Как найти тупой угол между прямыми

Данный материал посвящен такому понятию, как угол между двумя пересекающимися прямыми. В первом пункте мы поясним, что он из себя представляет, и покажем его на иллюстрациях. Потом разберем, какими способами можно найти синус, косинус этого угла и сам угол (отдельно рассмотрим случаи с плоскостью и трехмерным пространством), приведем нужные формулы и покажем на примерах, как именно они применяются на практике.

Что такое угол между пересекающимися прямыми

Для того чтобы понять, что такое угол, образующийся при пересечении двух прямых, нам потребуется вспомнить само определение угла, перпендикулярности и точки пересечения.

Определение 1

Мы называем две прямые пересекающимися, если у них есть одна общая точка. Эта точка называется точкой пересечения двух прямых.

Каждая прямая разделяется точкой пересечения на лучи. Обе прямые при этом образуют 4 угла, из которых два – вертикальные, а два – смежные. Если мы знаем меру одного из них, то можем определить и другие оставшиеся.

Допустим, нам известно, что один из углов равен α. В таком случае угол, который является вертикальным по отношению к нему, тоже будет равен α. Чтобы найти оставшиеся углы, нам надо вычислить разность 180°-α. Если α будет равно 90 градусам, то все углы будут прямыми. Пересекающиеся под прямым углом линии называются перпендикулярными (понятию перпендикулярности посвящена отдельная статья).

Взгляните на рисунок:

Что такое угол между пересекающимися прямыми

Перейдем к формулированию основного определения.

Определение 2

Угол, образованный двумя пересекающимися прямыми – это мера меньшего из 4-х углов, которые образуют две эти прямые.

Из определения нужно сделать важный вывод: размер угла в этом случае будет выражен любым действительным числом в интервале (0, 90]. Если прямые являются перпендикулярными, то угол между ними в любом случае будет равен 90 градусам.

Что такое угол между пересекающимися прямыми

Как найти угол между пересекающимися прямыми на плоскости

Умение находить меру угла между двумя пересекающимися прямыми полезно для решения многих практических задач. Метод решения можно выбрать из нескольких вариантов.

Для начала мы можем взять геометрические методы. Если нам известно что-то о дополнительных углах, то можно связать их с нужным нам углом, используя свойства равных или подобных фигур. Например, если мы знаем стороны треугольника и нужно вычислить угол между прямыми, на которых эти стороны расположены, то для решения нам подойдет теорема косинусов. Если у нас в условии есть прямоугольный треугольник, то для подсчетов нам также пригодится знание синуса, косинуса и тангенса угла.

Координатный метод тоже весьма удобен для решения задач такого типа. Поясним, как правильно его использовать.

У нас есть прямоугольная (декартова) система координат Oxy, в которой заданы две прямые. Обозначим их буквами a и b. Прямые при этом можно описать с помощью каких-либо уравнений. Исходные прямые имеют точку пересечения M. Как определить искомый угол (обозначим его α) между этими прямыми?

Начнем с формулировки основного принципа нахождения угла в заданных условиях.

Нам известно, что с понятием прямой линии тесно связаны такие понятия, как направляющий и нормальный вектор. Если у нас есть уравнение некоторой прямой, из него можно взять координаты этих векторов. Мы можем сделать это сразу для двух пересекающихся прямых.

Угол, образуемый двумя пересекающимися прямыми, можно найти с помощью:

  • угла между направляющими векторами;
  • ­угла между нормальными векторами;
  • угла между нормальным вектором одной прямой и направляющим вектором другой.

Теперь рассмотрим каждый способ отдельно.

1. Допустим, что у нас есть прямая a с направляющим вектором a→=(ax, ay) и прямая b с направляющим вектором b→(bx, by). Теперь отложим два вектора a→ и b→ от точки пересечения. После этого мы увидим, что они будут располагаться каждый на своей прямой. Тогда у нас есть четыре варианта их взаимного расположения. См. иллюстрацию:

Как найти угол между пересекающимися прямыми на плоскости

Если угол между двумя векторами не является тупым, то он и будет нужным нам углом между пересекающимися прямыми a и b. Если же он тупой, то искомый угол будет равен углу, смежному с углом a→, b→^. Таким образом, α=a→, b→^ в том случае, если a→, b→^≤90° , и α=180°-a→, b→^, если a→, b→^>90°.

Исходя из того, что косинусы равных углов равны, мы можем переписать получившиеся равенства так: cos α=cos a→, b→^, если a→, b→^≤90°; cos α=cos180°-a→, b→^=-cosa→, b→^, если a→, b→^>90°.

