Активное сопротивление любого проводника определяется:
где ρ = 1,7∙10-8 Ом∙м – удельная проводимость материала (в данном случае – меди),
l – длина проводника, м,
S – площадь поперечного сечения проводника, м2.
Определим длину проводника. Для этого рассчитаем длину витка и умножим её на число витков. При этом длина витка будет равна длине окружности:
Определим площадь поперечного сечения проводника. В реальности проводник имеет круглое сечение, Maxwell же рассчитывает потери для всей области занятой катушкой, т.е. предполагается, что проводники полностью заполняют область. В случае, если необходим точный расчёт для катушек, намотанных проводом круглого сечения, каждый проводник катушки должен быть прорисован отдельным объектом.
Исходя из вышесказанного, будем условно считать, что катушка намотана проводником прямоугольного сечения. В этом случае площадь поперечного сечения проводника будет определяться:
Определим сопротивление обмотки:
Построим геометрию модели из Примера 1 в 3D. Для этого нажимаем ПКМ на проекте модели 2D примера 1 и выбираем Create 3D Design. После чего модель будет автоматически преобразована в 3D.
1. Создадим сечение для задания возбуждения катушки.
Для этого выделим объект катушки и применим к нему операцию “сечение” (меню Modeler > Surface > Section, выбираем плоскость сечения YZ). Получим объект, состоящий из двух сечений. Для задания возбуждения необходимо одно сечение, поэтому разделим получившийся объект (меню Modeler > Boolean > Separate Bodyes). Второе сечение не нужно, и его можно удалить.
Последнему сечению назначим величину тока, равную 10 ампер-виткам (ПКМ по сечению > Assign Excitation > Current > Value), тип обмотки – распределённая (Stranded).
2. Задание граничных условий.
В 3D постановке задачи в Maxwell по умолчанию действует условие обнуления поля на границах модели. В отличии от 2D постановки задачи открытых границ (условие Balloon) в 3D нет. Поэтому расчётную область иногда приходится увеличивать до тех пор, пока результат расчёта модели не перестанет ощутимо изменяться.
Создадим область для расчёта: Create Region (Создание региона), в открывшемся окне выберем Pad Individual Direction и по каждой оси отступим 40% от объектов модели:
Граничные условия для модели не задаём, т.к. действует граничное условие по умолчанию (присваивается нулевая величина поля на границе расчётной модели).
3. Создание сетки элементов и задания на расчёт.
Далее – создаём сетку конечных элементов, предварительно выделив все объекты модели (Assign Mesh Operation > Inside Selection > Length Based… )
Создаём новое задание на расчёт с параметрами по умолчанию (ПКМ на Analysis > Add Solution Setup)
Запускаем задачу на расчёт.
Рисунок П.2.1 – 3D модель рассчитываемой катушки
4. Расчёт омических потерь катушки.
Запустим калькулятор поля (ПКМ на Field Overlays > Calculator…)
В калькуляторе поля (Рисунок П.2.2), необходимо задать следующее выражение:
Рисунок П.2.2 – Калькулятор поля Maxwell
где V – объём, в котором рассчитываются потери (обмотка);
– вектор плотности тока в обмотке;
σ = 1/ρ = 58∙106 См/м – удельная проводимость материала (в данном случае – меди).
Запишем искомое выражение в калькуляторе поля, набрав следующую последовательность команд:
Quantity > J | Выбираем вектор плотности тока |
Push | Дублируем |
Number > Scalar > Value 58000000 | Вводим величину удельной проводимости меди |
/ | Делим плотность тока на проводимость |
Dot | Перемножаем |
Geometry > Volume > Coil | Выбираем объём катушки (вместо Coil выбрать название катушки) |
Интегрируем выражение по объёму. |
В строке выражений получится:
Scl : Integrate(Volume(Coil), Dot(<Jx,Jy,Jz>, /(<Jx,Jy,Jz>, 58000000)))
Получившееся выражение сохраняем в качестве переменной (Named Expression): PowerLoss (кнопка Add..)
Разделим получившиеся потери на квадрат тока ( I = 1 А ) в проводнике (выбираем PowerLoss в списке переменных > Copy to Stack > Eval > Number > Scalar > 1 > / (операция деления).
Получим результат: R = 0,022687 Ом.
Сравним с теоретическим результатом: R = 0,02244 Ом, погрешность составила: 0,1%.
Примечание: Нельзя забывать, что сечение электропроводящего материала в катушках, намотанных проводником круглого сечения, не будет соответствовать реальному сечению катушки. Поэтому нельзя в модели строить сечение катушек по реальным данным, т.к. это приведёт к уменьшению активного сопротивление катушки. В модели сечение катушки должно совпадать с сечением электропроводящего материала (медь, алюминий). Это сечение можно рассчитать, перемножив сечение провода на число витков в катушке.
Автор материалов: Drakon (С) 2014. Редактор: Админ
Достаточно большое количество электрических устройств имеет в своем составе катушки в виде намотки медной изолированной проволоки. Главным свойством, которым обладает электрическая катушка является взаимодействие с электромагнитным полем. Для одних устройств катушка выступает в роли электромагнита, притягивающая либо отталкивающая металлические части или другие катушки. В иных же устройствах электрическая катушка может служить генератором электрической энергии, по средствам электромагнитной индукции (если на катушку воздействовать внешним электромагнитным полем).
Любая электрическая катушка имеет свое внутреннее сопротивление. Причем, это сопротивление можно разделить на два типа, это активное и реактивное. Активным сопротивлением обладают катушки, через которые протекает только постоянный ток. Активное сопротивление катушки зависит от материала провода катушки, его сечения, длины. При протекании через катушку переменного тока мы уже будет иметь дело с реактивным сопротивлением, величина которого уже будет зависеть ещё и от частоты протекающего переменного тока (чем частота выше, тем больше реактивное сопротивление).
На практике, в большинстве случаев, приходится сталкиваться именно с активным электрическим сопротивлением катушек. Это сопротивление обусловлено внутренней структурой атомов, из которых состоит вещество проводника. У различных проводников внутреннее сопротивление имеет разные значения (при одной и той же длине и сечении). Это ещё называется удельным сопротивлением проводника (его обычно берут из справочников). Для нахождения сопротивления определенного проводника можно воспользоваться простой формулой: сопротивление равно удельное сопротивление материала проводника умноженное на его длину и это всё деленное на площадь поперечного сечения.
Более простым способом нахождения сопротивления обмоток, широко используемом на практике, является метод обычного измерения. Берём мультиметр, омметр, выставляем нужный диапазон измерения (Омы, килоОмы, мегаОмы) и прикасаемся щупами измерителя прямо к катушке, обмотке. Наш тестер с достаточно большой точность покажет имеющееся сопротивление. Как правило, обмотка катушек, рассчитанных на низкое напряжение имеет достаточно малое сопротивление (в районе единицы-сотни Ом). Обмотки под напряжение 220, 380 и выше уже имеют сопротивление в пределах от сотен Ом до десятков килоОм.
