Как найти удельную теплоту плавления через мощность

Удельная теплоемкость вещества

Это физическая величина, выражающая количество тепла, необходимое веществу на единицу массы для повышения температуры на одну единицу.

Таким образом, удельная теплоёмкость является свойством вещества, поскольку его значение является репрезентативным для каждого вещества, каждое из которых, в свою очередь, имеет различные значения в зависимости от того, в каком состоянии оно находится (жидкое, твердое или газообразное).

Удельная теплоёмкость обозначается маленькой буквой c и измеряется в Дж/кг∗°С, представляет собой коэффициент повышения температуры в одной единице всей системы или всей массы вещества.

Кроме того, удельная теплоёмкость меняется в зависимости от физического состояния вещества, особенно в случае твердых частиц и газов, поскольку его молекулярная структура влияет на теплопередачу в системе частиц. То же самое относится и к условиям атмосферного давления: чем выше давление, тем ниже удельное тепло.

Основной состав удельной теплоты вещества должен быть с = С/m, т. е. удельная теплота равна соотношению калорийности и массы.

Однако когда это применяется к данному изменению температуры, говорят о средней удельной теплоемкости, которая рассчитывается на основе следующей формулы:

Q — передача тепловой энергии между системой и средой (Дж);

m — масса системы (кг);

Δt или (t2 — t1) — повышение температуры, которой она подвергается (°C).

Формула для нахождения количества теплоты Q:

Q = c∗m(t2— t1)

Чем выше удельная теплоёмкость вещества, тем больше тепловой энергии потребуется, чтобы его температура повысилась. Например, для нагрева воды (своды = 4200 Дж/кг∗°С) потребуется больше тепловой энергии, чем для нагрева свинца (ссвинца = 140 Дж/кг∗°С).

Уравнение теплового баланса:

Q отданное + Q полученное = 0.

Ниже представлена таблица значений удельной теплоёмкости некоторых веществ:

Примеры решения задач

Следующие задачи покажут примеры расчета необходимого количества теплоты.

Задача №1

Сколько теплоты нужно, чтобы изо льда массой 2 кг, взятого при температуре -10°С, получить пар при 100°С?

Ответ: чтобы изо льда массой 2 кг, взятого при температуре -10°С, получить пар при 100°С, нужно взять 6,162 мегаджоулей теплоты.

Задача №2

В железный котёл массой 5 кг налита вода массой 10 кг. Какое количество теплоты нужно передать котлу с водой для изменения их температуры от 10 до 100°С?

Начнем решение и отметим, что нагреваться будет и котёл, и вода. Разница температур составит 100 0 С — 10 0 С = 90 0 С. Т. е. и температура котла изменится на 90 градусов, и температура воды также изменится на 90 градусов.

Количества теплоты, которые получили оба объекта (Q1 – для котла и Q2 — для воды), не будут одинаковыми. Мы найдем общее количество теплоты по формуле теплового баланса Q = Q1 + Q2.

Источник

О тепловой энергии простым языком!

Человечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва,…

…энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.

Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.

Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.

Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С. Какая нужна мощность источника тепла, чтобы сделать это за 1 час. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!

Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов. Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!

Количество теплоты при различных физических процессах.

Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.

Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q, подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.

1. Твердое тело, имеющее температуру T1, нагреваем до температуры Tпл, затрачивая на этот процесс количество теплоты равное Q1.

2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2—Q1.

Главные формулы теплопередачи.

Формулы очень просты.

Количество теплоты Q в Дж рассчитывается по формулам:

1. Со стороны потребления тепла, то есть со стороны нагрузки:

1.1. При нагревании (охлаждении):

m – масса вещества в кг

с – удельная теплоемкость вещества в Дж/(кг*К)

1.2. При плавлении (замерзании):

λ – удельная теплота плавления и кристаллизации вещества в Дж/кг

1.3. При кипении, испарении (конденсации):

r – удельная теплота газообразования и конденсации вещества в Дж/кг

2. Со стороны производства тепла, то есть со стороны источника:

2.1. При сгорании топлива:

q – удельная теплота сгорания топлива в Дж/кг

2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):

I – действующее значение тока в А

U – действующее значение напряжения в В

R – сопротивление нагрузки в Ом

Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности ( c, λ , r , q ) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).

Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:

Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.

Формулы для количества теплоты через мощность

Тепловое действие тока
Прохождение тока через проводник вызывает его нагрев. Это явление широко используется в различных областях. Например, всем хорошо знакомы такие бытовые приборы, как лампа накаливания, электрокипятильник, электрочайник, электрообогреватель, паяльник, утюг и другие приборы.

Также часто можно замечать, что провода, идущие к какому-то мощному электроприбору, нагреваются. Нагреваются и другие устройства, например, телевизоры, компьютеры и т.д.

Тепловое действие тока может быть как полезным (например в случае кипятильника или обогревателя), так и вредным (в случае нагрева проводов). Поэтому необходимо знать, сколько тепла выделяется в том или ином случае, чтобы создать наиболее эффективное нагревающее устройство или, наоборот, избежать чрезмерного нагрева.

Единицей количества теплоты является 1 Джоуль (иногда используют другую единицу – калорию). Количество теплоты, выделившееся на проводнике можно рассчитать по следующей формуле:

Где P – мощность, выраженная в Ваттах, t – время, выраженное в секундах, Q – количество тепла, выраженное в Джоулях.

Пример.

Пусть обогреватель, имеющий мощность 1000 Ватт, работает в течение 1 часа (в одном часе 3600 секунд). Вычислим, сколько тепла выделится на этом обогревателе. Подставив имеющиеся данные в вышеприведённую формулу, получим: Q = Pt =1000*3600=3600000 Джоулей или 3,6 МегаДжоуля (МДж).

Можно вычислить на сколько градусов повысится температура воды в электрочайнике, имеющего нагревательный элемент определённой мощности и включённого в течение определённого времени.

Число градусов Цельсия, на которое повысится температура вещества, выражается по следующей формуле:

где С – теплоёмкость. Для воды С=4200 Дж/кг*градус. m – масса вещества в килограммах.

Пример . Пусть электрочайник имеет мощность 2000 Ватт. В него налито 2 литра (2 кг) воды. Вычислим на сколько градусов Цельсия поднимется температура воды в чайнике, если он будет включён в течении 5 минут (300 секунд).