Во втором случае были использованы формулы приведения. Таким образом,

cos αcosa→, b→^, cosa→, b→^≥0-cosa→, b→^, cosa→, b→^<0⇔cos α=cosa→, b→^

Запишем последнюю формулу словами:

Определение 3

Косинус угла, образованного двумя пересекающимися прямыми, будет равен модулю косинуса угла между его направляющими векторами.

Общий вид формулы косинуса угла между двумя векторами a→=(ax, ay) и b→=(bx, by) выглядит так:

cosa→, b→^=a→, b→^a→·b→=ax·bx+ay·byax2+ay2·bx2+by2

Из нее мы можем вывести формулу косинуса угла между двумя заданными прямыми:

cos α=ax·bx+ay·byax2+ay2·bx2+by2=ax·bx+ay·byax2+ay2·bx2+by2

Тогда сам угол можно найти по следующей формуле:

α=arccosax·bx+ay+byax2+ay2·bx2+by2

Здесь a→=(ax, ay) и b→=(bx, by) – это направляющие векторы заданных прямых.

Приведем пример решения задачи.

Пример 1

В прямоугольной системе координат на плоскости заданы две пересекающиеся прямые a и b. Их можно описать параметрическими уравнениями x=1+4·λy=2+λλ∈R и x5=y-6-3. Вычислите угол между этими прямыми.

Решение

У нас в условии есть параметрическое уравнение, значит, для этой прямой мы сразу можем записать координаты ее направляющего вектора. Для этого нам нужно взять значения коэффициентов при параметре, т.е. прямая x=1+4·λy=2+λλ∈R будет иметь направляющий вектор a→=(4, 1).

Вторая прямая описана с помощью канонического уравнения x5=y-6-3. Здесь координаты мы можем взять из знаменателей. Таким образом, у этой прямой есть направляющий вектор b→=(5, -3).

Далее переходим непосредственно к нахождению угла. Для этого просто подставляем имеющиеся координаты двух векторов в приведенную выше формулу α=arccosax·bx+ay+byax2+ay2·bx2+by2. Получаем следующее:

α=arccos4·5+1·(-3)42+12·52+(-3)2=arccos1717·34=arccos12=45°

Ответ: данные прямые образуют угол в 45 градусов.

Мы можем решить подобную задачу с помощью нахождения угла между нормальными векторами. Если у нас есть прямая a с нормальным вектором na→=(nax, nay) и прямая b с нормальным вектором nb→=(nbx, nby), то угол между ними будет равен углу между na→ и nb→ либо углу, который будет смежным с na→, nb→^. Этот способ показан на картинке:

Как найти угол между пересекающимися прямыми на плоскости

Формулы для вычисления косинуса угла между пересекающимися прямыми и самого этого угла с помощью координат нормальных векторов выглядят так:

cos α=cosna→, nb→^=nax·nbx+nay+nbynax2+nay2·nbx2+nby2α=arccosnax·nbx+nay+nbynax2+nay2·nbx2+nby2

Здесь na→ и nb→ обозначают нормальные векторы двух заданных прямых.

Пример 2

В прямоугольной системе координат заданы две прямые с помощью уравнений 3x+5y-30=0 и x+4y-17=0. Найдите синус, косинус угла между ними и величину самого этого угла.

Решение

Исходные прямые заданы с помощью нормальных уравнений прямой вида Ax+By+C=0. Нормальный вектор обозначим n→=(A, B). Найдем координаты первого нормального вектора для одной прямой и запишем их: na→=(3, 5). Для второй прямой x+4y-17=0 нормальный вектор будет иметь координаты nb→=(1, 4). Теперь добавим полученные значения в формулу и подсчитаем итог:

cos α=cosna→, nb→^=3·1+5·432+52·12+42=2334·17=23234

Если нам известен косинус угла, то мы можем вычислить его синус, используя основное тригонометрическое тождество. Поскольку угол α, образованный прямыми, не является тупым, то sin α=1-cos2α=1-232342=7234.

В таком случае α=arccos23234=arcsin7234.

Ответ: cos α=23234, sin α=7234, α=arccos23234=arcsin7234

Разберем последний случай – нахождение угла между прямыми, если нам известны координаты направляющего вектора одной прямой и нормального вектора другой.

Допустим, что прямая a имеет направляющий вектор a→=(ax, ay), а прямая b – нормальный вектор nb→=(nbx, nby). Нам надо отложить эти векторы от точки пересечения и рассмотреть все варианты их взаимного расположения. См. на картинке:

Как найти угол между пересекающимися прямыми на плоскости

Если величина угла между заданными векторами не более 90 градусов, получается, что он будет дополнять угол между a и b до прямого угла.

a→, nb→^=90°-α в том случае, если a→, nb→^≤90°.

