Координаты третьей вершины….
Ламер
Мастер
(1322),
закрыт
13 лет назад
Дано: координаты двух вершин треугольника (x1,y1) и (x2,y2) и длины его сторон a,b,c.
Требуется найти координаты третей вершины треугольника.
Может кто помнит ?
Дополнен 13 лет назад
Нужна формула.
Марина Тесленко
Просветленный
(22061)
13 лет назад
Расстояние между точками (x1, y1) и (x2,y2) равно корень кв ((х2-х1)^2+( y1-y2)^2). У вас есть 2 неизвестных х3, и y3. Значит нужно 2 уравнения. Расстояния нам даны. Напишем 2 уравнения с расстояниями и координатами и из них найдём неизвестные. Надеюсь, понятно)
ЛамерМастер (1322)
13 лет назад
Расстояния между всеми точками известны.
Марина Тесленко
Просветленный
(22061)
Но нам это никак не мешает!)
Ирина Андреева
Гуру
(4497)
13 лет назад
Сначала Вы находите расстояние между точками (x1,y1) и (x2,y2) по формуле
z=корень ((x2-x1)^2+(y2-y1)^2)
и, затем, выясняете, что это за сторона
Предположим z=a, тогда две другие стороны b и c
получаете уравнения
b^2 = ((x2-x3)^2+(y2-y3)^2)
c^2 = ((x1-x3)^2+(y1-y3)^2)
решаете и находите координаты (x3,y3) искомой точки
ЛамерМастер (1322)
13 лет назад
Надо бы формулу вида :
x3=…
y3=…
Ирина Андреева
Гуру
(4497)
Я думаю, что Вы так и будете о ней мечтать. Хотя посмотрим.
Автор | Сообщение | ||||
---|---|---|---|---|---|
|
|||||
|
Здравствуйте, уважаемые форумчане. Помогите пожалуйста с формулой Как найти координаты третьей вершины треугольника по длинам трёх сторон и двум координатам вершин? Известны координаты точек А(x1,y1), С(x2,y2). Использовать для вычислений Косинус и Синус угла АСВ и смещение прямой АС относительно системы координат нельзя из-за получающейся огромной погрешности при вычислениях. Я про формулу такого вида: x3 = x2 + a*cosС, y3 = y2 + a*sinС
|
||||
Вернуться к началу |
|
||||
Avgust |
|
||
Точка А – центр окружности радиусом с Точка С – центр окружности радиусом a Пересечение двух окружностей дадут точку B, то есть ее координаты. Всего-то нужно решить систему относительно [math]x,[/math] и [math]y[/math] [math](y-y_1)^2+(x-x_1)^2=c^2[/math] [math](y-y_2)^2+(x-x_2)^2=a^2[/math] Получим два решения при допустимых соотношениях параметров (при которых треугольник может существовать) Последний раз редактировалось Avgust 26 мар 2013, 09:10, всего редактировалось 1 раз. |
|||
Вернуться к началу |
|
||
За это сообщение пользователю Avgust “Спасибо” сказали: panda |
|||
panda |
|
||
Спасибо за ответ. А не могли бы вы оформить его в виде формулы?