Зная сопротивление обмотки, как минимум можно судить о её работоспособности (если в ней нет короткозамкнутых витков), а как максимум её величину можно использовать в различных формулах. Наиболее известной и широко используемой является формула закона Ома, которая позволяет найти любую одну неизвестную величину (из трех – напряжение, ток, сопротивление) из двух известных. Учтите, в формулах нужно использовать основные единицы измерения физических величин. В законе Ома таковыми являются: для силы тока это ампер, для напряжения это вольт и для сопротивления это Ом.
Если при измерении сопротивления обмотки прибор ничего не показывает (пробник не реагирует), значит в этой катушке имеется обрыв. В этом случае катушку следует разобрать, хорошо визуально осмотреть (возможно обрыв произошел возле самих выводов катушки, что происходит достаточно часто), при необходимости её перемотать. Но бывают случаи, когда обрыва нет, тестер показывает какое-то сопротивление, сама же катушка не работает как надо. В этом случае, если вы уверены надёжности проводов и цепей, по которым подводится к обмотке напряжение, возможен вариант короткозамкнутых витков.
Короткозамкнутые витки – это витки обмоточного провода катушки, которые были накоротко замкнуты внутри самой обмотке между собой. Естественно, участок обмотки с короткозамкнутыми витками является нерабочим, более того, он является причиной возникновения дополнительного нагрева самой катушки (по причине самоиндукции, в цепях переменного тока). Причиной возникновения такого явления может послужить полое качество изоляции обмоточного провода, температурный удар (возникший сильный перегрев катушки), который был прежде, чрезмерное динамическое воздействие на катушку (удары, тряски и т.д.). Сопротивление обмотки, что имеет короткозамкнутые витки, будет меньше номинального значения, а это ведёт к ненормальной работе самой этой катушки.
Короткозамкнутые витки выявляются не просто. Для проверки обмотки якоря электродвигателя существует специальное устройство (можно сделать и самому, это трансформатор со специальным распилом на своем магнитопроводе, куда и ложится якорь для проверки). Если катушка до этого работала нормально, при этом особо не нагревалась, а потом вдруг начала, то скорее всего у неё появились эти самые бракованные витки. Хорошо если вы изначально знаете номинальное сопротивление своей катушки, будет с чем сравнить при измерении и выявлении неисправности обмотки. Либо же нужно сравнивать сопротивление с заведомо рабочей обмоткой другого устройства. Или же прибегнуть в вычислением сопротивления по формуле, если известны: мощность, сила тока, напряжение.
P.S. Далеко не во всех случаях при неисправности катушки виновата сама обмотка. Достаточно часто бывает так, что те провода, которые питают эту самую катушку находятся в плохом состоянии. Окисленные контакты соединяющие концы обмотки и питающие клеммы, провода, место спая значительно увеличивают сопротивление электрической цепи. Достаточно хорошо почистить подобные места, как тут же работоспособность катушки того или иного устройства полностью восстановится.
Что зовется индуктивным сопротивлением
Когда на катушку подают переменное напряжение, ток, проходящий по ней, меняется согласно поданному напряжению. Это служит причиной изменения магнитного поля, создающего электродвижущую силу, препятствующую происходящему.
Схема для измерения
В такой цепи имеется зависимость электрических параметров от двух видов: обычного и индуктивного. Они обозначаются, соответственно, как R и XL.
На обычном происходит выделение мощности. Однако на реактивных элементах она является нулевой. Это связано с постоянным изменением направления переменного тока.
В течение одного периода колебаний энергия дважды закачивается в катушку и столько же раз возвращается в источник.
Определение индуктивности
От чего зависит индуктивное сопротивление
При включении катушки индуктивности в цепь переменного тока, под действием непрерывно изменяющегося напряжения происходят изменения этого тока. В свою очередь, эти изменения вызывают генерацию магнитного поля, которое периодический возрастает или убывает. Под его влиянием в катушке индуцируется встречное напряжение, препятствующее изменениям тока. Таким образом, протекание тока происходит под непрерывным противодействием, получившим название индуктивного сопротивления.
Данная величина связана напрямую с частотой приложенного напряжения (f) и значением индуктивности (L). Формула индуктивного сопротивления будет выглядеть следующим образом: XL = 2πfL. Прямая пропорциональная зависимость, в случае необходимости, позволяет путем преобразования основной формулы вычислить частоту или значение индуктивности.
Под действием переменного тока, проходящего по проводнику, вокруг этого проводника образуется переменное магнитное поле. Действие этого поля приводит к наведению в проводнике электродвижущей силы обратного направления, известной еще как ЭДС самоиндукции. Противодействие или сопротивление ЭДС переменному току получило название реактивного индуктивного сопротивления.
Данная величина зависит от многих факторов. В первую очередь на нее оказывает влияние как значение тока не только в собственном проводнике, но и в соседних проводах. То есть увеличение сопротивления и потока рассеяния происходит по мере увеличения расстояния между фазными проводами. Одновременно снижается воздействие соседних проводов.
Существует такое понятие, как погонное индуктивное сопротивление, которое вычисляется по формуле: X0 = ω x (4,61g x (Dср/Rпр) + 0,5μ) x 10-4 = X0’ + X0’’, в которой ω является угловой частотой, μ – магнитной проницаемостью, Dср – среднегеометрическим расстоянием между фазами ЛЭП, а Rпр – радиусом провода.
Величины X0’ и X0’’ представляют собой две составные части погонного индуктивного сопротивления. Первая из них X0’ представляет собой внешнее индуктивное сопротивление, зависящее только от внешнего магнитного поля и размеров ЛЭП. Другая величина – X0’’ является внутренним сопротивлением, зависящим от внутреннего магнитного поля и магнитной проницаемости μ.
На линиях электропередачи высокого напряжения от 330 кВ и более, проходящие фазы расщепляются на несколько отдельных проводов. Например, при напряжении 330 кВ фаза разделяется на два провода, что позволяет снизить индуктивное сопротивление примерно на 19%. Три провода используются при напряжении 500 кВ – индуктивное сопротивление удается снизить на 28%. Напряжение 750 кВ допускает разделение фаз на 4-6 проводников, что способствует снижению сопротивления примерно на 33%.
Погонное индуктивное сопротивление имеет величину в зависимости от радиуса провода и совершенно не зависит от сечения. Если радиус проводника будет увеличиваться, то значение погонного индуктивного сопротивления будет соответственно уменьшаться. Существенное влияние оказывают проводники, расположенные рядом.
Индуктивное сопротивление в цепи переменного тока
Одной из основных характеристик электрических цепей является сопротивление, которое может быть активным и реактивным. Типичными представителями активного сопротивления считаются обычные потребители – лампы, накаливания, резисторы, нагревательные спирали и другие элементы, в которых электрический ток совершает полезную работу.
К реактивному относятся индуктивное и емкостное сопротивления, находящиеся в промежуточных преобразователях электроэнергии – индуктивных катушках и конденсаторах. Эти параметры в обязательном порядке учитываются при выполнении различных расчетов. Например, для определения общего сопротивления участка цепи, складываются активная и реактивная составляющие. Сложение осуществляется геометрическим, то есть, векторным способом, путем построения прямоугольного треугольника. В нем оба катета являются обоими сопротивлениями, а гипотенуза – полным. Длина каждого катета соответствует действующему значению того или иного сопротивления.