Если он менее 90 градусов, то мы получим следующее:

a→, nb→^>90° , тогда a→, nb→^=90°+α

Используя правило равенства косинусов равных углов, запишем:

cosa→, nb→^=cos(90°-α)=sin α при a→, nb→^≤90°.

cosa→, nb→^=cos90°+α=-sin α при a→, nb→^>90°.

Таким образом,

sin α=cosa→, nb→^, a→, nb→^≤90°-cosa→, nb→^, a→, nb→^>90°⇔sin α=cosa→, nb→^, a→, nb→^>0-cosa→, nb→^, a→, nb→^<0⇔⇔sin α=cosa→, nb→^

Сформулируем вывод.

Определение 4

Чтобы найти синус угла между двумя прямыми, пересекающимися на плоскости, нужно вычислить модуль косинуса угла между направляющим вектором первой прямой и нормальным вектором второй.

Запишем необходимые формулы. Нахождение синуса угла:

sin α=cosa→, nb→^=ax·nbx+ay·nbyax2+ay2·nbx2+nby2

Нахождение самого угла:

 α=arcsin=ax·nbx+ay·nbyax2+ay2·nbx2+nby2

Здесь a→ является направляющим вектором первой прямой, а nb→ – нормальным вектором второй.

Пример 3

Две пересекающиеся прямые заданы уравнениями x-5=y-63 и x+4y-17=0. Найдите угол пересечения.

Решение

Берем координаты направляющего и нормального вектора из заданных уравнений. Получается a→=(-5, 3) и n→b=(1, 4). Берем формулу  α=arcsin=ax·nbx+ay·nbyax2+ay2·nbx2+nby2 и считаем:

 α=arcsin=-5·1+3·4(-5)2+32·12+42=arcsin7234

Обратите внимание, что мы взяли уравнения из предыдущей задачи и получили точно такой же результат, но другим способом.

Ответ: α=arcsin 7234

Приведем еще один способ нахождения нужного угла с помощью угловых коэффициентов заданных прямых.

У нас есть прямая a, которая задана в прямоугольной системе координат с помощью уравнения y=k1·x+b1, и прямая b, заданная как y=k2·x+b2. Это уравнения прямых с угловым коэффициентом. Чтобы найти угол пересечения, используем формулу:

α=arccosk1·k2+1k12+1·k22+1, гдеk1 и k2 являются угловыми коэффициентами заданных прямых. Для получения этой записи были использованы формулы определения угла через координаты нормальных векторов.

Пример 4

Есть две пересекающиеся на плоскости прямые, заданные уравнениями y=-35x+6 и y=-14x+174. Вычислите величину угла пересечения.

Решение

Угловые коэффициенты наших прямых равны k1=-35 и k2=-14. Добавим их в формулу α=arccosk1·k2+1k12+1·k22+1 и подсчитаем:

α=arccos-35·-14+1-352+1·-142+1=arccos23203424·1716=arccos23234

Ответ: α=arccos23234

В выводах этого пункта следует отметить, что приведенные здесь формулы нахождения угла не обязательно учить наизусть. Для этого достаточно знать координаты направляющих и/или нормальных векторов заданных прямых и уметь определять их по разным типам уравнений. А вот формулы для вычисления косинуса угла лучше запомнить или записать.

Как вычислить угол между пересекающимися прямыми в пространстве

Вычисление такого угла можно свести к вычислению координат направляющих векторов и определению величины угла, образованного этими векторами. Для таких примеров используются такие же рассуждения, которые мы приводили до этого.

Допустим, что у нас есть прямоугольная система координат, расположенная в трехмерном пространстве. В ней заданы две прямые a и b с точкой пересечения M. Чтобы вычислить координаты направляющих векторов, нам нужно знать уравнения этих прямых. Обозначим направляющие векторы a→=(ax, ay, az) и b→=(bx, by, bz). Для вычисления косинуса угла между ними воспользуемся формулой:

cos α=cosa→, b→^=a→, b→a→·b→=ax·bx+ay·by+az·bzax2+ay2+az2·bx2+by2+bz2

Для нахождения самого угла нам понадобится эта формула:

α=arccosax·bx+ay·by+az·bzax2+ay2+az2·bx2+by2+bz2

Пример 5

У нас есть прямая, заданная в трехмерном пространстве с помощью уравнения x1=y-3=z+3-2. Известно, что она пересекается с осью Oz. Вычислите угол пересечения и косинус этого угла.