|
|||
Вернуться к началу |
|
||
Avgust |
|
||
Формулы я получил. Но они такие громоздкие, что писать полчаса надо. Вот численно элементарно делается. Например, зададим параметры пифагорова треугольника: Тогда по команде Maple solve({(y-y1)^2+(x-x1)^2 = c^2, (y-y2)^2+(x-x2)^2 = a^2}, [x, y]); получим два решения: 1) [math]x=4 , ; , y=0[/math] 2) [math]x=frac{28}{25}, ; , y=frac{96}{25}[/math] Графическое представление этой задачи:
|
|||
Вернуться к началу |
|
||
За это сообщение пользователю Avgust “Спасибо” сказали: panda |
|||
Avgust |
|
||
Я добавил рисунок… x:=(1/2)*((y1-y2)*sqrt(-(-x1^2+2*x2*x1-x2^2+(-c+a-y1+y2)*(-c+a+y1-y2))*(-x1^2+2*x2*x1-x2^2+(c+a-y1+y2)*(c+a+y1-y2))*(x1-x2)^2)+(x1^3-x1^2*x2+(y2^2-2*y1*y2-c^2+y1^2+a^2-x2^2)*x1-x2*(a^2-c^2-x2^2-y2^2+2*y1*y2-y1^2))*(x1-x2))/((x1-x2)*(x1^2-2*x2*x1+x2^2+(y1-y2)^2)); y := (-sqrt(-(-x1^2+2*x2*x1-x2^2+(-c+a-y1+y2)*(-c+a+y1-y2))*(-x1^2+2*x2*x1-x2^2+(c+a-y1+y2)*(c+a+y1-y2))*(x1-x2)^2)+y1^3-y1^2*y2+(a^2+x1^2-c^2+x2^2-2*x2*x1-y2^2)*y1+y2^3+(x2^2-2*x2*x1+c^2-a^2+x1^2)*y2)/(2*y1^2-4*y1*y2+2*y2^2+2*(x1-x2)^2); Второе решение: x := (1/2)*((-y1+y2)*sqrt(-(-x1^2+2*x2*x1-x2^2+(-c+a-y1+y2)*(-c+a+y1-y2))*(x1-x2)^2*(-x1^2+2*x2*x1-x2^2+(c+a-y1+y2)*(c+a+y1-y2)))+(x1-x2)*(x1^3-x1^2*x2+(y1^2-2*y1*y2+y2^2+a^2-c^2-x2^2)*x1-x2*(-c^2-x2^2+a^2-y1^2+2*y1*y2-y2^2)))/((x1^2-2*x2*x1+x2^2+(y1-y2)^2)*(x1-x2)); y := (sqrt(-(x1-x2)^2*(-x1^2+2*x2*x1-x2^2+(c+a+y1-y2)*(c+a-y1+y2))*(-x1^2+2*x2*x1-x2^2+(-c+a+y1-y2)*(-c+a-y1+y2)))+y1^3-y1^2*y2+(a^2+x1^2-c^2+x2^2-2*x2*x1-y2^2)*y1+y2^3+(x2^2-2*x2*x1+c^2-a^2+x1^2)*y2)/(2*y1^2-4*y1*y2+2*y2^2+2*(x1-x2)^2); Формулы проверил – работают отлично. Вот если бы их суметь упростить!
|
|||
Вернуться к началу |
|
||
За это сообщение пользователю Avgust “Спасибо” сказали: amjava, panda, Realdreamer |
|||
Realdreamer |
|
||
Уважаемые математики Пишу программу, но к сожалению не очень силен в математических науках. Нужно как раз вершины треугольника Вообще в итоге мне нужно написать симуляцию работы вентилятора. Крутится то я его заставлю. Пытался сам найти, но видимо не так запрос формирую.
|
|||
Вернуться к началу |
|
||
Realdreamer |
|
||
vvvv Координат всего должно быть 9 для каждой оси, но в таблице их 10 В итоге я пошёл по другому пути a = 70 и разделил её пополам. Получил координату по Y в обе стороны y1 = sqrt(a ** 2 – b ** 2) А потом по формуле окружности просто сдвинул на 120 градусов влево и вправо xn1 = sin(120 – 15) * a xn1 = sin(-120 – 15) * a От меня вам всё равно спасибо что откликнулись!
|
|||
Вернуться к началу |
|
||
39 / 28 / 8 Регистрация: 14.04.2012 Сообщений: 249 |
|
1 |
|
Как найти координаты третьей вершины треугольника, зная все стороны и две вершины?07.07.2013, 16:27. Показов 97607. Ответов 19
Добрый день, подскажите как найти координаты третьей вершины треугольника?