В качестве примера можно рассмотреть характер индуктивного сопротивления в простейшей цепи переменного тока. В нее входит источник питания, обладающий ЭДС (Е), резистор, как активная составляющая (R) и катушка, обладающая индуктивностью (L). Возникновение индуктивного сопротивления происходит под действием ЭДС самоиндукции (Еси) в катушечных витках. Индуктивное сопротивление увеличивается в соответствии с ростом индуктивности цепи и значения тока, протекающего по контуру.
Таким образом, закон Ома для такой цепи переменного тока будет выглядеть в виде формулы: Е + Еси = I x R. Далее с помощью этой же формулы можно определить значение самоиндукции: Еси = -L x Iпр, где Iпр является производной тока от времени. Знак «минус» означает противоположное направление Еси по отношению к изменяющемуся значению тока. Поскольку в цепи переменного тока подобные изменения происходят постоянно, наблюдается существенное противодействие или сопротивление со стороны Еси. При постоянном токе данная зависимость отсутствует и все попытки подключения катушки в такую цепь привели бы к обычному короткому замыканию.
Для преодоления ЭДС самоиндукции, на выводах катушки источником питания должна создаваться такая разность потенциалов, чтобы она могла хотя-бы минимально компенсировать сопротивление Еси (Uкат = -Еси). Поскольку увеличение переменного тока в цепи приводит к возрастанию магнитного поля, происходит генерация вихревого поля, которое и вызывает рост противоположного тока в индуктивности. В результате, между током и напряжением происходит смещение фаз.
Виды сопротивления в электрической цепи
Если используется постоянный ток, то рассматривается только обычное сопротивление, которое также называется активным или омическим. При переменном существует не только активное, но и реактивное сопротивление. Последнее бывает индуктивным и емкостным. Его величина определяется по соответствующим формулам. Сопротивление называется реактивным потому что не вызывает безвозвратных потерь энергии.
В цепях переменного тока полное сопротивление представляет собой сумму омического, индуктивного и емкостного сопротивлений. Определить его можно по правилам векторного сложения слагаемых. Если рассматривать цепь, которая не содержит конденсаторов, то основную роль будет играть реактивное сопротивление катушки индуктивности.
Катушка индуктивности
Эта деталь обычно имеет сердечник цилиндрической или тороидальной формы, на который многократно намотан провод. Основной характеристикой катушки является индуктивность.
Как известно, магнитное поле создаётся движущимися электрическими зарядами. Даже если постоянный ток идёт по проводу, вокруг него создаётся магнитное поле. Оно создаёт препятствия для изменения тока в те моменты, когда меняется само, чему можно не удивляться, зная о существовании индуктивного сопротивления. Для постоянного тока это происходит в моменты включения и выключения.
Если питающее напряжение переменное, то изменения происходят непрерывно. Основная задача катушки индуктивности — увеличивать напряженность магнитного поля. Она имеет не только индуктивное, но и обычное сопротивление. Однако при расчётах его считают пренебрежимо малым.
Формула индуктивного сопротивления
Рассматриваемое сопротивление тем больше, чем выше частота тока и индуктивность. Эту зависимость легко объяснить. Большая частота подразумевает высокую скорость изменения магнитного поля, которая усиливает эффект самоиндукции. Увеличение индуктивности соответствует более сильному магнитному полю.
Индуктивное сопротивление обозначается как XL. Обозначение буквой Х используется для любого реактивного сопротивления. То, что оно индуктивное подтверждает буква L. Его единица измерения — Ом. Чтобы рассчитать значение, понадобится формула индуктивного сопротивления:
В этой формуле буквами F и L обозначаются частота переменного тока и индуктивность катушки соответственно. Индуктивность измеряется в Генри, сокращенно Гн.
Чтобы найти полное сопротивление в контуре, состоящем из резисторов и катушки, необходимо сложить активную и реактивную составляющую, воспользовавшись правилом прямоугольного треугольника. Один катет такого треугольника соответствует активному сопротивлению, а второй — реактивному. Гипотенуза — это полное сопротивление или импеданс. Его значение рассчитывается по теореме Пифагора.
- XL — это индуктивное сопротивление, которое определяется формулой, приведённой выше.
- R — активное сопротивление. Для его вычисления следует воспользоваться законом Ома.
Произведение 2πF в формуле сопротивления называют также круговой частотой. Ее обозначают буквой ω. С учетом этого формулу для определения индуктивного сопротивления можно записать так: XL = ω×L.
В каких элементах возникает
Поскольку индуктивность – составляющая электрического тока, то она возникает в любых проводниках, по которым проходит переменный электрический ток. Особо выражено это в замкнутых контурах с сердечником из магнитопровода. Некоторая паразитная индуктивность присутствует в печатных платах и даже в микросхемах.
В каких единицах измеряется
Впервые индуктивность была вычислена американским ученым-физиком Джоном Генри и была названа в его честь – Генри, сокращенно Гн. Диапазон индуктивности очень широк, в приведенной ниже таблице видно, какие производные существуют:
Кратные | Дольные | ||||||
Величина | Название | Обозначение | Величина | Название | Обозначение | ||
101 | декагенри | даГн | daH | 10-1 | децигенри | дГн | dГн |
102 | гектогенри | гГн | hH | 10-2 | сантигенри | сГн | cГн |
103 | килогенри | кГн | kH | 10-3 | миллигенри | мГн | mГн |
106 | мегагенри | МГн | MH | 10-6 | микрогенри | мкГн | µГн |
109 | гигагенри | ГГн | GH | 10-9 | наногенри | нГн | nГн |
1012 | терагенри | ТГн | TH | 10-12 | пикогенри | пГн | pГн |
1015 | петагенри | ПГн | PH | 10-15 | фемтогенри | фГн | fГн |
1018 | эксагенри | ЭГн | EH | 10-18 | аттогенри | аГн | aГн |
1021 | зеттагенри | ЗГн | ZH | 10-21 | зептогенри | зГн | zГн |
1024 | иоттагенри | ИГн | YH | 10-24 | иоктогенри | иГн | yГн |
Первые две строчки производных в каждой части таблицы применять не рекомендуют, указывают либо в десятых или сотых долях генри, либо десятках и сотнях. В СИ используется указанное обозначение в других системах, таких как СГМС обозначение может отсутствовать, либо применяется статгенри ≈ 8,987552⋅1011 или абгенри.
Индуктивность, L — измеряется в Генри (Гн). Индуктивное сопротивление XL — измеряется в Омах (Ом)
Где применяется катушка (дроссель, индуктивность)
Дроссели имеют примитивную конструкцию: просто намотанный витками на каком-либо сердечнике проводник. В то же время в таком приборе нечему ломаться. Также у дросселей широчайший функционал и десятки применений. Из всего этого следует, что в какой бы точке города ни находился человек, в радиусе 1 км от него всегда будут тысячи катушек индуктивности, настолько они распространены.