Решение

Обозначим угол, который надо вычислить, буквой α. Запишем координаты направляющего вектора для первой прямой – a→=(1, -3, -2). Для оси аппликат мы можем взять координатный вектор k→=(0, 0, 1) в качестве направляющего. Мы получили необходимые данные и можем добавить их в нужную формулу:

cos α=cosa→, k→^=a→, k→a→·k→=1·0-3·0-2·112+(-3)2+(-2)2·02+02+12=28=12

В итоге мы получили, что нужный нам угол будет равен arccos12=45°.

Ответ: cos α=12, α=45°.

Определение угла между прямыми

Угол между прямыми

Две прямые называются пересекающимися, если они имеют единственную общую точку. Эта точка называется точкой пересечения прямых. Прямые разбиваются точкой пересечения на лучи, которые образуют четыре неразвернутых угла, среди которых две пары вертикальных углов и четыре пары смежных углов. Если известен размер одного из углов, образованных пересекающимися прямыми, то легко определить размер остальных углов. Если один из углов прямой, то все остальные тоже прямые, а прямые перпендикулярны.

Определение Угол между прямыми – размер наименьшего из углов, образованных этими прямыми.

Угол между прямыми на плоскости

Угол между прямыми заданными уравнениями с угловым коэффициентом

Если две прямые заданы уравнениями с угловым коэффициентом

y = k1x + b1,
y = k2x + b2,

то угол между ними можно найти, используя формулу:

Если знаменатель равен нулю (1 + k1·k2 = 0), то прямые перпендикулярны.

Угол между прямыми

Доказательство. Если прямые заданы уравнениями с угловыми коэффициентами, то легко найти углы между этими прямыми и осью OX

tg α = k1
tg β = k2

Соответственно легко найти угол между прямыми

γ = αβ

tg γ = tg (α – β) = tg αtg β1 + tg α ·tg β = k1k21 + k1·k2

Угол между прямыми через направляющие векторы этих прямых

Угол между прямыми

Если a – направляющий вектор первой прямой и b – направляющий вектор второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если уравнение прямой задано параметрически

x = l t + ay = m t + b

то вектор направляющей имеет вид {l; m}

Если уравнение прямой задано как

A x + B y + C = 0

то для вычисления направляющего вектора, можно взять две точки на прямой.
Например, если C ≠ 0, A ≠ 0, C ≠ 0 , при x = 0 => y = -CB значит точка на прямой имеет координаты K(0, -CB), при y = 0 => x = -CA значит точка на прямой имеет координаты M(-CA, 0). Вектор направляющей KM = {-CA; CB}.

Если дано каноническое уравнение прямой

xx0 l = yy0m

то вектор направляющей имеет вид {l; m}

Если задано уравнение прямой с угловым коэффициентом

y = kx + b

то для вычисления направляющего вектора, можно взять две точки на прямой, например, при x = 0 => y = b значит точка на прямой имеет координаты K(0, b), при x = 1 => y = k + b значит точка на прямой имеет координаты M(1, k + b). Вектор направляющей KM = {1; k}

Угол между прямыми через векторы нормалей этих прямых

Угол между прямыми

Если a – вектор нормали первой прямой и b – вектор нормали второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если уравнение прямой задано как

A x + B y + C = 0

то вектор нормали имеет вид {A; B}

Если задано уравнение прямой с угловым коэффициентом

y = kx + b

то вектор нормали имеет вид {1; –k}

Угол между прямыми через направляющий вектор и вектор нормали этих прямых

Угол между прямыми

Если a – направляющий вектор первой прямой и b – вектор нормали второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

sin φ = |a · b||a| · |b|

Примеры задач на вычисления угла между прямыми на плоскости

Угол между прямыми

Пример 1. Найти угол между прямыми y = 2x – 1 и y = -3x + 1.

Решение: Воспользуемся формулой для вычисления угла между прямыми заданными уравнениями с угловым коэффициентом:

tg γ =

k1k21 + k1·k2

=

2 – (-3)1 + 2·(-3)

=

5-5

= 1

Ответ. γ = 45°

Угол между прямыми

Пример 2. Найти угол между прямыми y = 2x – 1 и x = 2t + 1y = t.

Решение: Воспользуемся формулой для вычисления угла между прямыми у которых известны направляющие векторы.

Для первой прямой направляющий вектор {1; 2}, для второй прямой направляющий вектор {2; 1}

cos φ =

|1 · 2 + 2 · 1|12 + 22 · 22 + 12

=

45 · 5

= 0.8

Ответ. φ ≈ 36.87°

Пример 3 Найти угол между прямыми 2x + 3y = 0 и

x – 23

=

y4

.

