Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 января 2022 года; проверки требуют 7 правок.
Молекулы имеют внутреннюю структуру, образованную атомами, которые могут совершать колебания внутри молекул. Кинетическая энергия, запасённая в этих колебаниях, отвечает не только за температуру вещества, но и за его теплоёмкость
Уде́льная теплоёмкость — это отношение теплоёмкости к массе, теплоёмкость единичной массы вещества (разная для различных веществ); физическая величина, численно равная количеству теплоты, которое необходимо передать единичной массе данного вещества для того, чтобы его температура изменилась на единицу[1].
В Международной системе единиц (СИ) удельная теплоёмкость измеряется в джоулях на килограмм на кельвин, Дж/(кг·К)[2]. Иногда используются и внесистемные единицы: калория/(кг·°C) и т. д.
Удельная теплоёмкость обычно обозначается буквами c или С, часто с индексами.
На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C. Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.); например, удельная теплоёмкость при постоянном давлении (CP) и при постоянном объёме (CV), вообще говоря, различны.
Формула расчёта удельной теплоёмкости:
где
- c — удельная теплоёмкость(от лат. capacite – емкость, вместимость),
- Q — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении),
- m — масса нагреваемого (охлаждающегося) вещества,
- ΔT — разность конечной и начальной температур вещества.
Удельная теплоёмкость зависит от температуры, поэтому более корректной является следующая формула с малыми (формально бесконечно малыми) и :
Значения удельной теплоёмкости некоторых веществ[править | править код]
Приведены значения удельной теплоёмкости при постоянном давлении (Cp).
Вещество | Агрегатное состояние |
Удельная теплоёмкость, кДж/(кг·K) |
---|---|---|
Водород | газ | 14,304[3] |
Аммиак | газ | 4,359—5,475 |
Гелий | газ | 5,193[3] |
Вода (300 К, 27 °C) | жидкость | 4,1806[4] |
Литий | твёрдое тело | 3,582[3] |
Этанол | жидкость | 2,438[5] |
Лёд (273 К, 0 °C) | твёрдое тело | 2,11[6] |
Водяной пар (373 К, 100 °C) | газ | 2,0784[4] |
Нефтяные масла | жидкость | 1,670—2,010 |
Бериллий | твёрдое тело | 1,825[3] |
Азот | газ | 1,040[3] |
Воздух (100 % влажность) | газ | 1,030 |
Воздух (сухой, 300 К, 27 °C) | газ | 1,007[7] |
Кислород (O2) | газ | 0,918[3] |
Алюминий | твёрдое тело | 0,897[3] |
Графит | твёрдое тело | 0,709[3] |
Стекло кварцевое | твёрдое тело | 0,703 |
Чугун | твёрдое тело | 0,554[8] |
Алмаз | твёрдое тело | 0,502 |
Сталь | твёрдое тело | 0,468[8] |
Железо | твёрдое тело | 0,449[3] |
Медь | твёрдое тело | 0,385[3] |
Латунь | твёрдое тело | |
Молибден | твёрдое тело | 0,251[3] |
Олово (белое) | твёрдое тело | 0,227[3] |
Ртуть | жидкость | 0,140[3] |
Вольфрам | твёрдое тело | 0,132[3] |
Свинец | твёрдое тело | 0,130[3] |
Золото | твёрдое тело | 0,129[3] |
Значения приведены для стандартных условий (T = +25 °C, P = 100 кПа), если это не оговорено особо. |
Вещество | Удельная теплоёмкость кДж/(кг·K) |
---|---|
Древесина | 1,700 |
Гипс | 1,090 |
Асфальт | 0,920 |
Талькохлорит | 0,980 |
Бетон | 0,880 |
Мрамор, слюда | 0,880 |
Стекло оконное | 0,840 |
Кирпич керамический красный | 0,840—0,880[10] |
Кирпич силикатный | 0,750—0,840[10] |
Песок | 0,835 |
Почва | 0,800 |
Гранит | 0,790 |
Стекло кронглас | 0,670 |
Стекло флинт | 0,503 |
Сталь | 0,470 |
См. также[править | править код]
- Теплоёмкость
- Объёмная теплоёмкость
- Молярная теплоёмкость
- Теплоёмкость идеального газа
Примечания[править | править код]
- ↑ Для неоднородного (по химическому составу) образца удельная теплоемкость является дифференциальной характеристикой , меняющейся от точки к точке. Зависит она в принципе и от температуры (хотя во многих случаях изменяется достаточно слабо при достаточно больших изменениях температуры), при этом строго говоря определяется — вслед за теплоёмкостью — как дифференциальная величина и по температурной оси, то есть строго говоря следует рассматривать изменение температуры в определении удельной теплоёмкости не на один градус (тем более не на какую-то более крупную единицу температуры), а на малое с соответствующим количеством переданной теплоты . (См. далее основной текст.)