Катушка как электромагнит
Самое простое применение катушки – это электромагнит. С подобным применением каждый сталкивается, заходя в подъезд. Сила, удерживающая дверь на месте и препятствующая несанкционированному доступу чужака, берётся из электромагнита. Он находится сверху.
Электрический ток, проходя по виткам катушки, создаёт вокруг неё переменное электромагнитное поле. Оно возбуждает в металлическом «бруске», расположенном на двери, вихревые токи, которые так же создают магнитное поле. В результате получаются два управляемых магнита. Они притягиваются друг к другу. Тем самым дверь надёжно удерживается на месте.
Другое применение электромагнитов в быту – индукционные плиты. Катушка наводит в металлической посуде переменный высокочастотный ток. Он, в свою очередь, своим тепловым действием разогревает кастрюлю. В промышленности нечто подобное используется для разогрева и плавки металлов. Только в таком случае применяются на порядки более высокие мощности и другие частоты тока.
Индуктивность как фильтр
Импульсные блоки питания, электрические двигатели и диммеры для регулировки яркости ламп накаливания выбрасывают в сеть большое количество искажений и помех. Вызвано это неравномерностью потребляемого тока. Для борьбы с подобными сетевыми шумами применяются специальные фильтры на основе конденсаторов и дросселей.
Данный узел представляет собой небольшую катушку из медного эмалированного провода диаметром 0,2-2 мм. Обмотка наматывается на ферритовый сердечник. Чаще всего он изготовлен в форме кольца, немного реже встречаются так называемые «гантельки».
Подобные фильтры имеются в компьютерных блоках питания, компактных люминесцентных лампах (иногда не ставят, экономят), на выходах сварочных инверторов.
Также фильтр может быть звуковым. Его задача – срезать определённый диапазон частот. Индуктивные свойства этого прибора таковы, что он хорошо проводит низкие частоты, а высокие – приглушает. Поэтому дроссели используют для того, чтобы до динамиков дошёл только бас. По факту ослаблено будут слышны и другие частоты. Для более эффективной работы фильтра нужны дополнительные детали: конденсаторы и операционные усилители.
Самодельный звуковой фильтр
Катушка как источник ЭДС
Китайская промышленность удивила школьников 2000-х новой игрушкой – вечным фонариком. Его не нужно было заряжать. Фонарик работал от катушки индуктивности, около которой под действием движения рук перемещался магнит. Он наводил в обмотке переменную ЭДС, которая питала осветительный прибор.
Подобное явление объясняется законом электромагнитной индукции. Если проводник (рамка) находится в переменном электромагнитном поле, то в нём начинает наводиться электродвижущая сила. Иными словами, появляется напряжение.
Закон этот совсем неигрушечный, ведь он используется в работе генераторов на подавляющем большинстве электростанций, в том числе любые ТЭЦ, ГЭС, АЭС и ветряки. По подобному принципу работают динамомашины, питающие фары велотранспорта.
Принцип работы генератора
Две катушки – трансформатор
Ещё одно распространённое применение – это электрический трансформатор. Конструктивно он состоит из двух и более катушек, расположенных на одном железном или ферритовом сердечнике. Подобный агрегат работает только с переменным напряжением. Если на первичную обмотку подать ток, то он создаст в сердечнике магнитный поток. Он, в свою очередь, наведёт ЭДС во вторичной обмотке. Напряжения во входной и выходной катушках прямо зависят от количества их витков.
Таким образом, можно трансформировать 220 В из розетки в 12 В, необходимых для питания небольшой стереосистемы, или преобразовать 10 000 вольт в 220 для передачи от подстанции к жилым домам. Подобным методом можно добиться и повышения напряжения, т.е. превратить 12 В обратно в 220.
Устройство трансформатора
Катушка индуктивности — элемент колебательного контура
Сейчас это уже редкость, но раньше для подстройки нужной радиостанции использовали колебательный контур. Он состоит из двух элементов, включенных параллельно: катушки индуктивности и переменного конденсатора. Работая в паре, они способны выделить из множества окружающих сигналов именно тот, который требуется. При попадании на антенну приёмника нужной частоты электромагнитных волн колебательный контур входит в резонанс. Процесс сопровождается лавинообразным увеличением ЭДС. Частота, на которой это происходит, зависит от индуктивности катушки и ёмкости конденсатора.
Катушка индуктивности – дроссель ДРЛ ламп
Несмотря на то, что освещение улиц и промышленных предприятий стремительно переходит на LED светильники, по СНГ всё ещё осталось огромное количество мест, где используются устаревшие дуговые ртутные люминесцентные лампы типа ДРЛ. Более всего они распространены в мелких городах и на второстепенных улицах. Их можно узнать по характерному холодно-белому свету и долгому розжигу.
ДРЛ лампы не способны работать без пускорегулирующего дросселя. Он обладает высоким индуктивным сопротивлением и призван ограничить пусковой ток осветительного прибора. Дроссели для ламп подбираются, исходя из их мощности. Наиболее распространённые номиналы – 250, 400 и 1000 Вт. Информация о мощности указывается на самом дросселе. Там же можно найти схемы включения.
Из вышесказанного можно подчеркнуть, что катушка индуктивности является консервативным и давно освоенным на практике электронным компонентом. Однако спрос на его применение по-прежнему не спадает. Поэтому знания, необходимые для расчета катушек и их правильного включения, необходимы каждому специалисту, имеющему дело с электроникой.
Активное сопротивление
Активное сопротивление – это сопротивление элемента или участка цепи электрическому току, обусловленное необратимыми превращениями электрической энергии в другие формы, например, механическую в электродвигателях или тепловую, когда речь идёт о нагреве чего-либо или просто потерях или другие виды энергии. Выражается в Омах и в формулах обозначается буквой R.
Активное сопротивление характерно для проводников, а его величина зависит от свойств этих самых проводников:
- Материал — обычно проводники выполняются из металла (или из графита, как щетки электрических машин) и у каждого проводника есть удельное сопротивление, оно измеряется в Ом·мм²/м.
- Длина и площадь поперечного сечения. Следует из предыдущего. Чем больше площадь поперечного сечения (мм²) – тем меньше сопротивление, или чем длиннее проводник – тем оно больше.
- Температура. Чем больше температура – тем больше сопротивление проводника.
Согласно закону Ома, сопротивление участка электрической цепи можно рассчитать, если известны ток и напряжение по формуле: R=U/I.
Таблица 1. Удельные электрические сопротивления некоторых веществ Таблица 1. Удельные электрические сопротивления некоторых веществ
Сопротивление проводника, определенной длины и сечения определяется по формуле: R=p*l/S,
где p (ро) – удельное сопротивление, l – длина, S – площадь поперечного сечения.