Решение: Для решения этой задачи можно найти направляющие векторы и вычислить угол через направляющие векторы или преобразовать уравнения в уравнения с угловым коэффициентом и вычислить угол через угловые коэффициенты.

Преобразуем имеющиеся уравнения в уравнения с угловым коэффициентом.

2x + 3y = 0 => y = -23x   (k1 = -23)

x – 23 = y4 => y = 43x – 83   (k2 = 43)

tg γ =

k1k21 + k1·k2

=

-23 – 431 + (-23)·43

=

-631 – 89

= 18

Ответ. γ ≈ 86.82°

Угол между прямыми в пространстве

Если a – направляющий вектор первой прямой, а b – направляющий вектор второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если дано каноническое уравнение прямой

xx0 l = yy0m = zz0n

то направляющий вектор имеет вид {l; m; n}

Если уравнение прямой задано параметрически

x = l t + ay = m t + bz = n t + c

то направляющий вектор имеет вид {l; m; n}

Пример 4. Найти угол между прямыми

x = 2t + 1y = tz = -t – 1

и

x = t + 2y = -2t + 1z = 1

.

Решение: Так как прямые заданы параметрически, то {2; 1; -1} – направляющий вектор первой прямой, {1; -2; 0} направляющий вектор второй прямой.

cos φ =

|2 · 1 + 1 · (-2) + (-1) · 0|22 + 12 + (-1)2 · 12 + (-2)2 + 02

=

06 · 5

= 0

Ответ. φ = 90°

Пример 5 Найти угол между прямыми

x – 23

=

y4

=

z – 35

и –

x – 22

= 1 – 3y =

3z – 52

.

Решение: Для решения этой задачи найдем направляющие векторы этих прямых.

Уравнение первой прямой задано в канонической форме, поэтому направляющий вектор {3; 4; 5}.

Преобразуем второе уравнение к каноническому вид.

x – 22 = x – 2-2

1 – 3y = 1 + y-1/3 = y – 1/3-1/3

3z – 52 = z – 5/32/3

Получено уравнение второй прямой в канонической форме

x – 2-2 = y – 1/3-1/3 = z – 5/32/3

{-2; -13; 23} – направляющий вектор второй прямой.

cos φ =

3·(-2) + 4·(-13) + 5·2332 + 42 + 52 · (-2)2 + (-13)2 + (23)2

=

-6 – 43 + 1039 + 16 + 25 · 4 + 19 + 49

=

-450 · 41/9

=

12582

=

682205

Ответ. φ ≈ 74.63°



2.5.7. Как найти угол между прямыми?

Новая картинка за очередным поворотом:
В геометрии за угол между двумя прямыми принимается

МЕНЬШИЙ угол, из чего автоматически следует, что он не может быть тупым. На рисунке угол, обозначенный красной дугой, не считается углом

между пересекающимися прямыми. А считается таковым его «зелёный» сосед  или

отрицательно ориентированный «малиновый» угол . Если прямые

перпендикулярны, то за угол между ними можно принять любой из 4 углов.
…что-то не понятно? Срочно изучаем Приложение Тригонометрия!

Однако ещё раз: чем отличаются углы ? Ориентацией (направлением «прокрутки» угла).

Напоминаю, что отрицательно ориентированный угол «прокручивается» по часовой стрелке и записывается со знаком «минус».

Следует отметить, что ориентацию угла часто не принимают во внимание, и рассматривают «просто угол», который .

Как найти угол между двумя прямыми? Существуют три основные формулы.

Способ первый. Рассмотрим две прямые, заданные общими уравнениями в декартовой системе

координат:

Если , то прямые перпендикулярны ( либо ).

Если , то прямые не перпендикулярны и ориентированный угол  между ними можно вычислить с помощью

формулы:

Знаменатель этой формулы – в точности, скалярное произведение направляющих векторов: ,

которое равно нулю тогда и только тогда, когда векторы ортогональны. …надеюсь, не забыли.

Задача 83

Найти угол между прямыми , заданными в декартовой системе координат.

Исходя из вышесказанного, решение удобно оформить в два шага:

1) Вычислим произведение:
, значит, прямые не перпендикулярны.

2) Угол между прямыми найдём с помощью формулы:

И с помощью обратной функции (см. Приложение Тригонометрия) легко найти сам угол, при этом используем нечётность арктангенса:

Ответ:

В ответе указываем точное значение, а также приближённое значение (желательно и в градусах, и в радианах), вычисленное с помощью

калькулятора.
Ну, минус, так минус, ничего страшного, вот геометрическая иллюстрация:

Неудивительно, что угол получился отрицательной ориентации, ведь в условии задачи «первым номером» идёт прямая  и «открутка» угла началась именно с неё. Если очень хочется получить положительное значение, то нужно

поменять прямые местами, то есть коэффициенты  взять из второго уравнения , а коэффициенты  – из первого уравнения . Короче

говоря, начать нужно
с прямой .