Решение. За 5 минут (300 секунд) нагревательный элемент выделит количество теплоты, равное Q = Pt =2000*300=600000 Дж. Это тепло передано двум литрам воды, следовательно, повышение температуры воды составит:

∆ T = Q mC = 600 000 2 ∙ 4200 =71 градус Цельсия

Итак, нам известна формула для расчета количества теплоты:

где P – мощность. Нам также известна формула для расчёта мощности:

где I –ток, U – напряжение. По закону Ома U = IR , где R – сопротивление, поэтому

Следовательно, формулу для расчёта количества теплоты можно записать следующим образом:

Таким образом, зная, какой ток течёт через проводник, сопротивление проводника и время, в течение которого протекал ток, можно вычислить количество теплоты, выделившееся на проводнике.

Пример. Пусть имеется два резистора, соединённых последовательно. Через них течёт один и тот же ток, пускай 0,1 Ампера. Допустим, что сопротивление одного резистора 10 Ом, а другого 1000 Ом (Рис.1). Вычислим, сколько тепла выделилось на резисторах, если через них протекал ток в течение 1 минуты.

Из расчётов видно, что сильнее нагревается тот проводник, сопротивление которого больше.

Разные провода имеют разное сопротивление. Оно зависит от толщины провода.

Пусть вам понадобилось увеличить длину провода, при помощи которого утюг включается в сеть. Для этого вы можете воспользоваться удлинителем. Очень часто старые удлинители имеют относительно тонкий провод (тоньше, чем провод утюга), поэтому сопротивление провода удлинителя будет больше, чем сопротивление провода утюга. Значит, существует опасность, что провод удлинителя будет чрезмерно нагреваться, что может привести к замыканию или пожару.

Следовательно, мощные электроприборы, необходимо подключать к сети только при помощи провода достаточной толщины. Если провод слишком тонкий он может загореться.

На вилках и розетках всегда пишется, какой максимальный ток может через них течь. Старые розетки могут выдержать ток не более 6 Ампер. Некоторые современные приборы потребляют значительно больше. Например, через чайник мощностью 2200 Ватт течёт ток 10 Ампер. Поэтому его ни в коем случае не следует подключать в старые розетки, даже через переходник!

Источник

Как рассчитать тепловую мощность конвекторов, обогревателей и прочих отопительных приборов

Теплотехнический расчет – это вычисление требуемой толщины перекрытий в соответствии теплоизоляционных характеристик материалов и мощности нагревательных приборов. Любое помещение для создания комфортных условий в холодное время года требует определенного количества тепла, и неважно проектируется отопительная система частного дома или требуется обогреть только одну комнату – расчеты необходимы.

Все отопительные приборы независимо от типа устройства (конвекторы, радиаторные батареи, обогреватели, тепловые пушки и т.д.) и типа теплоносителя (водяные, газовые, электрические) отапливают помещения и производимое ими тепло называется тепловой мощностью. Именно эта характеристика имеет важнейшее значение при выборе обогревательного прибора.

Например невозможно обогреть мастерскую площадью 20 м 2 и построенную без теплоизоляции при -15 0 С электрическим обогревателем мощностью 1 кВт, а небольшую ванную комнату, расположенную в центре кирпичного дома запросто.

Количество тепла, которое требуется помещению для обогрева, измеряется в килокалориях, а мощности приборов в ваттах, поэтому для перевода одного значения в другое нужно килокалории поделить на 860 и получатся кВт.

Все производители отопительного оборудования обязательно указывают тепловую мощность прибора в паспорте или инструкции. Однако, следует учитывать, что указанная мощность достигается при соблюдении всех условий эксплуатации т.е. для водяных конвекторов или радиаторов имеет значение температура теплоносители, а для газовых приборов давление газа.

Поэтому помимо мощности отопления производители указывают, для каких условий эксплуатации предназначено оборудование.

Например, если у вас старая система центрального отопления с температурой нагрева 40-50 0 С, рекомендуется приобретать конвекторы для низкотемпературных систем отопления.

Для чего нужен тепловой расчет?

теплорасчет теплообменника

Теплотехнический расчёт позволяет строить наиболее оптимально. Материалов берётся ни больше – ни меньше, а ровно столько, сколько нужно. Сокращаются габариты строения и расходы на его возведение.

Вычисление точки росы позволяет строить так, чтобы материалы не портились как можно дольше.

Для определения необходимой мощности котла также не обойтись без расчётов. Суммарная мощность его складывается из затрат энергии на обогрев комнат, нагрев горячей воды для хозяйственных нужд, и способности перекрывать теплопотери от вентиляции и кондиционирования. Прибавляется запас мощности, на время пиковых холодов.

При газификации объекта требуется согласование со службами. Рассчитывается годовой расход газа на отопление и общая мощность тепловых источников в гигакалориях.

Нужны расчёты при подборе элементов отопительной системы. Обсчитывается система труб и радиаторов – можно узнать, какова должна быть их протяжённость, площадь поверхности. Учитывается потеря мощности при поворотах трубопровода, на стыках и прохождении арматуры.

При расчетах затрат тепловой энергии могут пригодиться знания, как перевести Гкал в Квт и обратно. В следующей статье подробно рассмотрена эта тема с примерами расчета.

Полный расчет теплого водяного пола приведен в этом примере.

Знаете ли вы, что количество секций радиаторов отопления не берется “с потолка”? Слишком малое их количество приведет к тому, что в доме будет холодно, а чрезмерно больше создаст жару и приведет к чрезмерной сухости воздуха. По ссылке приведены примеры правильного расчета радиаторов.

Простейший расчет тепловой мощности обогревателя

Существует общепринятый стандарт расчета тепловой мощности обогревателя при высоте помещения не более 3 м. На 10 метров квадратных площади устанавливается 1 кВт мощности прибора.

Эта формула неплохо работает при расчетах электрических отопительных приборов в помещениях с идеальными условиями — высокой теплоизоляцией, минимальной теплопотерей и одним окном с утепленным стеклопакетом. Но существует и примитивный вариант расчета, позволяющий учитывать и высоту комнат.

Простой расчет тепловой нагрузки (Q) помещения:

V (объем помещения/м3) х 40 Вт/1000 = Q (кВт/ч)

Эта формула не позволяет допустить ошибок, связанных с грубым расчетом по принципу 1 кВт на 10 м 2 т.к., учитывает объем комнаты включая высоту потолков. Однако и при таком расчёте легко совершить оплошность и приобрести «слабый» прибор — не учтено много важных факторов.