При протекании тока через активное сопротивление в любом случае происходят потери в виде тепла. По этой причине греются провода и кабельные линии под нагрузкой, трансформаторы, электродвигатели и так далее… Величина этих потерь определяется по формуле: P=U²/R. Кроме потерь в виде тепла на линии, а вернее сказать, на активном сопротивлении линии происходит падение напряжения (просадки), величина которых также рассчитывается по закону Ома: Uпад=I*Rл,
где Uпад – падение напряжение на линии, Rл – сопротивление линии.
Рисунок 1 — ток и напряжение в активном сопротивлении: а) схема условного с идеальным резистором, б) Синусоиды тока и напряжения, в) векторная диаграмма. Рисунок 1 — ток и напряжение в активном сопротивлении: а) схема условного с идеальным резистором, б) Синусоиды тока и напряжения, в) векторная диаграмма.
Напряжение и ток в активном сопротивлении совпадают по фазе, соответственно коэффициент мощности у активной нагрузки в идеальном случае равен 1. Это можно пронаблюдать на иллюстрации выше, как и то, что векторы U и I также совпадают по направлению, и между ними нет угла.
Под «идеальным случаем» понимается используемое в физике понятие «идеальный», то есть, когда объекту характерен какой-то единый набор свойств. Например, когда говорят «идеальный резистор» — это значит, такой резистор в котором есть только активное сопротивление, а реактивные составляющие отсутствуют. А «идеальная индуктивность» — это такая индуктивность, у которой нет активного сопротивления проводника, которым она намотана, а также паразитной ёмкости. То есть идеальная катушка, обладает только индуктивностью.
Подведем итоги — активное сопротивление характерно для нагрузки ток и напряжение в которой совпадают по фазе, это могут быть: провода, резисторы, ТЭНы и другие нагревательные элементы, лампы накаливания…
Реактивное сопротивление
Согласно энциклопедическому определению, реактивное сопротивление — это сопротивление элемента схемы, вызванное изменением тока или напряжения из-за индуктивности или ёмкости этого элемента. Отсюда следует, что реактивное сопротивление присуще только индуктивной или емкостной нагрузке. Измеряется оно также в Омах, но обозначается буквой X.
Также следует вспомнить законы коммутации:
- Ток на индуктивности не может изменяться скачком.
- Напряжение на ёмкости не может измениться мгновенно.
Другими словами, в индуктивности ток отстаёт от напряжения по фазе, а в ёмкости наоборот — ток опережает напряжение.
Реактивное сопротивление индуктивности
В цепи постоянного тока это вносит влияние в работу системы преимущественно при её коммутации (включении или отключении), а также при резком изменении режима работы и потребления тока и такого понятия как реактивное сопротивление для постоянного тока нет.
Но в цепи переменного тока реактивное сопротивление оказывает значительное влияние. При протекании переменного тока I в катушке, возникает магнитное поле. Оно создаёт в витках катушки ЭДС, которое в свою очередь препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.
Выше мы рассматривали график тока и напряжения в активном сопротивлении, и они совпадали по фазе, ниже приведен график тока и напряжения для катушки индуктивности.
Рисунок 2 — ток и напряжение в индуктивности: а) схема условного участка цепи с идеальной индуктивностью, б) синусоиды тока и напряжения, в) векторная диаграмма. Рисунок 2 — ток и напряжение в индуктивности: а) схема условного участка цепи с идеальной индуктивностью, б) синусоиды тока и напряжения, в) векторная диаграмма.
На рисунке 2.б видно, что ток и напряжение в индуктивности не совпадают по фазе. В идеальной индуктивности ток отстаёт от напряжения на 90 градусов, что более наглядно иллюстрирует векторная диаграмма на рисунке 2.в.
Сопротивление, которое индуктивность оказывает переменному току вычисляется по формуле: XL=ω*L=2*pi*f*L,
где ω — угловая частота (рад/с), L — индуктивность (Гн), pi – число пи (3.14), f — частота (Гц).
То есть чем больше частота переменного тока, тем большее сопротивление ему оказывает индуктивность.
Реактивное сопротивление ёмкости
В ёмкостной нагрузке дело обстоит также, но наоборот. На рисунке 3.б видно, что ток опережает напряжение, а на 3.в видно, что опережает на угол в 90˚.
Рисунок 3 — ток и напряжение в ёмкости: а) схема условного участка цепи с идеальным конденсатором (ёмкостью), б) синусоиды тока и напряжения, в) векторная диаграмма. Рисунок 3 — ток и напряжение в ёмкости: а) схема условного участка цепи с идеальным конденсатором (ёмкостью), б) синусоиды тока и напряжения, в) векторная диаграмма.
При протекании переменного тока в конденсаторе циклически происходят процессы заряда и разряда, или накопления и отдачи энергии электрическим полем между его обкладками. Конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное.
В момент когда напряжение достигнет амплитудного значения, ток будет равен нулю. Таким образом, напряжение на идеальном конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.
То есть емкостное сопротивление — это сопротивление изменению напряжения. Оно определяется по формуле: Xс=1/(ω*C)=1/(2*pi*f*c),
где ω — угловая частота (рад/с), C — ёмкость (Ф), pi – число пи (3.14), f — частота (Гц).
То есть чем меньше частота переменного тока, тем большее сопротивление оказывает ему ёмкость.
Но отклонение напряжения от тока по фазе на 90 градусов только в цепях с идеальной индуктивностью, на практике же такого нет.
Полное сопротивление
Так как и активное сопротивление, и индуктивность, и ёмкость влияют на токи и напряжения в электрической цепи по-своему, то при их соединении их сопротивления также складываются. Так, например полное реактивное сопротивление равно: X=XL-Xс
Таким образом реактивные сопротивления ёмкости и индуктивности приводятся к общему значению, то есть какое из них больше, такой характер и будет у цепи (индуктивный или емкостной).
В любой реальной цепи присутствуют все три составляющие: активная, емкостная и индуктивная. Тогда говорят о полном сопротивление цепи. Оно обозначается буквой Z и вычисляется по формуле:
где Z – полное сопротивление, r – активное, XL – индуктивное, Xc – емкостное.
Эта формула должна была вам напомнить теорему Пифагора, где квадрат гипотенузы равен сумме квадратов катетов. И это неспроста. Дело в том, что если на векторной диаграмме изобразить активное и полное реактивное сопротивление, то мы получим т.н. треугольник сопротивлений, где гипотенузой будет полное сопротивление цепи.
Угол Фи — это и есть угол, на который ток отстаёт от напряжения, а косинус этого угла (cosФ) называют коэффициентом мощности. Это опережение или отставание тока и напряжение приводит к тому, что этот ток возвращается обратно к источнику питания, а не выполняет какую-то работу в потребителе. Это приводит к излишней нагрузке на электросеть, то есть ток протекает полный, а работу выполняет только активная его часть.
Большая часть электрооборудования (электродвигатели, электромагниты и прочее) носит индуктивный характер, что приводит к значительному повышению нагрузки на электросеть и потребления реактивной мощности.
Чтобы бороться с этим явлением используются компенсаторы реактивной мощности — конденсаторные установки, синхронные двигатели, синхронные компенсаторы. То есть подключают какую-то нагрузку с емкостным характером, она нужна, чтобы уменьшить угол между током и напряжением и в итоге повысить коэффициент мощности.
Ну и напоследок ознакомьтесь с подборкой советских плакатов, которые иллюстрируют параметры электрических цепей со смешанной нагрузкой, а также их векторные диаграммы (треугольники сопротивлений, напряжения и мощности).
Последовательное соединение активного и индуктивного сопротивлений
Последовательное соединение активного и емкостного сопротивлений
Последовательное соединение индуктивности и ёмкости
Как определить полное сопротивление?
Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.
Как влияет частота на индуктивное и емкостное сопротивление?
ЭДС самоиндукции — причина индуктивного сопротивления. В отличие от активного сопротивления, индуктивное не является характеристикой проводника, т. к. зависит от параметров цепи (частоты): чем больше частота переменного тока, тем больше сопротивление, которое ему оказывает катушка.
Источники
- https://ElectroInfo.net/raznoe/induktivnoe-soprotivlenie-osobennosti-induktivnogo-soprotivlenija.html
- https://electric-220.ru/news/formula_induktivnogo_soprotivlenija/2017-05-03-1254
- https://ProFazu.ru/knowledge/electrical/induktivnoe-soprotivlenie.html
- https://electricvdome.ru/osnovy-elektrotehniki/induktivnoe-soprotivlenie-katushki.html
- https://amperof.ru/teoriya/induktivnoe-soprotivlenie.html
- https://dzen.ru/a/Xvsq-VUfz2hUQAsy
- https://kmd-mk.ru/kak-vychislit-induktivnoe-soprotivlenie-katushki/
- https://kmd-mk.ru/chto-takoe-induktivnoe-i-emkostnoe-soprotivlenie/
Как вам статья?
Павел
Бакалавр “210400 Радиотехника” – ТУСУР. Томский государственный университет систем управления и радиоэлектроники
Написать
Пишите свои рекомендации и задавайте вопросы
Индуктивное сопротивление
В радиотехнике часто приходится сталкиваться с индуктивным сопротивлением. Его источником являются катушки. Они представляют собой двухполюсник, намотанный медным эмалированным проводом (обычно это ПЭТВ) на ферритовый или железный сердечник. Подобные детали встречаются в широком перечне оборудования: от древних советских радиоприёмников до материнских плат ПК последних моделей.
Формулы, зависимости и виды индуктивности
Электрическая индуктивность L – это величина, равная коэффициенту пропорциональности между током I, протекающим в замкнутом контуре, и создаваемым им магнитным потоком, иначе называемым потокосцеплением Y:
Если к выводам катушки на некоторое время приложить напряжение, то в ней начнёт протекать ток I и формироваться магнитное поле. Чем меньше индуктивность L, тем быстрее протекает данный процесс. В итоге рассматриваемый двухполюсник накопит некоторое количество потенциальной энергии. При отключении питания он будет стремиться её вернуть. В результате на выводах катушки образуется ЭДС самоиндукции E, которая многократно превышает изначально приложенное напряжение. Подобная технология ранее использовалась в магнето систем зажигания ДВС, а сейчас широко встречается в повышающих DC-DC преобразователях.
Катушка (она же – дроссель) – это радиодеталь с ярко выраженной индуктивностью, ведь именно для этого её и создавали. Однако подобным свойством обладают в принципе все элементы. Например, конденсатор, резистор, кабель, просто кусок провода и даже тело человек также имеют некоторую индуктивность. В расчетах ВЧ схем это обязательно принимается во внимание.
Важно! Проводя измерение индуктивности специализированным прибором, стоит помнить, что нельзя держаться руками за оба его вывода. В противном случае показания могут измениться и будут неверными. Вызвано это включением в измеряемую цепь тела человека с его собственной индуктивностью.
Индуктивность в цепи постоянного тока
Для лучшего понимания происходящих процессов в катушке, рассмотрим, что происходит в катушке при подаче на нее постоянного напряжения.
где L — индуктивность катушки в генри , а R — общее сопротивление всей цепи в омах . Если, к примеру, индуктивность катушки L=0,6 Г, а сопротивление цепи R=60 Ом, тогда длительность переходного процесса будет равна: t=3•0,6/60=0,03 сек.
При отключении батареи от катушки индуктивность тоже происходит переходный процесс (такой опыт с первичной обмоткой трансформатора показан на странице «Электромагнетизм» рис.е). В этом случае силовые магнитные линии будут приближаться к центру катушки опять пересекая ее витки. Создается ЭДС самоиндукции, которая уже направлена не против тока, а (опять же по правилу Ленца) совпадающая с направлением прерванного тока.
Если катушка имеет большую индуктивность (в нашем опыте катушкой является первичная обмотки трансформатора с большим количеством витков и значительным железным сердечником) и через нее протекал большой ток, то тогда ЭДС самоиндукции, появляющая на концах катушки индуктивности, может достигать величины во много раз больше напряжения источника питания. Это объясняется тем, что при размыкании питающей сети энергия, запасенная в магнитном поле катушки, не исчезает, а превращается в ток. Напряжение между концами катушки индуктивности может достигать таких значений, которое способно привести к пробою между обмотками, а так же выводу из строя полупроводниковых приборов. Это надо надо учитывать на практике при работе с приборами, имеющие катушки с большой индуктивностью через которые проходит значительный ток.
Сопротивление катушки переменному току
Гораздо интереснее дела обстоят с индуктивностью в контуре переменного тока. Любая катушка содержит в себе две составляющие сопротивления:
- Активную;
- Индуктивную.
При постоянном токе учитывается только первый фактор, а при переменном – оба. Формула индуктивного сопротивления XL катушки имеет следующий вид:
где:
- p = 3.14;
- f – частота переменного тока, Гц;
- L – индуктивность катушки, Гн.
Полное сопротивление катушки Z, называемое импедансом, определяется, исходя из активной R и индуктивной XL составляющих.
Важно! Если катушка установлена в печатную плату, то для проверки её следует отпаять. В таком случае индуктивность будет измеряться независимо от других компонентов, что существенно повысит точность показаний прибора.
Устройство и принцип работы катушки индуктивности.
Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку :), то есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:
Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название
Источник
Расчёт индуктивного сопротивления катушки
Любая индуктивность, в т.ч. катушка, оказывает переменному току некоторое сопротивление. Как его рассчитать, было описано выше. Из формулы XL=2pfL видно, что сопротивление дросселя в первую очередь зависит от частоты протекающего по нему тока и его индуктивности. При этом с обоими параметрами связь прямо пропорциональная.
Частота – это характеристика внешней среды, индуктивность катушки зависит от ряда её геометрических свойств:
где:
- u0 – магнитная проницаемость вакуума — 4p*10-7 Гн/м;
- ur – относительная проницаемость сердечника;
- N – количество витков дросселя;
- S – его поперечное сечение в м2;
- l – длина катушки в метрах.
Располагая вышеописанными формулами и информацией о материале и размерах катушки, можно достаточно точно прикинуть её индуктивное сопротивление без каких-либо измерительных приборов.
Дополнительная информация. Некоторые цифровые мультиметры имеют режим замера индуктивности. Подобная функция встречается редко, однако иногда оказывается очень полезной. Поэтому при выборе прибора стоит обратить внимание на то, способен ли он измерять индуктивность.
Конструкция катушки
Катушки индуктивности имеют множество разновидностей по конструктивным особенностям. В основе любой конструкции лежит от одного и более витков изолированного провода.
Различают следующие конструкции по типу обмоток:
- Соленоидальная – длина намотки многократно превышает диаметр;
- Тороидальная – когда соленоид свернут в форме тора.
- Многослойная – разновидность соленоида при наличии нескольких рядов обмоток;
- Секционированная – обмотки состоят из нескольких частей – секций;
- С намоткой «Универсал».
Вам это будет интересно Формулы электрического тока
Две последних разновидности используются при необходимости снижения собственной паразитной емкости.
Важно! Все перечисленные разновидности могут быть выполнены с сердечником из ферромагнитного материала для увеличения индуктивности при сохранении габаритов.
Регулировка (изменение) индуктивности производится путем:
- Сдвига части витков в однослойных катушках;
- Изменением положения ферромагнитного сердечника;
- Переключением части витков;
- Изменение взаимного расположения обмоток, соединенных последовательно (вариометры).
Где применяется катушка (дроссель, индуктивность)
Дроссели имеют примитивную конструкцию: просто намотанный витками на каком-либо сердечнике проводник. В то же время в таком приборе нечему ломаться. Также у дросселей широчайший функционал и десятки применений. Из всего этого следует, что в какой бы точке города ни находился человек, в радиусе 1 км от него всегда будут тысячи катушек индуктивности, настолько они распространены.
Катушка как электромагнит
Самое простое применение катушки – это электромагнит. С подобным применением каждый сталкивается, заходя в подъезд. Сила, удерживающая дверь на месте и препятствующая несанкционированному доступу чужака, берётся из электромагнита. Он находится сверху.
Электрический ток, проходя по виткам катушки, создаёт вокруг неё переменное электромагнитное поле. Оно возбуждает в металлическом «бруске», расположенном на двери, вихревые токи, которые так же создают магнитное поле. В результате получаются два управляемых магнита. Они притягиваются друг к другу. Тем самым дверь надёжно удерживается на месте.
Другое применение электромагнитов в быту – индукционные плиты. Катушка наводит в металлической посуде переменный высокочастотный ток. Он, в свою очередь, своим тепловым действием разогревает кастрюлю. В промышленности нечто подобное используется для разогрева и плавки металлов. Только в таком случае применяются на порядки более высокие мощности и другие частоты тока.
Индуктивность как фильтр
Импульсные блоки питания, электрические двигатели и диммеры для регулировки яркости ламп накаливания выбрасывают в сеть большое количество искажений и помех. Вызвано это неравномерностью потребляемого тока. Для борьбы с подобными сетевыми шумами применяются специальные фильтры на основе конденсаторов и дросселей.
Данный узел представляет собой небольшую катушку из медного эмалированного провода диаметром 0,2-2 мм. Обмотка наматывается на ферритовый сердечник. Чаще всего он изготовлен в форме кольца, немного реже встречаются так называемые «гантельки».
Подобные фильтры имеются в компьютерных блоках питания, компактных люминесцентных лампах (иногда не ставят, экономят), на выходах сварочных инверторов.
Также фильтр может быть звуковым. Его задача – срезать определённый диапазон частот. Индуктивные свойства этого прибора таковы, что он хорошо проводит низкие частоты, а высокие – приглушает. Поэтому дроссели используют для того, чтобы до динамиков дошёл только бас. По факту ослаблено будут слышны и другие частоты. Для более эффективной работы фильтра нужны дополнительные детали: конденсаторы и операционные усилители.
Катушка как источник ЭДС
Китайская промышленность удивила школьников 2000-х новой игрушкой – вечным фонариком. Его не нужно было заряжать. Фонарик работал от катушки индуктивности, около которой под действием движения рук перемещался магнит. Он наводил в обмотке переменную ЭДС, которая питала осветительный прибор.
Последовательное соединение катушек индуктивности.
При последовательном соединении катушек индуктивности их можно заменить одной катушкой с величиной индуктивности, равной:
Вроде бы все просто, проще некуда, но тут есть один важный момент. Данная формула справедлива только в том случае, если катушки расположены на на таком расстоянии друг от друга, что магнитное поле одной катушки не пересекает витков другой:
Если же катушки расположены близко друг к другу и часть магнитного поля одной катушки пронизывает вторую, то тут ситуация совсем другая. Возможно два варианта:
- магнитные потоки катушек имеют одинаковое направление
- магнитные потоки направлены навстречу друг другу
Первый случай называется согласным включением катушек — начало второй катушки подключается к концу первой. А второй вариант называют встречным включением — конец второй катушки подключается к началу первой. На схемах начало катушки обозначают символом « * «. Таким образом, на схеме, которая представлена на рисунке мы имеем согласное включение катушек индуктивности. Для этого случая общая индуктивность определяется так:
Где M — взаимная индуктивность катушек. При встречном включении последовательно соединенных катушек индуктивности:
Можно заметить, что если потоки имеют одинаковое направление (согласное включение), то общая индуктивность увеличивается на двойную величину взаимной индуктивности. А если потоки направлены навстречу друг другу — уменьшается на ту же самую величину.
Полное сопротивление цепей переменного тока
При последовательном соединении приборов с активным и индуктивным сопротивлениями (рис. 1) полное сопротивление цепи нельзя находить арифметическим суммированием. Если обозначить полное сопротивление через z, то для его определения служит формула:
Как видно, полное сопротивление является геометрической суммой активного и реактивного сопротивлений. Так, например, если r = 30 Ом и XL = 40 Ом, то
т. е. z получилось меньше, чем r + XL = 30 + 40 = 70 Ом.
Для упрощения расчетов полезно знать, что если одно из сопротивлений (r или xL) превосходит другое в 10 или более раз, то можно пренебречь меньшим сопротивлением и считать, что z равно большему сопротивлению. Ошибка весьма невелика.
Например, если r = 1 Ом и xL = 10 Ом, то
Ошибка лишь 0,5 % вполне допустима, так как сами сопротивления r и х бывают известны с меньшей точностью.
При параллельном соединении ветвей, имеющих активные и реактивные сопротивления (рис. 2), расчет полного сопротивления удобнее делать с помощью активной проводимости
и реактивной проводимости
Полная проводимость цепи у равна геометрической сумме, активной и реактивной проводимостей:
А полное сопротивление цепи является величиной, обратной у,
Если выразить проводимость через сопротивления, то нетрудно получить следующую формулу:
Эта формула напоминает известную формулу
но только в знаменателе стоит не арифметическая, а геометрическая сумма сопротивлений ветвей.
Пример. Найти полное сопротивление, если параллельно соединены приборы, имеющие r = 30 Он и xL = 40 Ом.
При расчете z для параллельного соединения можно для упрощения пренебречь большим сопротивлением, если оно превосходит меньшее в 10 и более раз. Ошибка не будет превышать 0,5 %
Рис. 1. Последовательное соединение участков цепи с активным и индуктивным сопротивлением
Рис. 2. Параллельное соединение участков цепи с активным и индуктивным сопротивлением
Принцип геометрического сложения применяется для цепей переменного тока также в случаях, когда надо складывать активные и реактивные напряжения или токи. Для последовательной цепи по рис. 1 складываются напряжения:
При параллельном соединении (рис. 2) складываются токи:
Если же последовательно или параллельно соединены приборы, имеющие только одни активные или только одни индуктивные сопротивления, то сложение сопротивлений или проводимостей и соответствующих напряжений или токов, а также активных или реактивных мощностей производится арифметически.
При любой цепи переменного тока закон Ома можно писать в следующем виде:
где z — полное сопротивление, вычисляемое для каждого случая соединения так, как это было показано выше.
Коэффициент мощности cosφ для любой цепи равен отношению активной мощности Р к полной S. При последовательном соединении это отношение можно заменить отношением напряжений или сопротивлений:
При параллельном соединении получим:
Вывод основных расчетных формул для последовательной цепи переменного тока, имеющей активное и индуктивное сопротивления, можно сделать следующим образом.
Проще всего построить векторную диаграмму для последовательной цепи (рис. 3).
Рис. 3. Векторная диаграмма для последовательной цепи с активным и индуктивным сопротивлением
Катушка индуктивности в цепи постоянного тока
Итак, для этого опыта нам понадобится блок питания, который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.
Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:
Намотать на него лакированного медного провода и зачистить выводы:
Замеряем индуктивность нашей катушки с помощью LC метра:
Теперь собираем все это вот по такой схеме:
L – катушка индуктивности
La – лампочка накаливания на напряжение 12 Вольт
Bat – блок питания, с выставленным напряжением 12 Вольт
Как вы помните из прошлой статьи, конденсатор у нас не пропускал постоянный электрический ток:
Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам провод, из которого намотана катушка.
Полное сопротивление цепи переменного тока
В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.
Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.
Введем понятие полного сопротивления цепи переменному току — Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока
На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.
Рисунок 1. Классификация цепей переменного тока.
Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.
Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.
Энергия катушки индуктивности.
Электрический ток, протекающий через катушку способствует накоплению энергии в магнитном поле катушки. При пропадании/отключении тока эта энергия будет возвращена в электрическую цепь. С этим мы и столкнулись при рассмотрении катушек индуктивности в цепях постоянного тока. Больше тут добавить особо нечего, просто приведу формулу, по которой можно определить величину накопленной энергии катушки индуктивности:
Давайте переходить к вариантам соединения катушек между собой… Все расчеты мы будем производить для идеальных катушек индуктивности, то есть их активные сопротивления равны 0. К слову, в большинстве теоретических задач и примеров, рассматриваются именно идеальные катушки. Но не стоит забывать о том, что в реальных цепях активное сопротивление не равно 0 и его необходимо учитывать при проведении любых расчетов.
Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.
В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.
Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью. а) — схема цепи; б) — сдвиг фаз тока и напряжения; в) — треугольник напряжений; д) — треугольник сопротивлений.
Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.
Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.
По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.
Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z 2 ) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.
(1)
Извлекая квадратный корень из обеих частей этого равенства, получим,
(2)
Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений
Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.
Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.
В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.
Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью. а) — схема цепи; б) — треугольник сопротивлений .
Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.
Для данного случая:
(3)
В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.
Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) — схема цепи; б) — треугольник сопротивлений .
Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.
Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.
Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.
Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C .
Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z
Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.
(7)
Приводя к общему знаменателю подкоренное выражение, получим:
(8) (9)
Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.
Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.
Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:
(10)
Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.
В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).
Рисунок 6. Эквивалентная схема колебательного контура.
Формула полного сопротивления для этого случая будет:
(11)
Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:
(12)
В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие
(13)
При соблюдении этого условия полное сопротивление колебательного контура будет равно:
(14)
где L—индуктивность катушки в Гн;
С—емкость конденсатора в Ф;
R—активное сопротивление катушки в Ом.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Источник
Параллельное соединение катушек индуктивности.
При параллельном соединении катушек индуктивности также возможны три варианта:
- Магнитное поле одной катушки не пересекает витков второй катушки, тогда: frac= frac+fracили L_0 = frac
- Часть магнитного потока одной катушки пронизывает витки второй и катушки включены согласно (как изображено на рисунке — то есть начала обеих катушек подключены к одному узлу). В этом случае: L_0 = frac
- Часть магнитного потока одной катушки пронизывает витки второй и катушки включены встречно. В этом случае: L_0 = frac
Также как и в случае с последовательным соединением, при согласном включении общая индуктивность будет больше, чем при встречном включении, поскольку знаменатель дроби будет меньше.
Собственно, на этом мы и заканчиваем рассмотрение катушек индуктивности. Ранее мы изучили конденсаторы и резисторы, а в будущих статьях нам предстоит работать с цепями, включающие все эти элементы в разных комбинациях
На практике нередко случаются ситуации, когда при выходе со строя катушки индуктивности, ее необходимо восстановить – намотать новую проволоку взамен старой. При этом вам уже известны геометрические параметры катушки, но требуется узнать, сколько сделать витков, слоев, их толщину и длину необходимого для этого провода. Стоит отметить, что при намотке витки должны ложиться вплотную без зазора.
Для расчета индуктивности многослойной катушки используется такая формула:
Где,
- d – сумма диаметра каркаса и толщины намотки только с одной стороны;
- n – количество витков;
- g – толщина намотанной проволоки;
- h – высота намотанной проволоки;
Из этой формулы, зная величину индуктивности, можно вывести толщину намотки:
Для определения количества витков необходимо воспользоваться формулой:
Где,
- dпр – диаметр провода
- h – высота катушки;
- g – толщина намотки.
Длину одного витка можно определить следующим образом:
lвит = π * dвит
Где π – это константа, а dвит_— это диаметр витка.
Тогда, зная общее число витков и принимая, что d – это усредненное значение диаметра для всех витков, длина всего провода будет определяться по формуле:
Lw = n * π * d
Через сопротивление провода можно определить его диаметр, для чего понадобится выразить сопротивление через геометрические параметры устройства.
R = ρ * ( Lw / S ),
где ρ – удельное сопротивление металла, из которого изготовлен проводник, а S – площадь проводника, которая определяется по формуле:
Подставив значение площади и длины провода, получим такое выражение для определения сопротивления:
Из значения сопротивления можно вывести формулу для определения диаметра провода, подставив предварительно формулу для вычисления количества витков:
После получения величины диаметра провода, можно определить количество витков, которое подставляется с остальными данными в первую формулу для расчета индуктивности.
Число слоев можно определить, разделив толщину намотки на диаметр провода:
N = g / dпр
Посредством вышеприведенных вычислений можно определить все параметры многослойной катушки индуктивности, которые помогут вам изготовить устройство с нужными параметрами. Также, чтобы облегчить вычисления вы можете воспользоваться нашим онлайн калькулятором ниже.