Скрывать не буду, сам подбираю прямые в том порядке, чтобы угол получился положительным. Так красивее, но не более того.

Способ второй, он удобен, когда прямые заданы уравнениями с

угловым коэффициентом:  (в декартовых координатах).

Если , то прямые перпендикулярны ( либо ).

Если , то ориентированный угол  между ними можно найти с помощью формулы:
, и на самом деле это частный случай предыдущей формулы.

К слову, из равенства  следует полезная взаимосвязь угловых

коэффициентов перпендикулярных прямых: , которая используется в некоторых

задачах.

Решим Задачу 83 вторым способом, для этого перепишем прямые в нужном виде:

Таким образом, угловые коэффициенты: , и алгоритм похож:

1) Проверим, будут ли прямые перпендикулярны:
, значит, прямые не перпендикулярны.

2) Используем формулу:

Ответ:

И третий способ состоит нахождении угла между направляющими векторами прямых с помощью скалярного произведения: , но здесь не принимается во внимание ориентация угла (по любому получится ). Кроме того, он может оказаться тупым, и тогда придётся делать оговорку, что угол между

прямыми – это меньший угол, и из  радиан (не из !) вычитать получившийся арккосинус.

Какой способ выбрать? Ориентируйтесь на вашу задачу, методичку или ситуацию.

Задача 84

Найти угол между прямыми .

Самостоятельно, всеми тремя способами! Решение и ответ в конце книги.

И по просьбам учащихся ещё один пункт:

2.5.8. Как найти проекцию вектора на прямую?

2.5.6. Как найти расстояние между параллельными прямыми?

| Оглавление |



Автор: Aлeксaндр Eмeлин

Угол между прямыми онлайн

С помощью этого онлайн калькулятора можно найти угол между прямыми. Дается подробное решение с пояснениями. Для вычисления угла между прямыми, задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), выберите вид уравнения (канонический, параметрический, общий (для двухмерного пространства)), введите данные в ячейки и нажмите на кнопку “Решить”. Теоретическую часть и численные примеры смотрите ниже.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

1. Угол между прямыми на плоскости

Прямые заданы каноническими уравнениями

1.1. Определение угла между прямыми

Пусть в двухмерном пространстве прямые L1 и L2 заданы каноническими уравнениями

и

где q1=(m1, p1) направляющий вектор прямой L1, а q2=(m2, p2) направляющий вектор прямой L2.

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 (рис.1).

Из определения скалярного произведения:

где |q1| и |q2| модули направляющих векторов q1 и q2 соответственно, φ -угол между векторами q1 и q2.

Из выражения (1.3) получим:

Таким образом, из формулы (1.4) можно найти угол между прямыми L1 и L2. Как видно из Рис.1 пересекающиеся прямые образуют смежные углы φ и φ1. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (1.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

и

Решение. Прямая (1.5) имеет направляющий вектор q1=(m1, p1)=(3, 4), а прямая (1.6) − q2=(m2, p2)=(− 3, 1). Для определения угла между прямыми (1.5) и (1.6) подставим значения m1, p1, m2, p2 в (1.4):

Упростим и решим:

Найдем угол φ

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

Ответ.

Угол между прямыми равен:

1.2. Условие параллельности прямых

Пусть φ=0. Тогда cosφ=1. При этом выражение (1.4) примет следующий вид:

Сделаем преобразования с выражением (1.7):

Таким образом условие параллельности прямых L1 и L2 имеет вид (1.8). Если m2≠0 и p2≠0, то (1.8) можно записать так:

Пример 2. Определить, параллельны ли прямые

и

Решение. Прямая (1.10) имеет направляющий вектор q1=(m1, p1)=(3, 3), а прямая (1.11) − q2=(m2, p2)=(−2, −2). Тогда

Удовлетворяется равенство (1.9), следовательно прямые (1.10) и (1.11) параллельны.

Ответ. Прямые (1.10) и (1.11) параллельны.

1.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (1.4) примет следующий вид:

Правая часть выражения (1.12) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Пример 3. Определить, перпендикулярны ли прямые

и

Решение. Прямая (1.14) имеет направляющий вектор q1=(m1, p1)=(3, 1), а прямая (1.15) − q2=(m2, p2)=(−2, 6). Тогда

Удовлетворяется условие (1.13), следовательно прямые (1.14) и (1.15) перпендикулярны.