0 |
107 / 102 / 9 Регистрация: 29.06.2013 Сообщений: 369 |
|
07.07.2013, 17:10 |
2 |
Зная то, что расстояние между двумя точками равно: , Откуда и найдем координаты 3-ей точки
2 |
39 / 28 / 8 Регистрация: 14.04.2012 Сообщений: 249 |
|
07.07.2013, 17:18 [ТС] |
3 |
А как вывести из формулы нужную?
0 |
107 / 102 / 9 Регистрация: 29.06.2013 Сообщений: 369 |
|
07.07.2013, 17:44 |
4 |
Например, можно произвести смещение точки А в начало координат.
0 |
39 / 28 / 8 Регистрация: 14.04.2012 Сообщений: 249 |
|
07.07.2013, 17:46 [ТС] |
5 |
Извени, но я не понимаю…
0 |
1764 / 968 / 180 Регистрация: 24.02.2013 Сообщений: 2,782 Записей в блоге: 12 |
|
07.07.2013, 19:38 |
6 |
А так понимаете?
0 |
39 / 28 / 8 Регистрация: 14.04.2012 Сообщений: 249 |
|
07.07.2013, 20:07 [ТС] |
7 |
Рисунок не доступен пишет.
0 |
4216 / 3411 / 396 Регистрация: 15.06.2009 Сообщений: 5,818 |
|
07.07.2013, 21:35 |
8 |
Известны координаты точек А(x1,y1), С(x2,y2). Условие некорректно – переопределено. Две заданных вершины тем самым уже определяют и длину одной стороны.
0 |
39 / 28 / 8 Регистрация: 14.04.2012 Сообщений: 249 |
|
07.07.2013, 23:27 [ТС] |
9 |
Условие некорректно – переопределено. Две заданных вершины тем самым уже определяют и длину одной стороны. Длина и координаты две разные вещи.
0 |
2525 / 1751 / 152 Регистрация: 11.08.2012 Сообщений: 3,349 |
|
07.07.2013, 23:52 |
10 |
Длина и координаты две разные вещи. А Том Ардер другого и не утверждал. Читайте внимательнее.
0 |
1764 / 968 / 180 Регистрация: 24.02.2013 Сообщений: 2,782 Записей в блоге: 12 |
|
08.07.2013, 11:23 |
11 |
Сообщение было отмечено как решение Решение
Добрый день, подскажите как найти координаты третьей вершины треугольника? Вот картинка. Миниатюры
3 |
39 / 28 / 8 Регистрация: 14.04.2012 Сообщений: 249 |
|
08.07.2013, 14:48 [ТС] |
12 |
А как вы выделили x и y из формулы?
0 |
1764 / 968 / 180 Регистрация: 24.02.2013 Сообщений: 2,782 Записей в блоге: 12 |
|
09.07.2013, 09:13 |
13 |
Справа на картинке записана система двух уравнениий – уравнений окружностей.Решив систему, получаем координаты двух точек. т.е. точек В может быть две.
0 |
39 / 28 / 8 Регистрация: 14.04.2012 Сообщений: 249 |
|
09.07.2013, 14:03 [ТС] |
14 |
проблема в том, что я не знаю как решить уравнение окружностей(
0 |
107 / 102 / 9 Регистрация: 29.06.2013 Сообщений: 369 |
|
09.07.2013, 14:11 |
15 |
Раскройте скобки, вычтите из 1 уравнения другое. Уйдут квадраты, выразите одну переменную через другую. Подставите в 1 исходное.
0 |
1764 / 968 / 180 Регистрация: 24.02.2013 Сообщений: 2,782 Записей в блоге: 12 |
|
09.07.2013, 15:16 |
16 |
Только проще сначала вычесть из первого уравнение второе, затем воспользоваться формулой разности квадратов.
1 |
0 / 0 / 0 Регистрация: 10.04.2016 Сообщений: 7 |
|
28.04.2016, 22:07 |
17 |
А можно решить как-нибудь без системы уравнений?
