Как найти удельную теплоемкость бетона

Теплоемкость бетона

Этот показатель имеет очень важное значение, поскольку именно от него зависит степень изменения характеристик материала под воздействием разных температур. С течением времени вследствие этого мы может наблюдать осадку или, наоборот, набухание материала. Так как бетон применяется при строительстве зданий, то данный фактор должен учитываться как один из самых важных. И делать это нужно еще на стадии проектирования.

Все, что касается теплоемкости бетона, изложено в этой статье. Из нее же вы узнаете о методике определения данного показателя. С помощью таблицы теплоемкости различных материалов, содержащейся здесь, вы сможете узнать об их способности сохранять определенное количество тепла.

От чего зависит величина теплопроводности бетона? Ответ на этот вопрос вы также узнаете, прочитав статью до конца. Также вы узнаете, к чему приводит температурное расширение этого материала, и о том, как избежать превышения этого параметра при применении бетонных конструкций.

Обладание этими знаниями помогает избежать многих досадных ошибок при строительстве сооружений разного типа.

Теплоемкость бетона довольно важный показатель при строительстве любого здания или сооружения. Как правило, такой показатель составляет 0,00001(°С)-1. Обусловлено это тем, что со временем все бетонные конструкции неизбежно претерпевают изменения плотности из-за набухания или усадки. Это происходит даже тогда, когда температура воздуха и уровень влажности вокруг бетона остаются неизменными. Если рассматривать подробно, то сам бетон как каменный материал для строительства формируется из смеси того или иного вида вещества, имеющие вяжущие свойства.

Соотношение между компонентами в бетонной смеси

Изготовление такого искусственного материала проводится в соответствии с количеством вяжущего вещества и воды. При этом воду можно использовать как питьевую, так и любую другую. И именно исходя из предназначения бетонных материалов, строители производят расчеты по определению нужной теплоемкости смеси. Теплоемкость определяется как удельная величина, которая влияет на расстояние усадочных швов, необходимых для надежности самой конструкции. Существуют разные показатели усадки бетона и особая технология исследования его при изготовлении.

Основные свойства бетона

Такой процесс, как усадка или, наоборот, набухание бетона, напрямую зависит от количества цементного вещества, замешанного в растворе при его изготовлении. Со временем после строительства и уже ввода здания в эксплуатацию бетон будет постепенно высыхать и на каждый метр линейного размера давать усадку около 0,3 мм. Приблизительно на такую же величину будет происходить и набухание готового материала. Так, при покупке цементного вещества и изготовлении бетона важно знать, что:

  • в зависимости от количества самого цемента в заготовленной массе для изготовления цементных плит необходимо обязательно учитывать расстояние усадочных швов;
  • в среднем усадочный шов должен быть более 1,1 мм на 1 м общих линейных размеров;
  • для бетона коэффициент расширения от температурных колебаний (удельная теплоемкость) составляет 0,00001(°С)-1, и, например, при повышении или понижении температуры на 40° он расширится до 0,8 мм/м.;
  • заготовленная смесь для бетона всегда легче, чем уже готовый материал;
  • он бывает монолитный, тяжелый и пористый, и удельная теплоемкость напрямую зависит от его вида.

Для определения теплоемкости заготовленную массу выкладывают в специальную форму и ставят температурный датчик по центру. Далее она подвергается вибрации, при этом саму форму в месте зазора закрывают крышкой с уплотняющей замазкой, имеющей водонепроницаемые свойства. Для проведения этой процедуры используют аппаратуру, которая одновременно регистрирует и в то же время регулирует температурные колебания внутри формы со смесью.

Форму, в которую укладывают смесь помещают в адиабатическую камеру, способную поддерживать внутри нужную температуру для измерений.

При этом важно отметить, что температура в адиабатической камере должна быть доведена до температуры самой бетонной массы. Все замеры и записи температурных колебаний фиксируются на ленту регистрирующей и регулирующей аппаратуры. В дальнейшем после проведения испытаний проводят расшифровку лент регистрирующей аппаратуры. Важно отметить, что удельная теплоемкость смеси должна быть исследована не позднее 1 часа после ее изготовления, а такое испытание необходимо проводить не менее 5 суток пока температура в камере не превысит 1°.

Таблица теплоемкости некоторых материалов

Таблица показывает, какое количество тепла может сохранить в себе 1 кубометр материала при его нагреве на 1 градус.

№ по СНИП Материал Плотность кг/м3 Удельная теплоемкость, кДж/кг*oC Кол-во теплана 1 градус, кДж/м3*oC
144 Пенополистирол 40 1,34 54
129 Маты минерало-ватные прошивные 125 0,84 105
143 Пенополистирол 100 1,34 134
145 Пенопласт ПХВ-1 125 1,26 158
142 Пенополистирол 150 1,34 201
67 Газо- и пенобетон газо- и пено-силикат 300 0,84 252
66 Газо- и пенобетон газо- и пено-силикат 400 0,84 336
119 Плиты древесно-волокнистые и древесно-стружечные 200 2,30 460
65 Газо- и пенобетон газо- и пено-силикат 600 0,84 504
64 Газо- и пенобетон газо- и пено-силикат 800 0,84 672
70 Газо- и пено- золобетон 800 0,84 672
83 Листы гипсовые обшивочные (сухая штукатурка) 800 0,84 672
63 Газо- и пенобетон газо- и пено-силикат 1000 0,84 840
69 Газо- и пено- золобетон 1000 0,84 840
118 Плиты древесно-волокнистые и древесно-стружечные 400 2,30 920
68 Газо- и пено- золобетон 1200 0,84 1008
108 Сосна и ель поперёк волокон 500 2,30 1150
109 Сосна и ель вдоль волокон 500 2,30 1150
92 Керамический пустотный 1400 0,88 1232
112 Фанера клееная 600 2,30 1380
117 Плиты древесно-волокнистые и древесно-стружечные 600 2,30 1380
91 Кирпич керамический 1600 0,88 1408
47 Бетон на доменных гранулированных шлаках 1800 0,84 1512
84 Кирпичная кладка (кирпич глиняный) 1800 0,88 1584
110 Дуб поперек волокон 700 2,30 1610
111 Дуб вдоль волокон 700 2,30 1610
116 Плиты древесно-волокнистые и древесно-стружеч-ные 800 2,30 1840
2 Бетон на гравии или щебне из природного камня 2400 0,84 2016
1 Железо-бетон 2500 0,84 2100
113 Картон облицовочный 1000 2,30 2300
115 Плиты древесно-волокнистые и древесно-стружеч-ные 1000 2,30 2300
Вода 1000 4,18 4180

Пример. Сколько тепла будет накоплено в 1 кубометре воды при нагреве ее от 40 градусов до 90 градусов?

Удельная теплоемкость воды при 20o Суд = 4,18 кДж/кг*oС Разница температур Т = 90-40 = 50o Удельный вес г = 1000 кг/м3 Объем v=1 м3 Количество запасенной энергии Э = C*Т*v*г = 4.18*50*1*1000 = 209000 кДж (~58 кВт-час)

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,651
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,896
  • разное
    16,900

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

При нагревании бетонной плиты массой 200 кг от 10 до 40°С было получено количество теплоты, равное
5
,
3

10

6

Дж. Рассчитайте удельную теплоёмкость бетона.

reshalka.com

ГДЗ Физика 7-9 классы сборник вопросов и задач к учебнику Перышкина автор Марон. Количество теплоты. Удельная теплоемкость. Номер №728

Решение

Дано:

m =
200 кг;

Q
=
5
,
3

10

6

Дж

t

1

=
10

°

С

;

t

2

=
40

°

С

;
Найти:

c − ?

Решение:

Q
=
c
m
(

t

2

t

1

)
;

c
=

Q

m
(

t

2

t

1

)

;

c
=

5
,
3

10

6

200

(
40

10
)

=
883

Д

ж

к

г

°

С

.
Ответ: 883

Д

ж

к

г

°

С

.

Данная задача встречается в курсе физики 7-9 классов и выглядит таким образом:

Для нагревания бетонной плиты массой 200 кг от 10 до 40 °С потребовалось 5,3 • 10^6 Дж теплоты. Найдите удельную теплоемкость бетона.


Вы можете посмотреть правильное решение этой задачи чуть ниже:

Для нагревания бетонной плиты массой 200 кг от 10 до 40 °С потребовалось 5,3 • 10^6 Дж теплоты. Найдите удельную теплоемкость бетона.


У нас нагревается 200 кг бетонной плиты с 10 до 40 градусов. Нам необходимо узнать удельную теплоемкость бетонной плиты, если известно, что для нагрева потребовалось 5,3 • 10^6 Дж количества теплоты. Для этого выразим удельную теплоемкость из стандартной формулы и подставим все известные нам значения. В итоге получается 880 дж / кг на C. Это и является верным ответом на поставленную задачу.

Чему равна удельная теплоемкость древесины, бетона, цемента, кирпича, песка, мрамора, гранита, базальта и других строительных материалов?

Популярные ответы

  • Когда буквы е, ё, ю, я обозначают два звука?
  • Каким членом предложения может быть местоимение?
  • Как правильно произносятся слова термин, шинель, темп?
  • Как найти точки экстремума функции по графику производной?
  • Как правильно: по средам (ударение на «а» или на «е»)?
  • Какой официальный сайт Московского энергетического института (МЭИ)?
  • На какие вопросы отвечает наречие?
  • Где найти примеры сравнительных оборотов и других конструкций со словом «как»?
  • Как в физике обозначается скорость движения?
  • Где скачать задания по английскому языку олимпиады для школьников «Покори Воробьевы горы!»?

Удельная теплоёмкость — это количество тепла, которое требуется затратить, чтобы нагреть 1 килограмм вещества на 1 градус по шкале Кельвина (или Цельсия).

Физическая размерность удельной теплоемкости: Дж/(кг·К) = Дж·кг-1·К-1 = м2·с-2·К-1.

В таблице приводятся в порядке возрастания значения удельной теплоемкости различных веществ, сплавов, растворов, смесей. Ссылки на источник данный приведены после таблицы.

При пользовании таблицей следует учитывать приближенный характер данных. Для всех веществ удельная теплоемкость зависит от температуры и агрегатного состояния. У сложных объектов (смесей, композитных материалов, продуктов питания) удельная теплоемкость может значительно варьироваться для разных образцов.

Вещество Агрегатное
состояние 
Удельная
теплоемкость,
Дж/(кг·К)
Золото  твердое 129 
Свинец твердое 130 
Иридий твердое 134 
Вольфрам твердое  134 
Платина твердое 134 
Ртуть жидкое  139 
Олово твердое 218
Серебро твердое 234 
Цинк твердое 380 
Латунь  твердое  380
Медь твердое  385 
Константан твердое 410 
Железо  твердое 444 
Сталь твердое 460
Высоколегированная сталь твердое 480 
Чугун твердое 500
Никель твердое 500 
Алмаз  твердое 502
Флинт (стекло) твердое 503 
Кронглас (стекло) твердое 670 
Кварцевое стекло твердое 703
Сера ромбическая  твердое 710
Кварц  твердое 750
Гранит твердое 770 
Фарфор твердое 800 
Цемент твердое 800 
Кальцит  твердое 800
Базальт твердое 820 
Песок твердое 835 
Графит твердое 840 
Кирпич твердое 840 
Оконное стекло твердое 840 
Асбест твердое  840 
Кокс (0…100 °С) твердое 840 
Известь твердое 840 
Волокно минеральное твердое 840
Земля (сухая) твердое 840 
Мрамор твердое 840 
Соль поваренная  твердое 880 
Слюда  твердое 880 
Нефть жидкое 880
Глина  твердое 900 
Соль каменная  твердое 920
Асфальт твердое 920 
Кислород  газообразное 920 
Алюминий  твердое 930
Трихлорэтилен  жидкое 930 
Абсоцемент  твердое  960
Силикатный кирпич твердое 1000 
Полихлорвинил твердое 1000 
Хлороформ жидкое 1000
Воздух (сухой)  газообразное 1005 
Азот газообразное 1042 
Гипс  твердое  1090 
Бетон твердое 1130
Сахар-песок   1250 
Хлопок  твердое 1300 
Каменный уголь  твердое 1300
Бумага (сухая) твердое  1340
Серная кислота (100%) жидкое 1340
Сухой лед (твердый CO2) твердое 1380
Полистирол твердое 1380 
Полиуретан  твердое 1380
Резина (твердая) твердое 1420
Бензол жидкое 1420
Текстолит  твердое 1470
Солидол  твердое  1470
Целлюлоза  твердое 1500 
Кожа твердое 1510 
Бакелит твердое 1590 
Шерсть твердое 1700 
Машинное масло жидкое  1670 
Пробка твердое 1680 
Толуол твердое 1720 
Винилпласт  твердое

1760 

Скипидар жидкое 1800 
Бериллий твердое 1824 
Керосин бытовой жидкое 1880
Пластмасса  твердое 1900
Соляная кислота (17%) жидкое 1930
Земля (влажная) твердое 2000
Вода (пар при 100 °C) газообразное  2020 
Бензин жидкое 2050 
Вода (лед при 0 °C)  твердое  2060 
Сгущенное молоко    2061
Деготь каменноугольный жидкое 2090
Ацетон  жидкое 2160 
Сало   2175
Парафин  жидкое 2200 
Древесноволокнистая плита твердое 2300 
Этиленгликоль  жидкое 2300 
Этанол (спирт)  жидкое 2390 
Дерево (дуб) твердое 2400 
Глицерин жидкое 2430
Метиловый спирт жидкое 2470 
Говядина жирная    2510
Патока   2650
Масло сливочное    2680
Дерево (пихта) твердое  2700
Свинина, баранина   2845
Печень   3010
Азотная кислота (100%) жидкое 3100
Яичный белок (куриный)   3140
Сыр    3140
Говядина постная   3220
Мясо птицы    3300
Картофель   3430
Тело человека   3470
Сметана   3550
Литий  твердое 3582 
Яблоки   3600
Колбаса   3600
Рыба постная   3600 
Апельсины, лимоны   3670
Сусло пивное  жидкое  3927 
Вода морская (6% соли) жидкое 3780 
Грибы    3900
Вода морская (3% соли)  жидкое 3930
Вода морская (0,5% соли) жидкое 4100 
Вода  жидкое 4183 
Нашатырный спирт  жидкое 4730 
Столярный клей  жидкое 4190
Гелий  газообразное 5190 
Водород  газообразное  14300 

Источники:

  • ru.wikipedia.org — Википедия: Удельная теплоемкость;
  • alhimik.ru — средняя удельная теплоемкость некоторых твердых материалов при 0—100 °С, кДж/(кг·К) по данным пособия “Примеры и задачи по курсу процессов и аппаратов химической технологии” под ред. Романкова;
  • school.uni-altai.ru — табличные значения наиболее распространенных жидкостей;
  • school.uni-altai.ru — табличные значения наиболее распространенных твердых тел;
  • dink.ru — удельная теплоемкость при 20 °С;
  • mensh.ru — теплоаккумулирующая способность материалов;
  • vactekh-holod.ru — удельная теплоемкость твердых веществ и некоторых жидкостей;
  • xiron.ru — данные по теплоемкости пищевых продуктов;
  • aircon.ru — теплоемкость всяких разных [пищевых] продуктов;
  • masters.donntu.edu.ua — теплоемкость углей;
  • nglib.ru — средняя удельная теплоемкость твердых тел при комнатной температуре — таблица в книге С.Д. Бескова “Технохимические расчеты”  в электронной библиотеке “Нефть и газ” (требуется регистрация). Это наиболее подробный из доступных в интернете справочников.

Последнее редактирование ответа: 13.01.2010


  • Оставить отзыв

    Оставить отзыв

    Вы можете написать свои замечания к ответу, предложения об улучшении или просто поблагодарить автора. Комментарий, после проверки, увидят автор и редактор ответа. Будьте, пожалуйста, вежливыми. Спасибо!

    Если Вы хотите получить уведомление об
    исправлении ответа укажите свой e-mail:

    Неправильный формат адреса электронной почты

«Чему равна удельная теплоемкость древесины, бетона, цемента, кирпича, песка, мрамора, гранита, базальта и других строительных материалов»

В других поисковых системах:

GoogleЯndexRamblerВикипедия

В соответствии с пользовательским соглашением администрация не несет ответственности за содержание материалов, которые размещают пользователи. Для урегулирования спорных вопросов и претензий Вы можете связаться с администрацией сайта genon.ru.
Размещенные на сайте материалы могут содержать информацию, предназначенную для пользователей старше 18 лет, согласно Федерального закона №436-ФЗ от 29.12.2010 года “О защите детей от информации, причиняющей вред их здоровью и развитию”. Обращение к пользователям 18+.

Добавить комментарий