Ответ. Прямые (1.14) и (1.15) перпендикулярны.

Прямые заданы общими уравнениями

1.4. Определение угла между прямыми

Пусть две прямые L1 и L2 заданы общими уравнениями

и

Так как нормальным вектором прямой L1 является n1=(A1, B1), а нормальным вектором прямой L2 является n2=(A2, B2), то задача об определении угла между прямыми L1 и L2 сводится к определению угла φ между векторами n1 и n2 (Рис.2).

Из определения скалярного произведения двух векторов, имеем:

где |n1| и |n2| модули нормальных векторов n1 и n2 соответственно, φ -угол между векторами n1 и n2.

Из уравнения (19) получим

Пример 4. Найти угол между прямыми

и

Решение. Прямая (1.21) имеет нормальный вектор n1=(A1, B1)=(5, −2), а прямая (1.22) − n2=(A2, B2)=(1, 3). Задача определения угла между прямыми L1 и L2 сводится к определению угла между векторами n1 и n2. Из определения скалярного произведения векторов имеем: (n1,n2)=|n1||n2|cosφ. Тогда

Подставляя значения A1, B1, A2, B2 в (1.23), получим:

Упростим и решим:

Найдем угол φ:

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

1.5. Условие параллельности прямых

Так как угол между паралленьными прямыми равен нулю, то φ=0, cos(φ)=1. Тогда сделав преобразования, представленные выше для канонических уравнений прямых получим условие параллельности:

С другой стороны условие параллельности прямых L1 и L2 эквивалентно условию коллинеарности векторов n1 и n2 и можно представить так:

Как видим уравнения (1.24) и (1.25) эквивалентны при A2≠0 и B2≠0. Если в координатах нормальных векторов существует нулевой коэффициент, то нужно использовать уравнение (1.24).

Пример 5. Определить, параллельны ли прямые

и

Решение. Прямая (1.26) имеет нормальный вектор n1=(A1, B1)=(4, 2), а прямая (1.27) − n2=(A2, B2)=(2, 1). Тогда подставляя значения A1, B1, A2, B2 в (1.24), получим

Удовлетворяется равенство (1.24), следовательно прямые (1.26) и (1.27) параллельны.

Ответ. Прямые (1.26) и (1.27) параллельны.

1.6. Условие перпендикулярности прямых

Условие перпендикулярности прямых L1 и L2 можно извлекать из формулы (1.20), подставляя cos(φ)=0. Тогда скалярное произведение (n1,n2)=0. Откуда

Таким образом условие перпендикулярности прямых определяется равенством (1.28).

Пример 6. Определить, перпендикулярны ли прямые

и

Решение. Прямая (1.29) имеет нормальный вектор n1=(A1, B1)=(4, −1), а прямая (1.30) − n2=(A2, B2)=(2, 8). Тогда подставляя значения A1, B1, A2, B2 в (28), получим

Удовлетворяется равенство (1.28), следовательно прямые (1.29) и (1.30) перпендикулярны.

Ответ. Прямые (1.29) и (1.30) перпендикулярны.

2. Угол между прямыми в пространстве

2.1. Определение угла между прямыми

Пусть в пространстве прямые L1 и L2 заданы каноническими уравнениями

и

где q1=(m1, p1, l1) направляющий вектор прямой L1, а q2=(m2, p2, l2) направляющий вектор прямой L2.

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 .

Из определения скалярного произведения:

где |q1| и |q2| модули направляющих векторов q1 и q2 соответственно, φ -угол между векторами q1 и q2.

Из выражения (2.3) получим:

Таким образом, из формулы (2.4) можно найти угол между прямыми L1 и L2. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (2.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

и

Решение. Прямая (2.5) имеет направляющий вектор q1=(m1, p1, l1)=(1, 1, 3), а прямая (2.6) − q2=(m2, p2, l2)=(− 3, 1, 2). Для определения угла между прямыми (2.5) и (2.6) подставим значения m1, p1, l1, m2, p2, l2 в (2.4):

Упростим и решим:

Найдем угол φ

Ответ.

Угол между прямыми равен:

2.2. Условие параллельности прямых

Условие параллельности прямых эквивалентно условию коллинеарности направляющих векторов q1 и q2, т.е. соответствующие координаты этих векторов пропорциональны. Пусть

где α − некоторое число. Тогда соответствующие координаты векторов q1 и q2 пропорциональны, и, следовательно прямые L1 и L2 параллельны.