Пример расчетов

Вводные данные: гостиная в частном доме, ВхШхД – 4х5х6 м.

По первой формуле мы выясняем площадь помещения – 5х6 = 30 м 2 и умножаем на 1 кВт. Получается, что нам потребуется обогреватель на 3 кВт.

Но эти расчеты не гарантируют, что, купив обогреватель мощностью 3 кВт, вы получите комфортную температуру в помещении — в столь примитивном расчете даже не учитывается температура за окном. Если в средней полосе 3 кВт могут и справится с отоплением такой гостиной, но на севере с -35 за окном можете не сомневаться, разочарование от покупки и стучащие зубы вам обеспечены.

По второй формуле мы выясняем объем помещения – 4х5х6 = 120 м 3 .

V х 40 Вт/1000 = 120 х 40 / 1000 = 4,8 кВт

Как можно видеть вторая формула более точно отражает необходимую потребность помещения в тепле. Кроме того учитывайте, что эти расчеты обычно применяются в электрических обогревателях, а с прибором мощностью 5 кВт в час вы разоритесь на счетах за электроэнергию, да и далеко не вся проводка выдержит подобную нагрузку.

Что такое тепловой расчет?

Если говорить просто, тепловой расчёт помогает точно узнать, сколько тепла хранит и теряет здание, и сколько энергии должно вырабатывать отопление, чтобы поддерживать в жилье комфортные условия.

Оценивая теплопотери и степень теплоснабжения, учитываются следующие факторы:

  1. Какой это объект: сколько в нём этажей, наличие угловых комнат, жилой он или производственный и т. д.
  2. Сколько человек будет «обитать» в здании.
  3. Важная деталь – это площадь остекления. И размеры кровли, стен, пола, дверей, высота потолков и т. д.
  4. Какова продолжительность отопительного сезона, климатические характеристики региона.
  5. По СНиПам определяют нормы температур, которые должны быть в помещениях.
  6. Толщина стен, перекрытий, выбранные теплоизоляторы и их свойства.

Могут учитываться и другие условия и особенности, например, для производственных объектов считаются рабочие и выходные дни, мощность и тип вентиляции, ориентация жилья по сторонам света и др.

Формула расчета тепловой нагрузки с учетом разницы температур

Для более точного определения требуемой тепловой мощности обогревателя или конвектора рекомендуем воспользоваться следующими формулой.

V (объем помещения) х T (разница температур) х φ (коэффициент теплопотери) = ккал/ч

  • V – это упоминаемый выше объем комнаты: ширина * длину * высоты.
  • Т (разница температур) – в зависимости от климатической зоны температура на улице может составлять и -5 0 С и -30 0 С. Поэтому в формулу введен параметр выражающий разницу между средней зимней температурой на улице и желаемой температурой в помещении. Пример: среднее зимнее значение на улице составляет -15 0 С, а в комнате требуется 25 0 С – получается Т = 40 0 С.
  • φ – коэффициент теплопотерь помещений в зависимости от конструкции и изоляции. 3-4 – отсутствие теплоизоляции. Простые деревянные или металлические строения без изоляции.
  • 2-2,9 – низкая теплоизоляция. Кладка в один кирпич, упрощенная конструкция строений, одинарные окна.
  • 1-1,9 – средняя теплоизоляция. Строения с кладкой в два кирпича, стандартные здания, обычная кровля, небольшое количество окон.
  • 0,6-0,9 — высокая теплоизоляция. Мало окон, сдвоенные рамы, кирпичные стены, двойная теплоизоляция, утепленная крыша и толстое основание пола.

Что еще необходимо учесть при расчете

Предыдущие расчеты не дают точной оценки мощности котельной, необходимо учитывать и приготовление горячей воды. Мощность котлов необходимо увеличить примерно на 20% — столько тепла тратится на нагревание воды. Для частного дома лучше приобретать автоматические двухконтурные отопительные установки — они экономят потребляемое топливо, работают на обогрев помещения и на подготовку горячей воды.

Географическое расположение отапливаемого помещения тоже принимается во внимание. Для этого существуют карты с обозначением средних температур в разные времена года для разных местностей

К расчетной цифре, установленной ранее, прибавляется взятый из карты коэффициент. Для климата средней полосы России он равен 1, для северных районов — от 1,5 до 2. На этот коэффициент умножается цифра, полученная при измерении площади и объема отапливаемого помещения. Результатом будет мощность котлов, необходимая для данного региона.

Пример расчета потребления тепла в кирпичном доме в Сыктывкаре:

  • дом высотой 3 м;
  • площадь 100 м².

Вычисляем объем: 100 м² умножаем на 3 м, получаем 300 м³. 34 Вт умножаем на 300 м³, получаем 10,2 кВт. Населенный пункт находится в северной зоне, поэтому последнее число умножается на коэффициент 2. Результат — 20,4. К этому числу добавляется еще 20% на нагрев воды и 25% резервной мощности. Чтобы не допустить преждевременного износа оборудования, прибавляют еще 10% мощности. В результате получают полную мощность котельной.

Если отапливается несколько домов, нужно посчитать затрачиваемую энергию для каждого из них и сложить полученные значения. Эта сумма будет обозначать необходимую тепловую мощность.

Для более точного расчета специалисты пользуются формулами, которые включают в себя:

  • коэффициенты теплопотерь;
  • количество людей в помещении;
  • виды теплоизоляционных материалов;
  • разность наружных и внутренних температур.

Формула расчета тепловой мощности с учетом дополнительных факторов

Несмотря на введение коэффициента потерь тепла предыдущая формула не способна отразить всевозможные нюансы помещений. Наример теплопотери квартиры расположенной на 5 этаже в центре девятиэтажного здания ниже, чем у угловой квартиры на последнем этаже. Для получения более точных данных рекомендуем воспользоваться формулой:

Q = (100 Вт/м 2 х S х φ 1 х φ 2 х φ 3 х φ 4 х φ 5 х φ 6 х φ 7)/1000

  • S – площадь помещения в м 2 .
  • φ 1 – потери тепла через окна: 0,85 – тройной стеклопакет;
  • 1 – двойной стеклопакет;
  • 1,27 – одинарный стеклопакет (стандартный).
  • φ 2 – утепление стен (теплоизоляция):
      0,854 – высокое;
  • 1 – кладка в два кирпича;
  • 1,27 – низкое.
  • φ 3 – соотношение общей площади окон к площади пола помещения в %:
      1,2 – 50%;
  • 1,1 – 40%;
  • 1 – 30%;
  • 0,9 – 20%;
  • 0,8 – 10%.
  • φ 4 – коэффициент умножения в зависимости от температуры внешней среды в минусовых значениях 0 С:
      1,5 – -35 0 С;
  • 1,3 – -25 0 С;
  • 1,1 – -20 0 С;
  • 0,9 – -15 0 С;
  • 0,7 – -10 0 С.
  • φ 5 – сколько стен имеют контакт со внешней средой (выходят на улицу):
      1,4 -4;
  • 1,3 -3;
  • 1,2 -2;
  • 1,1 -1.
  • φ 6 – теплоизоляция помещения находящегося сверху над расчетным:
      0,8 – обогреваемое;
  • 0,9 – утеплённое, но не отапливаемое;
  • 1 — холодный чердак или крыша.
  • φ 7 – высота в метрах:
      1,2 – 4,5м;
  • 1,15 – 4м;
  • 1,1 – 3,5м;
  • 1,05 – 3м;
  • 1 – 2,5м.
  • Как видите в формуле расчета тепловой мощности обогревательного оборудования учтено значительно больше значений влияющих на теплопотери.

    Пример расчета

    Вводные данные: гостиная в частном доме, ВхШхД – 4х5х6 м. Дом построен кладкой в два кирпича, на утепленном фундаменте с большим панорамным окном, со стандартным остеклением, занимающим 50% от площади пола. Средняя температура зимой -15 0 С. На втором этаже отапливаемые спальни, две стены выходят на улицу.

    Выясняем требуемые значения и коэффициенты:

    • S – 30м 2 .
    • φ 1 – 1,27.
    • φ 2 – 1.
    • φ 3 – 1,2.
    • φ 4 – 0,9.
    • φ 5 – 1,2.
    • φ 6 – 0,8.
    • φ 7 – 1,15.

    Подставляем значения в формулу:

    Q = (100 Вт/м 2 х S х φ 1 х φ 2 х φ 3 х φ 4 х φ 5 х φ 6 х φ 7)/1000

    Q = (100 Вт/м 2 х 30 х 1,27 х 1 х 1,2 х 0,9 х 1,2 х 0,8 х 1,15)/1000 = 4,543 кВт

    Исходя из этого уточненного расчета, получается, что нам нужно организовать отопление на 4,5-5 кВт.

    Эта формула предпочтительна для расчета тепловой мощности отопительных систем, причем она подходит для расчета отопления в небольших жилых помещениях и в организации отопления промышленных объектов.

    Важно! Для увеличения срока службы теплового оборудования и для учета непредвиденных ситуаций, рекомендуется добавлять небольшой запас в 10-15 %.к полученной тепловой мощности.

    Расчет для прибора

    1. Как выполнить расчет тепловой мощности радиаторов отопления при известном количестве секций?

    Все просто: количество секций умножается на тепловой поток от одной секции. Этот параметр обычно можно найти на сайте производителя.

    Если вас привлекла необычно низкая цена радиаторов неизвестного производителя — тоже не беда. В этом случае можно ориентироваться на следующие усредненные значения:

    Тип радиатора Тепловой поток на секцию стандартного (500 мм по центрам ниппелей) размера
    Чугунный 140-160
    Биметаллический 180-190
    Алюминиевый 190 — 200

    На фото — алюминиевый радиатор, рекордсмен по теплоотдаче на одну секцию.

    Если вы выбрали конвектор или панельный радиатор, единственным источником информации для вас могут стать данные производителя.

    Данные для панельных радиаторов Керми с сайта производителя.

    Выполняя расчет тепловой мощности радиатора своими руками, учтите одну тонкость: производители обычно приводят данные для перепада температур между водой в батарее и воздухом в отапливаемом помещении в 70С. Она достигается, например, при комнатной температуре +20 и температуре радиатора +90.

    Уменьшение дельты ведет к пропорциональному уменьшению тепловой мощности; так, при температурах теплоносителя и воздуха 60 и 25С соответственно мощность прибора уменьшится ровно вдвое.

    Температурный график отопления. Большую часть отопительного сезона поступающая в батареи смесь (темно-синяя линия на графике) холоднее 90С.

    Давайте обратимся к нашему примеру и выясним, сколько чугунных секций может обеспечить тепловую мощность в 6,6 КВт в идеальных условиях — при нагретом до 90С теплоносителе и комнатной температуре в +20. 6600/160=41 (с округлением) секция. Очевидно, что батареи такого размера придется разнести как минимум по двум стоякам.

    При большом количестве секций используйте диагональное двухстороннее подключение к подводке. Тогда батарея будет равномерно прогрета по всей длине.

    Особый случай

    1. Системы отопления частных домов и гаражей нередко оборудуют самодельными приборами из соединенных перемычками труб — регистрами. Как подсчитать тепловую мощность стального регистра известных размеров?

    Трубчатый стальной радиатор, или регистр.

    Для одной секции (одной горизонтальной трубы) она вычисляется по формуле Q=Pi*D*L*K*Dt.

    В ней:

    • Q -мощность. Результат будет получен в ваттах;
    • Pi — число «пи», его округленно берут равным 3,14;
    • D — наружный диаметр трубы в метрах;
    • L — длина секции (опять-таки в метрах);
    • K — коэффициент, соответствующий теплопроводности металла (у стали он равен 11,63);
    • Dt — разность температур между воздухом и водой в регистре.

    При расчете мощности многосекционного регистра первая снизу секция рассчитывается по этой формуле, а для последующих, поскольку они будут находиться в восходящем теплом потоке (что влияет на Dt), результат умножается на 0,9.

    Четырехсекционный регистр. Верхние секции попадают в восходящий теплый поток от нижней.

    Приведу пример расчета. Одна секция диаметром 108 мм и длиной 3 метра при комнатной температуре +25 и температуре теплоносителя +70 будет отдавать 3,14*0,108*3*11,63*(70-25)=532 ватта. Четырехсекционный регистр из таких же секций отдаст 523+(532*0,9*3)=1968 ватт.

    Тип 8 № 9147

    i

    Образец массой 3,6 кг, находящийся в твёрдом состоянии, поместили в электропечь и начали нагревать. На рисунке приведён график зависимости температуры t этого образца от времени tau. Известно, что мощность электропечи равна 0,6 кВт. Какова удельная теплота плавления образца (в кДж/кг)? Потерями теплоты при нагревании пренебречь.

    Спрятать решение

    Решение.

    Плавление соответствует часть графика от 20 мин до 40 мин (т. е. 1200 с). Q = A, значит, lambda m=Ptau, отсюда найдем удельную теплоту плавления:

    lambda= дробь: числитель: Ptau, знаменатель: m конец дроби = дробь: числитель: 600 умножить на 1200, знаменатель: 3,6 конец дроби =200000 дробь: числитель: Дж, знаменатель: кг конец дроби =200 дробь: числитель: кДж, знаменатель: кг конец дроби .

    Ответ: 200.

    Аналоги к заданию № 9147: 9178 Все

    Раздел кодификатора ФИПИ/Решу ЕГЭ: 2.2.5 Удель­ная теп­ло­та па­ро­об­ра­зо­ва­ния, плав­ле­ния, сго­ра­ния топ­ли­ва

    напишите плиз все формулы, какие знаете по удельной теплоте плавления; формулы, в которых есть мощность!!!!



    Профи

    (587),
    на голосовании



    12 лет назад

    Голосование за лучший ответ

    Татьяна Макаренко

    Мыслитель

    (6089)


    12 лет назад

    Удельная теплота плавления обозначается буквой лямбда Л. Формула расчёта удельной теплоты плавления: Л=Q / m, гдеЛ — удельная теплота плавления, Q — количество теплоты, полученное веществом при плавлении (или выделившееся при кристаллизации) , m — масса плавящегося (кристаллизующегося) вещества.

    Плавление и отвердевание

    ОпределениеПлавление — переход вещества из твердого состояния в жидкое.
    Для расчета количества теплоты, необходимого для процесса плавления, следует применять формулу:

    Q=λm

    m — масса вещества, λ (Дж/кг) — удельная теплота плавления.

    Плавление каждого вещества происходит при определенной температуре, которую называют температурой плавления. Все проводимое тепло идет на разрушение кристаллической решетки, при этом увеличивается потенциальная энергия молекул. Кинетическая энергия остается без изменения и температура в процессе плавления не изменяется.

    Удельная теплота плавления показывает, какое количество теплоты необходимо сообщить 1 кг данного вещества, чтобы перевести его из твердого состояния в жидкое при условии, что оно уже нагрето до температуры плавления. В процессе отвердевания 1 кг данной жидкости, охлажденной до температуры отвердевания, выделится такое же количество теплоты.

    Внимание! Удельная теплота плавления — табличная величина.

    Определение
    Отвердевание, или кристаллизация — переход состояния из жидкого состояния в твердое (это процесс, обратный плавлению).
    Отвердевание происходит при той же температуре, что и плавление. В процессе отвердевания температура также не изменяется. Количество теплоты, выделяемое в процессе отвердевания:

    Q=−λm

    Продолжаем подготовку к олимпиадам. Сегодня рассматриваем тему “мощность теплопередачи”. Задачи интересные, и в школе эту тему не дают, заимствованы на «Фоксфорде» – спасибо составителям за удовольствие от решения.

    Мощность теплопередачи – количество теплоты, отданное системой за время .

    Эта мощность зависит от разности температур (если горячее тело вынести на мороз, остывает быстрее, чем если такое же тело вынести на жару), от площади поверхности тела (чем она больше, тем быстрее остынет), от расстояния, на которое тепло передают:

    Задача 1. Ведро воды удалось нагреть кипятильником мощностью 800 Вт лишь до С. За какое время ведро остынет до С после выключения кипятильника? Масса воды 10 кг.

    Задача на прямое применение данной выше формулы. Ведро остывает на 1 градус, следовательно,

    Ответ: 52,5 с.

    Задача 2. Петя заметил, что на морозе вода в стакане остывает от С до С за 3 мин, а от С до С за 6 мин. Чему равна температура окружающей среды ? Считайте, что мощность теплопередачи пропорциональна разности температур стакана и окружающей среды.

    Вода и в первом, и во втором случае отдает одно и то же количество теплоты, так как остывает в обоих случаях на три градуса. Тогда

    Но, с другой стороны,

    и -средняя температура воды в первом и во втором случаях. Коэффициент учитывает все остальные параметры: длины, площади и пр.

    Поделим уравнения друг на друга

    Или

    Ответ:

    Задача 3. На плите стоит кастрюля с водой. При нагревании температура воды увеличилась от C до C за одну минуту. Какая доля теплоты, получаемой водой при нагревании, рассеивается в окружающем пространстве, если время остывания той же воды от C до C равно 9,0 минутам?

    Кастрюлю подогревают – но это не значит, что она не остывает! Вот такой парадокс. Тепло кастрюля все равно отдает, всегда, когда она теплее, чем окружающие предметы. Просто, если кастрюля нагревается, то это означает, что тепло, которое она получает от плитки, больше, чем то, которое она рассеивает.

    Поэтому при нагреве

    А при пассивном остывании

    Тогда

    Искомая величина:

    Задача 4. В палатке, покрытой сверху шерстяными одеялами, пол застелен толстым теплонепроницаемым войлоком. Одинокий спящий индеец начинает мерзнуть в такой палатке при уличной температуре воздуха С. Два спящих индейца начинают мерзнуть в такой палатке при уличной температуре воздуха С. При какой температуре воздуха индейцы начинают пользоваться палатками? При какой температуре в той же палате будет холодно трем индейцам? Какому количеству индейцев никогда не будет холодно в палатке? Считайте, что тепловая мощность, передаваемая через тент палатки, пропорциональна разности температур внутри и снаружи.

    Индеец теплый, теплее окружающей среды. Он отдает тепло наружному холодному воздуху. Если температура воздуха , мощность теплоотдачи индейца . Потому что если на улице другая температура, то и мощность уже другая, индеец остывает или быстрее, или медленнее. Пусть температура вокруг индейца, при которой индеец начинает замерзать, . Это может быть и температура наружного воздуха, и температура в палатке. Тогда двое индейцев имеют мощность теплоотдачи , трое – и так далее. Пусть коэффициент учитывает площадь поверхности индейца, рост, материал, из которого индеец состоит… Тогда

    Разделим второе на первое:

    Разделим третье на первое:

    Разделим четвертое на первое:

    Тогда, если температура на улице , то

    Таким образом, 48-49 индейцев не должны замерзнуть даже при абсолютном нуле.

    Задача 5. Система охлаждения нагревателя состоит из нескольких одинаковых теплопроводящих стержней, соединенных небольшими шариками. Температура нагревателя С, температура холодильника С. Чему равна разность температур шарика K и шарика B () в установившемся режиме? Приток тепла в системе осуществляется только от нагревателя, а отвод только через холодильник. Мощность теплопередачи через стержень пропорциональна разности температур на его концах.

    Рисунок 1

    Расставим направления потоков тепла. В центре все понятно: все стрелки направлены от горячего к холодному «очагу» – холодильнику. А что по верхним правому и левому углам?

    Рисунок 2

    Точка ближе к холодильнику, чем , поэтому направление потока логично будет выбрать от к .

    Рисунок 3

    Точка дальше от нагревателя, чем , поэтому ставим стрелку от к .

    Рисунок 4

    Теперь определим величины этих потоков. Если от к направлен поток , то от к – тоже . Но тогда от к холодильнику – , так как в силу симметрии в левой части расстановка потоков такая же.

    Рисунок 5

    Если теперь пройти от точки к холодильнику по красной стрелке, наберется , следовательно, поток от точки к холодильнику тоже . Тогда от нагревателя к точке будет течь поток , и в левой части аналогично.

    Рисунок 6

    Следовательно, если пройти от нагревателя к холодильнику через точку по стрелке, поток будет равен . Тогда и “напрямки” тоже .

    Но температура холодильника и нагревателя отличается на , поэтому

    Тогда расставляем температуры узлов: в точке и симметричной ей слева , в точке , в точке .

    Определяем искомое:

    Ответ: .

    Парообразование и конденсация

    ОпределениеПарообразование, или кипение — переход вещества из жидкого состояния в газообразное.
    Количество теплоты, необходимое для процесса кипения, вычисляют по формуле:

    Q=rm

    m — масса вещества, r (Дж/кг) — удельная теплота парообразования.

    Парообразование происходит при определенной температуре, которую называют температурой кипения. В отличие от испарения, процесс парообразования идет со всего объема жидкости. Несмотря на то, что к кипящему веществу подводят тепло, температура не изменяется. Все затраты энергии идут на увеличение промежутком между молекулами. Температура кипения зависит от рода вещества и внешнего атмосферного давления.

    Удельная теплота парообразования показывает, какое количество теплоты необходимо затратить, чтобы перевести в пар 1 кг жидкости, нагретой до температуры кипения. Такое же количество теплоты выделится в процессе конденсации 1 кг пара, охлажденного до температуры конденсации.

    Внимание! Удельная теплота парообразования — табличная величина.

    Определение
    Конденсация — процесс, обратный кипению. Это переход вещества из газообразного состояния в жидкое.
    Конденсация происходит при температуре кипения, которая также не изменяется во время всего процесса. Количество теплоты, выделяемое в процессе конденсации:

    Q=−rm

    06-в. Количество теплоты и калориметр

    • Главная
    • Справочник
    • Физика
    • Введение в термодинамику
    • Книги, лекции и конспекты по физике
    • Физика 7 класс
    • 06-в. Количество теплоты и калориметр

    § 06-в. Количество теплоты и калориметр

    В этом параграфе мы изучим несколько новых терминов. Определим их. Теплообмен

    – это явление перехода внутренней энергии одного тела во внутреннюю энергию другого тела без совершения механической работы.
    Количество теплоты
    – это энергия, перешедшая от одного тела к другому при теплообмене.

    На рисунке показан калориметр

    – прибор для измерения количества теплоты.
    Простейший калориметр состоит из двух стаканов: внутреннего алюминиевого и внешнего пластмассового, которые разделены воздушным промежутком.
    Рассмотрим пример. Во внутренний стакан нальём 100 г воды. Измерим её температуру: 20 °С. Погрузим в воду горячее тело – металлический цилиндрик. Внутри калориметра начнётся теплообмен, и некоторое количество теплоты перейдёт от цилиндрика к воде

    , в результате чего её температура повысится (см. рисунок). Вычислим изменение температуры воды:

    Δt°

    воды = 60 °С – 20 °С = 40 °С .

    Зная, что масса воды 100 г, инженер-теплотехник скажет: вода получила 100 г · 40 °С = 4000 калорий теплоты. В отличие от теплотехники, в физике количество теплоты выражают в джоулях

    (как и любую другую энергию). Для этого применяют специальную формулу:

    Формула для подсчета количества теплоты, поглощаемого телом при нагревании или выделяющегося при его охлаждении. Формула читается так: «Ку равно цэ эм дэльта тэ».

    Q = c·m·Δt° Q

    – количество теплоты, Дж
    с
    – удельная теплоёмкость, Дж/(кг°С)
    m
    – масса тела или вещества, кг
    Δt°
    – изменение температуры тела, °С

    Удельная теплоёмкость вещества

    – физическая величина, показывающая количество теплоты, необходимое для изменения температуры 1 кг этого вещества на 1 °С.

    Используя таблицу (см. далее), легко подсчитать, что вода внутри калориметра получила от цилиндрика 16,8 кДж теплоты:

    Q

    воды = 4200 Дж/(кг°С) · 0,1 кг · 40 °С = 16800 Дж .

    Формулу Q = cmΔt°

    применяют не только в том случае, когда вещество нагревается. Её также используют для подсчёта количества теплоты, которое
    отдают охлаждающиеся тела
    . Например, вода внутри отопительных батарей в квартире или классе.

    Удельные теплоёмкости всех веществ измерены и занесены в специальные таблицы. Например, для воды в жидком состоянии с = 4200 Дж/(кг°С). Это значение показывает, что для нагревания 1 кг воды на 1 °С потребуется 4200 Дж теплоты. Можно сказать и иначе: каждый килограмм воды, остывая на 1 °С, отдаёт окружающим телам 4200 Дж тепловой энергии.

    Удельная теплоемкость показывает количество теплоты, которое необходимо для нагревания 1 кг вещества на 1 градус. Или, что то же самое, – количество теплоты, которое выделится при охлаждении 1 кг этого вещества на 1 градус.

    Удельные теплоёмкости некоторых веществ, Дж/(кг°С)
    Алюминий 920 Вода 4200
    Железо 460 Лёд 2100
    Латунь 400 Масло подсолн. 1700

    Поясним, почему в определении теплообмена присутствуют слова «без совершения механической работы». Вспомним, что в § 5-е мы рассмотрели опыт с манометром и горячей гирей. Тогда внутренняя энергия гири уменьшалась. Часть этой энергии превращалась в механическую работу – удлинялся «столбик» жидкости в манометре. В опыте с калориметром внутренняя энергия цилиндрика также уменьшалась. Однако теперь она превращалась во внутреннюю энергию воды без совершения работы (см. рисунок; для наглядности цилиндрик изображён вне калориметра).

    Калориметрические измерения показывают, что теплообмен всегда протекает так, что убыль внутренней энергии одних тел сопровождается таким же приращением внутренней энергии других тел, участвующих в теплообмене.

    Это – одно из проявлений закона сохранения и превращения энергии.

    Введение в термодинамикуФормулы Физика Теория 7 класс

    Источник

    Источник информации

    Тепловые процессы при нагревании и охлаждении

    Все фазовые переходы, а также процессы нагревания и остывания вещества можно отобразить графически. Посмотрите на график фазовых переходов вещества:

    Он показывает зависимость температуры вещества от времени в процессе его нагревания и остывания. Опишем процессы, отображаемые на графике, в таблице.

    Процесс Что происходит Количество выделенной теплоты
    1–2 Нагревание твердого тела Q=cтm(tпл−t0)

    ст — удельная теплоемкость вещества в твердом состоянии.

    2–3 Плавление при температуре плавления (tпл) Q=λm
    3–4 Нагревание жидкости Q=cжm(tкип−tпл)

    сж — удельная теплоемкость вещества в жидком состоянии.

    4–5 Кипение при температуре кипения (tкип) Q=rm
    5–6 Нагревание пара Q=cпm(t−tкип)

    сп — удельная теплоемкость вещества в газообразном состоянии.

    6–7 Охлаждение пара Q=cпm(tкип−t)
    7–8 Кипение при температуре кипения (tкип) Q=−rm
    8–9 Охлаждение жидкости Q=cжm(tпд−tкип)
    9–10 Отвердевание при температуре плавления (tпл) Q=−λm
    10–11 Охлаждение твердого тела Q=cтm(t0−tпл)

    Внимание! На участках 2–3 и 9–10 вещество частично находится в жидком и твердом состояниях, а на 4–5 и 7–8 — в жидком и газообразном.

    Частные случаи тепловых процессов

    Что происходит График Формула количества теплоты
    Полностью растопили лед, имеющий отрицательную температуру. Q=cлm(tпл−tл)+λm

    cл — удельная теплоемкость льда, tл — начальная температура льда.

    Лед, взятый при отрицательной температуре, превратили в воду при комнатной температуре. Q=cлm(tпл−tл)+λm+cвm(tв−tпл)

    cв — удельная теплоемкость воды.

    Взяли лед при температуре 0 оС и полностью испарили. Q=λm+cвm(tкип−tпл)+rm
    Взяли воду при комнатной температуре и половину превратили в пар. Q=cвm(tкип−tв)+rm2..

    Подсказки к задачам

    Единицы измерения Температуру можно оставлять в градусах Цельсия, так как изменение температуры в градусах Цельсия равно изменению температуры в Кельвинах.
    Кипяток Вода, которая при нормальном атмосферном давлении имеет температуру в 100 оС.
    Объем воды 5 л m = 5 кг, так как:
    m=ρV=103· 5·10−3м3=5 кг
    Внимание! Равенство V (л) = m (кг) справедливо только для воды.

    Пример №1. Какое количество теплоты нужно сообщить льду массой 2 кг, находящемуся при температуре –10 оС, чтобы превратить его в воду и нагреть ее до температуры +30 оС?

    Можно выделить три тепловых процесса:

    1. Нагревание льда до температуры плавления.
    2. Плавление льда.
    3. Нагревание воды до указанной температуры.

    Поэтому количество теплоты будет равно сумме количеств теплоты для каждого из этих процессов:

    Q=Q1+Q2+Q3

    Q=cлm(0−t1)+λm+cвm(t2−0)

    Удельные теплоемкости и удельную теплоту плавления смотрим в таблицах:

    • Удельная теплоемкость льда = 2050 Дж/(кг∙К).
    • Удельная теплоемкость воды = 4200 Дж/(кг∙К).
    • Удельная теплота плавления льда = 333,5∙103 Дж/кг.

    Отсюда:

    Q=2050·2(0−(−10))+333,5·103·2+4220·2·30=961200 (дж)=961,2 (кДж)

    Взаимные превращения механической и внутренней энергии

    Если в тексте задачи указан процент одного вида энергии, перешедший в другой, то он указывается в виде десятичной дроби перед этой энергией, которой тело обладало вначале.

    Частные случаи закона сохранения энергии

    При неупругом ударе о стенку пуля нагрелась mv22..=cmΔt
    Тело падает с некоторой высоты и в момент падения нагревается mgh=cmΔt
    В результате того, что пуля пробивает стену, ее скорость уменьшается, 50% выделившейся при этом энергии идет на нагревание пули 0,5(mv202..−mv22..)=cmΔt
    Летящая пуля при ударе о стенку расплавилась. Начальная температура пули меньше температуры плавления mv22..=cmΔt+λm
    Капля воды, падая с некоторой высоты, в момент удара испарилась. Температура капли у поверхности земли меньше температуры кипения. На нагрев пошло 60% выделившейся механической энергии 0,6mgh=cmΔt+rm
    Вследствие сгорания топлива ракета поднялась на некоторую высоту qmтоп=mрgh
    Вследствие сгорания топлива снаряд приобрел некоторую скорость, и на это было затрачено 25% энергии 0,25qmтопmсv22..

    Пример №3. Свинцовая дробинка, летящая со скоростью 100 м/с, попадает в доску и входит в нее. 52% кинетической энергии дробинки идет на ее нагревание. На сколько градусов нагрелась дробинка? Удельная теплоемкость свинца 130 Дж/(кг∙К).

    Запишем закон сохранения энергии для этого случая:

    0,52mv22..=cmΔt

    Δt=0,52v22c..=0,52·10022·130..=20 (К)

    Количество теплоты. Удельная теплоемкость вещества

    Количеством теплоты называют количественную меру изменения внутренней энергии тела при теплообмене.

    Количество теплоты — это энергия, которую тело отдает при теплообмене (без совершения работы). Количество теплоты, как и энергия, измеряется в джоулях (Дж).

    Удельная теплоемкость вещества

    Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на $1$ градус.

    Теплоемкость тела обозначается заглавной латинской буквой С.

    От чего зависит теплоемкость тела? Прежде всего, от его массы. Ясно, что для нагрева, например, $1$ килограмма воды потребуется больше тепла, чем для нагрева $200$ граммов.

    А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой $400$ г, а в другой — растительное масло массой $400$ г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрее. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

    Таким образом, для нагревания одной и той же массы разных веществ до одинаковой температуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

    Так, например, чтобы увеличить на $1°$С температуру воды массой $1$ кг, требуется количество теплоты, равное $4200$ Дж, а для нагревания на $1°$С такой же массы подсолнечного масла необходимо количество теплоты, равное $1700$ Дж.

    Физическая величина, показывающая, какое количество теплоты требуется для нагревания $1$ кг вещества на $1°$С, называется удельной теплоемкостью этого вещества.

    У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой $с$ и измеряется в джоулях на килограмм-градус (Дж/(кг$·°$С)).

    Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна $4200$ Дж/(кг$·°$С), а удельная теплоемкость льда $2100$ Дж/(кг$·°$С); алюминий в твердом состоянии имеет удельную теплоемкость, равную $920$ Дж/(кг$·°$С), а в жидком — $1080$ Дж/(кг$·°$С).

    Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

    Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении

    Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

    Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

    $Q=cm(t_2-t_1)$

    где $Q$ — количество теплоты, $c$ — удельная теплоемкость, $m$ — масса тела, $t_1$ — начальная температура, $t_2$ — конечная температура.

    При нагревании тела $t_2 > t_1$ и, следовательно, $Q > 0$. При охлаждении тела $t_2 < t_1$ и, следовательно, $Q < 0$.

    В случае, если известна теплоемкость всего тела $С, Q$ определяется по формуле

    $Q=C(t_2-t_1)$

    Удельная теплота парообразования, плавления, сгорания

    Теплота парообразования (теплота испарения) — количество теплоты, которое необходимо сообщить веществу (при постоянном давлении и постоянной температуре) для полного превращения жидкого вещества в пар.

    Теплота парообразования равна количеству теплоты, выделяющемуся при конденсации пара в жидкость.

    Превращение жидкости в пар при постоянной температуре не ведет к увеличению кинетической энергии молекул, но сопровождается увеличением их потенциальной энергии, т. к. расстояние между молекулами существенно увеличивается.

    Удельная теплота парообразования и конденсации. Опытами установлено, что для полного обращения в пар $1$ кг воды (при температуре кипения) необходимо затратить $2.3$ МДж энергии. Для обращения в пар других жидкостей требуется иное количество теплоты. Например, для спирта оно составляет $0.9$ МДж.

    Физическая величина, показывающая, какое количество теплоты необходимо, чтобы обратить жидкость массой $1$ кг в пар без изменения температуры, называется удельной теплотой парообразования.

    Удельную теплоту парообразования обозначают буквой $r$ и измеряют в джоулях на килограмм (Дж/кг).

    Количество теплоты, необходимое для парообразования (или выделяющееся при конденсации). Чтобы вычислить количество теплоты $Q$, необходимое для превращения в пар жидкости любой массы, взятой при температуре кипения, нужно удельную теплоту парообразования $r$ умножить на массу $m$:

    $Q=rm$

    При конденсации пара происходит выделение такого же количества теплоты:

    $Q=-rm$

    Удельная теплота плавления

    Теплота плавления — это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полностью перевести его из твердого кристаллического состояния в жидкое.

    Теплота плавления равна тому количеству теплоты, которое выделяется при кристаллизации вещества из жидкого состояния.

    При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энергии его молекул. Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.

    Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить $332$ Дж энергии, а для того чтобы расплавить $1$ кг свинца — $25$ кДж.

    Физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой $1$ кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления.

    Удельную теплоту плавления измеряют в джоулях на килограмм (Дж/кг) и обозначают греческой буквой $λ$ (лямбда).

    Удельная теплота кристаллизации равна удельной теплоте плавления, поскольку при кристаллизации выделяется такое же количество теплоты, какое поглощается при плавлении. Так, например, при замерзании воды массой $1$ кг выделяются те же $332$ Дж энергии, которые нужны для превращения такой же массы льда в воду.

    Чтобы найти количество теплоты, необходимое для плавления кристаллического тела произвольной массы, или теплоту плавления, надо удельную теплоту плавления этого тела умножить на его массу:

    $Q=λm$

    Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой $m$, следует пользоваться той же формулой, но со знаком «минус»:

    $-Q=λm$

    Удельная теплота сгорания

    Теплота сгорания (или теплотворная способность, калорийность) — это количество теплоты, выделяющейся при полном сгорании топлива.

    Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обычное топливо (уголь, нефть, бензин) содержит углерод. При горении атомы углерода соединяются с атомами кислорода, содержащегося в воздухе, в результате чего образуются молекулы углекислого газа. Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.

    Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.

    Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой $1$ кг, называется удельной теплотой сгорания топлива.

    Удельную теплоту сгорания обозначают буквой $q$ и измеряют в джоулях на килограмм (Дж/кг).

    Количество теплоты $Q$, выделяющееся при сгорании $m$ кг топлива, определяют по формуле:

    $Q=qm$

    Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.

    Уравнение теплового баланса

    В замкнутой (изолированной от внешних тел) термодинамической системе изменение внутренней энергии какого-либо тела системы $∆U_i$ не может приводить к изменению внутренней энергии всей системы. Следовательно,

    $∆U_1+∆U_2+∆U_3+…+∆U_n=∑↙{i}↖{n}∆U_i=0$

    Если внутри системы не совершается работа никакими телами, то, согласно первому закону термодинамики, изменение внутренней энергии любого тела происходит только за счет обмена теплом с другими телами этой системы: $∆U_i=Q_i$. Учитывая ($∆U_1+∆U_2+∆U_3+…+∆U_n=∑↙{i}↖{n}∆U_i=0$), получим:

    $Q_1+Q_2+Q_3+…+Q_n=∑↙{i}↖{n}Q_i=0$

    Это уравнение называется уравнением теплового баланса. Здесь $Q_i$ — количество теплоты, полученное или отданное $i$-м телом. Любое из количеств теплоты $Q_i$ может означать теплоту, выделяемую или поглощаемую при плавлении какого-либо тела, сгорании топлива, испарении или конденсации пара, если такие процессы происходят с различными телами системы, и будут определятся соответствующими соотношениями.

    Уравнение теплового баланса является математическим выражением закона сохранения энергии при теплообмене.

    Добавить комментарий