0 |
0 / 0 / 0 Регистрация: 08.04.2019 Сообщений: 6 |
|
10.04.2019, 13:19 |
18 |
Я тоже был бы не против без системы уравнений
0 |
1471 / 826 / 140 Регистрация: 12.10.2013 Сообщений: 5,456 |
|||||
10.04.2019, 21:50 |
19 |
||||
del Для чего тут система уравнений?
Нормализуем вектор AC и множим на длину AB стороны и крутим матрицей поворота в 2д на нужный угол. Угол треугольника найти по трем сторонам. Эх раньше бы и рис и формулы кинул…но теперь лень =). Может кто из гуру не полениться…
0 |
pro4vayder 1 / 1 / 0 Регистрация: 25.05.2016 Сообщений: 2 |
||||
04.11.2020, 09:49 |
20 |
|||
Прошу глянуть решение здесь. Ответ выше был близок к ответу, но человеку далекому от математики (мне) – это не особо было понятно. P.S решение выводит 2 ответа точек пересечения Кликните здесь для просмотра всего текста http://algolist.ru/maths/geom/… rcle2d.php
1 |
IT_Exp Эксперт 87844 / 49110 / 22898 Регистрация: 17.06.2006 Сообщений: 92,604 |
04.11.2020, 09:49 |
20 |
Как найти координаты третьей вершины?
Дано:
- координаты двух других вершин AxAy и BxBy
- углы α и β
- длины всех сторон AB, BC, AC
Найти координаты третьей вершины CxCy.
Прошу помочь в нахождении формул.
-
Вопрос заданболее трёх лет назад
-
23466 просмотров
Пригласить эксперта
Добавлю свой ответ.
Оформил в виде google sheet.
Triangle find third coordinates
Просто подставляем свои координаты 2-х точек и длины сторон, получаем результат.
Моя имплементация на Паскале решения задачи поиска третьей вершины прямоугольного треугольника для случая, когда даны:
- координаты вершины прямого угла;
- координаты второй вершины;
- и гипотенуза.
Идею для решения взял тут.
При такой постановке задача имеет два решения.
Два решения на примере египетского треугольника
Блок-схема
Вывод программы
-
Показать ещё
Загружается…
16 мая 2023, в 10:19
5000 руб./за проект
16 мая 2023, в 09:57
1000 руб./за проект
16 мая 2023, в 09:57
5000 руб./за проект
Минуточку внимания
-
CrazyWalker
- Сообщения: 1
- Зарегистрирован: 29 янв 2018, 09:55
Даны две вершины треугольника А(-4,1,2) и B(3,5,-16). Найти третью вершину C
Сообщение
CrazyWalker » 29 янв 2018, 09:58
Всем доброго дня!
Даны две вершины треугольника А(-4,1,2) и B(3,5,-16). Найти третью вершину C, зная, что середина стороны АС лежит на оси Ox, а середина стороны BC – на плоскости Oyz.
Я так понимаю, что координаты середины AC (x,0,0) , а координаты середины BC (0,x,y)
Подскажите, пожалуйста, верно ли я рассуждаю и в каком направлении нужно двигаться
-
Алексей
- Администратор
- Сообщения: 1680
- Зарегистрирован: 18 янв 2014, 03:13
Re: Даны две вершины треугольника А(-4,1,2) и B(3,5,-16). Найти третью вершину C
Сообщение
Алексей » 29 янв 2018, 12:36
Для начала стоит ввести некую систему обозначений для заданных точек. Мне удобны обозначения, показанные на рисунке:
- Отправка.png (9.6 КБ) 7188 просмотров
Что касается самого решения: есть несколько путей. Мне кажется наиболее быстрым решение через векторы. Так как точки (M) и (F) – середины соответствующих сторон, то (overline{AC}=2cdotoverline{AM}), (overline{BC}=2cdotoverline{BF}). Из равенства (overline{AC}=2cdotoverline{AM}) получим (y_C=-1), (z_C=-2). Из равенства (overline{BC}=2cdotoverline{BF}) вы получите первую координату, т.е. (x_C).
“Именно то, что наиболее естественно, менее всего подобает человеку.” Братья Стругацкие, “Хромая судьба”