Условие параллельности прямых можно представить и так:

Отметим, что любую пропорцию нужно понимать как равенство ad=bc.

Пример 2. Определить, параллельны ли прямые

и

Решение. Прямая (2.9) имеет направляющий вектор q1=(m1, p1, l1)=(3, 2, 4), а прямая (2.10) − q2=(m2, p2, l2)=(6, 4, 8). Тогда

Удовлетворяется равенство (2.8) (или (2.7)), следовательно прямые (2.9) и (2.10) параллельны.

Ответ. Прямые (2,9) и (2,10) параллельны.

Пример 3. Определить, параллельны ли прямые

и

Решение. Прямая (2.9) имеет направляющий вектор q1=(m1, p1, l1)=(1, 2, 0), а прямая (2.10) − q2=(m2, p2, l2)=(2, 4, 0). Подставляя значения m1, p1, l1, m2, p2, l2 в (2.8), получим

Выражение (2.13) нужно понимать так:

Как мы видим из (2.14) условия (2.13) выполняются. Следовательно прямые (2.11) и (2.12) параллельны.

Ответ. Прямые (2.11) и (2.12) параллельны.

2.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (2.4) примет следующий вид:

Правая часть выражения (2.15) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Пример 3. Определить, перпендикулярны ли прямые

и

Решение. Прямая (2.16) имеет направляющий вектор q1=(m1, p1, l1)=(3, 2, 1), а прямая (2.17) − q2=(m2, p2, l2)=(4, −6, 0). Тогда

Удовлетворяется условие (2.16), следовательно прямые (2.17) и (2.18) перпендикулярны.

Ответ. Прямые (2.17) и (2.18) перпендикулярны.

Две прямые на плоскости могут пересекаться,
быть параллельны, совпадать. Полезную
информацию о взаимном расположении
двух прямых дают направляющие векторы
и векторы нормали этих прямых. Например,
угол (острый или тупой) между прямыми
равен углу (острому или тупому) между
направляющими векторами этих прямых.
Этот же угол равен углу между нормалями
к этим прямым.

Расстояние

от точки

до прямой

можно вычислить по формуле:
.

Пример 7.

При каких значениях параметров

прямые

а) пересекаются в одной точке, б)
параллельны, но не совпадают, в)
совпадают?

Решение. Из общих уравнений прямых

найдем их нормальные векторы.

,

.

Если прямые параллельны или совпадают,
то
.
Следовательно, ответ на вопрос а) такой:
прямые

пересекаются в одной точке при
.

Если прямые совпадают, то помимо
пропорциональности координат векторов
,
система из дух уравнений

должна быть эквивалентна одному
уравнению.

Уравнение

должно быть пропорционально уравнению
.


Ответ на вопрос в): прямые совпадают
при
.

Ответ на вопрос б) вытекает из полученных
двух ответов: прямые параллельны, но не
совпадают при

таких, что

и
.

Пример 8.

Выяснить взаимное расположение прямых
:
,

:

.

Если прямые пересекаются, то найти точку
их пересечения и угол между прямыми.

Решение. Из параметрических уравнений
прямых
,
легко находятся их направляющие векторы
.

:

.

:

.

Координаты векторов

не пропорциональны, значит эти векторы
не коллинеарны и значит, прямые
,
пересекаются в одной точке. Эту точку

можно найти такими рассуждениями:

,

.

,

.
Эту точку можно по-другому. Из
параметрических уравнений найдем общие
уравнения прямых
,.
Система из общих уравнений прямых
определяет
.

:

.

:

.

.

Чтобы найти угол между прямыми, найдем
угол

между направляющими векторами
,

.

,

.
Данное значение

дает тупой угол между прямыми
,.

Острый угол между прямыми
,
равен
.

Пример 9. Стороны треугольника

лежат на прямых

заданных общими уравнениями.
.

Найти длину высоты

этого треугольника из вершины
.

Решение. Данная задача уже решена
примером 6. В отличие от используемых
там методов теперь найдем высоту

с использованием формулы расстояния
точки до прямой. Начало решения повторяет
решение в примере 6: находим точку

пересечения прямых

и
.

Теперь отходим от решения в примере 6 и
воспользуемся тем, что

равно расстоянию от точки

до прямой
.
Следовательно, по формуле


получаем
.

_________________________________________________________________________

Домашнее задание.

1. Найти каноническое, параметрические
и общее уравнения прямой, проходящей
через точки
.

2. Найти каноническое, параметрические
и общее уравнения прямой, проходящей
через точку

параллельно прямой
.

3. Найти каноническое, параметрические
и общее уравнения прямой, проходящей
через точку

перпендикулярно прямой
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий