y^4), {x,6}.
Определение производной
Определение. Пусть функция ( y = f(x) ) определена в некотором интервале, содержащем внутри себя точку ( x_0 ).
Дадим аргументу приращение ( Delta x ) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции
( Delta y ) (при переходе от точки ( x_0 ) к точке ( x_0 + Delta x ) ) и составим отношение
( frac{Delta y}{Delta x} ). Если существует предел этого отношения при ( Delta x rightarrow 0 ), то
указанный предел называют производной функции ( y=f(x) ) в точке ( x_0 ) и обозначают ( f'(x_0) ).
$$ lim_{Delta x to 0} frac{Delta y}{Delta x} = f'(x_0) $$
Для обозначения производной часто используют символ ( y’ ).
Отметим, что ( y’ = f(x) ) – это новая функция, но, естественно, связанная с функцией ( y = f(x) ), определенная во всех точках (x), в которых
существует указанный выше предел. Эту функцию называют так: производная функции ( y = f(x) ).
Геометрический смысл производной состоит в следующем. Если к графику функции ( y = f(x) ) в точке с абсциссой ( x=a ) можно
провести касательную, непараллельную оси (y), то ( f(a) ) выражает угловой коэффициент касательной:
( k = f'(a) )
Поскольку ( k = tg(a) ), то верно равенство ( f'(a) = tg(a) ) .
А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция ( y = f(x) ) имеет
производную в конкретной точке ( x ):
$$ lim_{Delta x to 0} frac{Delta y}{Delta x} = f'(x) $$
Это означает, что около точки (x) выполняется приближенное равенство ( frac{Delta y}{Delta x} approx f'(x) ), т.е.
( Delta y approx f'(x) cdot Delta x ).
Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально»
приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке (x).
Например, для функции ( y = x^2 ) справедливо приближенное равенство ( Delta y approx 2x cdot Delta x ).
Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.
Сформулируем его.
Как найти производную функции у = f(x) ?
1. Зафиксировать значение ( x ), найти ( f(x) )
2. Дать аргументу ( x ) приращение ( Delta x ), перейти в новую точку ( x+ Delta x ), найти ( f(x+ Delta x) )
3. Найти приращение функции: ( Delta y = f(x + Delta x) – f(x) )
4. Составить отношение ( frac{Delta y}{Delta x} )
5. Вычислить $$ lim_{Delta x to 0} frac{Delta y}{Delta x} $$
Этот предел и есть производная функции в точке (x).
Если функция (y=f(x)) имеет производную в точке (x), то ее называют дифференцируемой в точке (x). Процедуру нахождения производной
функции (y=f(x)) называют дифференцированием функции (y=f(x)).
Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.
Пусть функция (y=f(x)) дифференцируема в точке (x). Тогда к графику функции в точке ( M(x; ; f(x)) ) можно провести касательную,
причем, напомним, угловой коэффициент касательной равен ( f'(x) ). Такой график не может «разрываться» в точке (M), т. е. функция
обязана быть непрерывной в точке (x).
Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция (y=f(x)) дифференцируема в точке (x), то
выполняется приближенное равенство ( Delta y approx f'(x) cdot Delta x ). Если в этом равенстве ( Delta x ) устремить к
нулю, то и ( Delta y ) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.
Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке.
Обратное утверждение неверно. Например: функция ( y=|x|) непрерывна везде, в частности в точке (x=0), но касательная к графику
функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой
точке не существует производная.
Еще один пример. Функция ( y=sqrt[3]{x} ) непрерывна на всей числовой прямой, в том числе в точке (x=0).
И касательная к графику функции существует в любой точке, в том числе в точке (x=0). Но в этой точке касательная совпадает с осью (y),
т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид (x=0). Углового коэффициента у такой прямой нет, значит, не существует и
( f'(0) )
Итак, мы познакомились с новым свойством функции — дифференцируемостью. А как по графику функции можно сделать вывод о ее
дифференцируемости?
Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси
абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она
перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.
Правила дифференцирования
Операция нахождения производной называется дифференцированием.
При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций»,
то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу.
Если (C) — постоянное число и ( f=f(x), ; g=g(x) ) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:
$$ C’=0 $$
$$ x’=1 $$
$$ ( f+g)’=f’+g’ $$
$$ (fg)’=f’g + fg’ $$
$$ (Cf)’=Cf’ $$
$$ left(frac{f}{g} right) ‘ = frac{f’g-fg’}{g^2} $$
$$ left(frac{C}{g} right) ‘ = -frac{Cg’}{g^2} $$
Производная сложной функции:
$$ f’_x(g(x)) = f’_g cdot g’_x $$
Таблица производных некоторых функций
$$ left( frac{1}{x} right) ‘ = -frac{1}{x^2} $$
$$ ( sqrt{x} ) ‘ = frac{1}{2sqrt{x}} $$
$$ left( x^a right) ‘ = a x^{a-1} $$
$$ left( a^x right) ‘ = a^x cdot ln a $$
$$ left( e^x right) ‘ = e^x $$
$$ ( ln x )’ = frac{1}{x} $$
$$ ( log_a x )’ = frac{1}{xln a} $$
$$ ( sin x )’ = cos x $$
$$ ( cos x )’ = -sin x $$
$$ ( text{tg} x )’ = frac{1}{cos^2 x} $$
$$ ( text{ctg} x )’ = -frac{1}{sin^2 x} $$
$$ ( arcsin x )’ = frac{1}{sqrt{1-x^2}} $$
$$ ( arccos x )’ = frac{-1}{sqrt{1-x^2}} $$
$$ ( text{arctg} x )’ = frac{1}{1+x^2} $$
$$ ( text{arcctg} x )’ = frac{-1}{1+x^2} $$