- ↑ Кельвины (К) здесь можно заменять на градусы Цельсия (°C), поскольку эти температурные шкалы (абсолютная и шкала Цельсия) отличаются друг от друга лишь начальной точкой, но не величиной единицы измерения.
- ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 4-135. — 2828 p. — ISBN 1420090844.
- ↑ 1 2 CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 6-2. — 2828 p. — ISBN 1420090844.
- ↑ CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 15-17. — 2828 p. — ISBN 1420090844.
- ↑ CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 6-12. — 2828 p. — ISBN 1420090844.
- ↑ CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 6-17. — 2828 p. — ISBN 1420090844.
- ↑ 1 2 3 Paul Evans. Specific heat capacity of materials (англ.). The Engineering Mindset (16 октября 2016). Дата обращения: 14 июля 2019. Архивировано 14 июля 2019 года.
- ↑ Spezifische_Wärmekapazität. www.chemie.de. Дата обращения: 29 июня 2021. Архивировано 29 июня 2021 года.
- ↑ 1 2 Плотность и удельная теплоемкость кирпича: таблица значений Архивная копия от 22 марта 2019 на Wayback Machine.
Литература[править | править код]
- Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976.
- Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика.
- Лифшиц E. М. Теплоёмкость // под. ред. А. М. Прохорова Физическая энциклопедия. — М.: «Советская энциклопедия», 1998. — Т. 2.
Для того чтобы нагреть на определённую величину тела, взятые при одинаковой температуре, изготовленные из различных веществ, но имеющие одинаковую массу, требуется разное количество теплоты.
Пример:
для нагревания (1) кг воды на (1°C) требуется количество теплоты, равное (4200) Дж. А если нагревать (1) кг цинка на (1°C), то потребуется всего (400) Дж.
Удельная теплоёмкость вещества — физическая величина, численно равная количеству теплоты, которое необходимо передать веществу массой (1) кг для того, чтобы его температура изменилась на (1~°C).
([c]=1frac{Дж}{кг cdot °C}).
Пример:
по таблице удельной теплоёмкости твёрдых веществ находим, что удельная теплоёмкость алюминия составляет (c(Al)=920 frac{Дж}{кг cdot °C}). Поэтому при охлаждении (1) килограмма алюминия на (1) градус Цельсия ((°C)) выделяется (920) джоулей энергии. Столько же необходимо для нагревания (1) килограмма на алюминия на (1) градус Цельсия ((°C)).
Ниже представлены значения удельной теплоёмкости для некоторых веществ.
Твёрдые вещества
Вещество |
(c), Дж/(кг·°C) |
Алюминий |
(920) |
Бетон |
(880) |
Дерево |
(2700) |
Железо, сталь |
(460) |
Золото |
(130) |
Кирпич |
(750) |
Латунь |
(380) |
Лёд |
(2100) |
Медь |
(380) |
Нафталин |
(1300) |
Олово |
(230) |
Парафин |
(3200) |
Песок |
(970) |
Платина |
(130) |
Свинец |
(120) |
Серебро |
(240) |
Стекло |
(840) |
Цемент |
(800) |
Цинк |
(400) |
Чугун |
(550) |
Сера |
(710) |
Жидкости
Вещество |
(c), Дж/(кг·°C) |
Вода |
(4200) |
Глицерин |
(2400) |
Керосин |
(2140) |
Масло подсолнечное |
(1700) |
Масло трансформаторное |
(2000) |
Ртуть |
(120) |
Спирт этиловый |
(2400) |
Эфир серный |
(2300) |
Газы (при постоянном давлении и температуре (20°C))
Вещество |
(c), Дж/(кг·°C) |
Азот |
(1000) |
Аммиак |
(2100) |
Водород |
(14300) |
Водяной пар |
(2200) |
Воздух |
(1000) |
Гелий |
(5200) |
Кислород |
(920) |
Углекислый газ |
(830) |
Удельная теплоёмкость реальных газов, в отличие от идеальных газов, зависит от давления и температуры. И если зависимостью удельной теплоёмкости реальных газов от давления в практических задачах можно пренебречь, то зависимость удельной теплоёмкости газов от температуры необходимо учитывать, поскольку она очень существенна.
Обрати внимание!
Удельная теплоёмкость вещества, находящегося в различных агрегатных состояниях, различна.
Пример:
вода в жидком состоянии имеет удельную теплоёмкость, равную (4200) Дж/(кг·°C), в твёрдом состоянии (лёд) — (2100) Дж/(кг·°C), в газообразном состоянии (водяной пар) — (2200) Дж/(кг·°C).
Вода — вещество особенное, обладающее самой высокой среди жидкостей удельной теплоёмкостью. Но самое интересное, что теплоёмкость воды снижается при температуре от (0°C) до (37°C) и снова растёт при дальнейшем нагревании (рис. (1)).
Рис. (1). График удельной теплоёмкости воды
В связи с этим вода в морях и океанах, нагреваясь летом, поглощает из окружающей среды огромное количество теплоты. А зимой вода остывает и отдаёт в окружающую среду большое количество теплоты. Это явление оказывает влияние на климат данного региона. Летом здесь нет изнуряющей жары, а зимой — лютых морозов.
Высокая удельная теплоёмкость воды нашла широкое применение в различных областях: от медицинских грелок до систем отопления и охлаждения.
Задумывались ли вы, почему воду используют при тушении пожаров? Из-за большой теплоёмкости. При соприкосновении с горящим предметом вода забирает у него большое количество теплоты. Оно значительно больше, чем при использовании такого же количества любой другой жидкости.
Помимо непосредственного отвода тепла, вода гасит пламя ещё и косвенным образом. Водяной пар, образующийся при контакте с огнём, окутывает горящее тело, предотвращая поступление кислорода, без которого горение невозможно.
Какой водой эффективнее тушить огонь: горячей или холодной? Горячая вода тушит огонь быстрее, чем холодная. Дело в том, что нагретая вода скорее превратится в пар, а значит, и отсечёт поступление воздуха к горящему объекту.
Источники:
Рис. 1. Автор: Epop — собственная работа. Общественное достояние, https://commons.wikimedia.org/w/index.php?curid=10750129.
Определение удельной теплоемкости алюминия
Для
того, чтобы вычислить удельную теплоемкость
любого твердого тела по формуле (9.14),
необходимо сначала измерить удельную
теплоемкость с2
внутреннего стаканчика калориметра.
Так как внутренний стаканчик калориметра
изготовлен из алюминия, то в начале мы
можем в качестве исследуемого использовать
алюминиевое тело. В таком случае удельные
теплоемкости исследуемого тела и
внутреннего стаканчика калориметра
одинаковы, т.е. с2
= с1.
Тогда
уравнение (9.13) примет вид:
.
Собирая
слагаемые с с2
в одной стороне равенства и вынося с2
за скобки, получим:
.
Откуда выразим
удельную теплоемкость алюминия:
.
(9.15)
Определение удельной теплоемкости латуни
Так
как удельную теплоемкость алюминия мы
уже определили по формуле (9.15), то по
формуле (9.14) можно вычислить удельную
теплоемкость любого, например, латунного
тела, которое используется в данной
работе.
Порядок выполнения работы Задание №1. Определение удельной и молярной теплоемкости алюминия
-
Определить
массу тела т1
из алюминия.
Определить массу внутреннего стаканчика
калориметра т2. -
Опустить
за нить алюминиевое тело в нагреватель
с кипящей водой на 5 мин. За это время
исследуемое тело нагреется до температуры
кипящей воды t1=100
С. -
Налить
m3=200
г. холодной воды из под крана во внутренний
стаканчик калориметра и измерить ее
температуру t2. -
Нагретое
тело сразу перенести за нить в калориметр
и перемешать воду для выравнивания
температур тела и воды. Закрыть калориметр
крышкой. Опустить термометр в калориметр,
вставив его в крышку калориметра. -
Наблюдать
за показаниями термометра. В момент,
когда температура прекратит увеличиваться,
измерить температуру воды в калориметре
t
– это и
есть температура термодинамического
равновесия. -
Найти
удельную теплоемкость алюминия по
формуле (9.15), где удельная теплоемкость
воды с3
= 4186 Дж/(кг·К). -
Опыт повторить
два раза. -
ВНИМАНИЕ:
Все значения температуры по шкале
Цельсия перевести в градусы по шкале
Кельвина по формуле:
.
-
Вычислить
среднее значение, абсолютную и
относительную погрешность измерения
удельной теплоемкости. Записать истинное
значение теплоемкости. -
Вычислить
молярную теплоемкость алюминия С
по формуле (9.5), используя значение
молярной массы алюминия Al
=0,027 кг/моль. -
Данные измерений
и вычислений занести в таблицу 1.
Таблица 1.
№ |
m1, кг |
m2, кг |
m3, кг |
Т1, К |
Т2, К |
Т К |
с2,
|
<с2>,
|
с2,
|
<с2>,
|
, % |
1 |
|||||||||||
2 |
|||||||||||
с2= |
|||||||||||
С |
-
Сравнить
полученное значение удельной теплоемкости
алюминия с известным табличным значением:
сAl
= 896 Дж/(кг·К). -
Проверить
для алюминия закон Дюлонга и Пти (9.6).
Сделать вывод.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Удельная теплоемкость (стандартные значения в кДж):
- медь (твердое тело) 0,385
- сталь (твердое тело) 0,462
- свинец (твердое тело) 0,130
- алюминий (твердое тело) 0,903
Приведенные здесь данные приняты в стандартных условиях, и будут меняться, с изменением температуры металла, а так же прочих факторов. Поэтому в каждом конкретном случае удельная теплоемкость определяется по формуле:
- с – удельная теплоемкость;
- Q – количество тепла;
- m – масса (меди, свинца, стали или алюминия);
- ΔT – разность температур.
А формула, в которой более четко можно проследить зависимости от температуры выглядит следующим образом:
Так же следует сказать, что удельная теплоемкость зависит и от давления, а так же еще от многих факторов под влиянием которых происходит изменение температуры, поэтому в каждом конкретном случае необходимо производить расчеты. Но в нашем случае, мы можем применять данные по стандартным условиям, в которых по умолчанию уже приняты определенные параметры применительно ко всем веществам данного агрегатного состояния.
автор вопроса выбрал этот ответ лучшим
moreljuba
[62.5K]
6 лет назад
Удельную теплоёмкость для каждого из данных веществ мы можем найти в специальной табличке удельных теплоёмкостей для твёрдых тел. Показатели, занесённые в таблицу были получены опытным путём. Так вот для алюминия удельная теплоёмкость равна 0,903 кДж, для стали она равна 0,462 кДж, для меди она равна 0,385 кДж, а для свинца она равна 0,130 кДЖ.
Какова удельная теплоёмкость меди, стали, свинца, алюминия?
Для ответа на этот вопрос заглянем в таблицу удельных теплоемкостей твердых тел, которые были определены и составлены на основе опытных результатов. Итак, удельная теплоемкость меди равна380 ДЖ/кг*грС, удельная теплоемкость стали 500 ДЖ/кг*грС, удельная теплоемкость свинца 140 Ж/кг*грС и удельная теплоемкость алюминия 920 Ж/кг*грС
Помощни к
[56.9K]
7 лет назад
Алюминий – 0,903 кДж/(кг*К) или 0.22 кал/г*С.
Сталь – 0,462 кДж/(кг*К) или 0,11 кал/г*С.
Медь – 0,385 кДж/(кг*К) или 0,09 кал/г*С.
Свинец – 0,130 кДж/(кг*К) или 0,033 кал/г*С.
Это средние значение удельной теплоемкости, принятые для расчетов. Учитывайте, что при изменении температуры теплоемкость веществ меняется.
Знаете ответ?
Теплопроводность и плотность алюминия
В таблице представлены теплофизические свойства алюминия Al в зависимости от температуры. Свойства алюминия даны в широком диапазоне температуры — от минус 223 до 1527°С (от 50 до 1800 К).
Как видно из таблицы, теплопроводность алюминия при комнатной температуре равна около 236 Вт/(м·град), что позволяет применять этот материал для изготовления радиаторов и различных теплоотводов.
Кроме алюминия, высокой теплопроводностью обладает также медь. У какого металла теплопроводность больше? Известно, что теплопроводность алюминия при средних и высоких температурах все-таки меньше, чем у меди, однако, при охлаждении до 50К, теплопроводность алюминия существенно возрастает и достигает значения 1350 Вт/(м·град). У меди же при такой низкой температуре значение теплопроводности становится ниже, чем у алюминия и составляет 1250 Вт/(м·град).
Алюминий начинает плавиться при температуре 933,61 К (около 660°С), при этом некоторые его свойства претерпевают значительные изменения.
Значения таких свойств, как температуропроводность, плотность алюминия и его теплопроводность значительно уменьшаются.
Плотность алюминия в основном определяется его температурой и имеет зависимость от агрегатного состояния этого металла. Например, при температуре 27°С плотность алюминия равна 2697 кг/м3, а при нагревании этого металла до температуры плавления (660°С), его плотность становится равной 2368 кг/м3. Снижение плотности алюминия с ростом температуры обусловлено его расширением при нагревании.
В таблице приведены следующие теплофизические свойства алюминия:
- плотность алюминия, г/см3;
- удельная (массовая) теплоемкость, Дж/(кг·град);
- коэффициент температуропроводности, м2/с;
- теплопроводность алюминия, Вт/(м·град);
- удельное электрическое сопротивление, Ом·м;
- функция Лоренца.
Удельная теплоемкость алюминия
Удельная теплоемкость алюминия существенно зависит от температуры и при комнатной температуре составляет величину около 904 Дж/(кг·град), что значительно выше удельной (массовой) теплоемкости других распространенных металлов, например таких, как медь и железо.
Ниже приведена сравнительная таблица значений удельной теплоемкости этих металлов. Значения теплоемкости в таблице находятся в интервале температуры от -223 до 927°С.
По данным таблицы видно, что величина удельной теплоемкости алюминия значительно выше значения этого свойства у меди и железа, поэтому такое свойство алюминия, как возможность хорошо накапливать тепло, широко применяется в промышленности и теплотехнике, делая этот металл незаменимым.
Теплоемкость металла, Дж/(кг·град) | |||
---|---|---|---|
t, °С | Алюминий Al | Медь Cu | Железо Fe |
-173 | 483,6 | — | 216,1 |
-73 | 800,2 | — | 385 |
27 | 903,7 | 385 | 450 |
127 | 951,3 | 397,7 | 491,1 |
227 | 991,8 | 408 | 530,7 |
327 | 1036,7 | 416,9 | 573,1 |
427 | 1090,2 | 425,1 | 619,9 |
527 | 1153,8 | 432,9 | 679,1 |
627 | 1228,2 | 441,7 | 772,8 |
727 | 1176,7 | 451,4 | 975,1 |
827 | 1176,7 | 464,3 | 794,1 |
927 | 1176,7 | 480,8 | 607,1 |
Источники:
- В.Е. Зиновьев. Теплофизические свойства металлов при высоких температурах.
- Чиркин В.С. Теплофизические свойства материалов ядерной техники.