Так как надо дополнить до удвоенного произведения, то рассмотрим неизвестную и известную части как единое целое.
Поскольку мы ищем квадрат разности, то возьмем неизвестную часть со знаком минус “-“:
(displaystyle (3x,)^2 -,color{red}{ ?} -3xy+(4y,)^2=(3x,)^2 -color{red}{(,?+3xy,)}+(4y,)^2.)
Нам известно, что выражение
(displaystyle (3x,)^2 -color{red}{(,?+3xy,)}+(4y,)^2)
является полным квадратом разности, в котором необходимо найти удвоенное произведение.
Следовательно,
(displaystyle (3x,)^2-color{red}{(,?+3xy,)}+(4y,)^2=(a-b,)^2,)
(displaystyle (3x,)^2 -color{red}{(,?+3xy,)}+(4y,)^2=a^{,2}-color{red}{2ab}+b^{,2})
для некоторых (displaystyle a) и (displaystyle b.)
Нам известны квадраты:
(displaystyle a^{,2}=(3x,)^2,)
(displaystyle b^{,2}=(4y,)^2,)
но удвоенное произведение не известно:
(displaystyle 2aboverset{?}{=}color{red}{(,?+3xy,)}.)
Тогда (displaystyle a) может быть (displaystyle color{blue}{3x}) или (displaystyle color{green}{-3x},, b) может быть (displaystyle color{blue}{4y}) или (displaystyle color{green}{-4y}.)
Поскольку параметры (displaystyle x) и (displaystyle y) положительны и нам требуется получить квадрат разности положительных чисел, то (displaystyle a) и (displaystyle b) берем положительными, то есть со знаком “+”:
(displaystyle a=color{blue}{3x},)
(displaystyle b=color{blue}{4y}.)
Тогда
(displaystyle 2ab=2cdot 3xcdot 4y,)
(displaystyle 2ab=24xy.)
Следовательно,
(displaystyle color{red}{ ?+3xy}=24xy,)
(displaystyle color{red}{ ?}=24xy-3xy,)
(displaystyle color{red}{ ?}=21xy.)
Таким образом,
(displaystyle (3x,)^2 -,color{red}{ ?}-3xy+(4y,)^2=(3x,)^2 {bf-}color{red}{ 21xy}-3xy+(4y,)^2)
и
(displaystyle (3x,)^2 {bf -,21}pmb{x}pmb{y}-3xy+(4y,)^2=({bf 3}pmb{x}-{bf 4}pmb{y},)^2.)
Ответ: (displaystyle (3x,)^2 {bf -,21}pmb{x}pmb{y}-3xy+(4y,)^2=({bf 3}pmb{x}-{bf 4}pmb{y},)^2.)
Нам известно, что выражение
(displaystyle x^{,2}-,color{red}{?}+9^2)
является полным квадратом разности, и необходимо найти удвоенное произведение.
Следовательно,
(displaystyle x^{,2}-,color{red}{?}+9^2=(a-b,)^2,)
(displaystyle x^{,2}-,color{red}{?}+9^2=a^{, 2}-color{red}{2ab}+b^{, 2})
для некоторых (displaystyle a) и (displaystyle b.)
Нам известны квадраты
(displaystyle a^{, 2}=x^{, 2},)
(displaystyle b^{, 2}=9^2,)
но неизвестно удвоенное произведение
(displaystyle 2ab=,color{red}{?}.)
Из того, что (displaystyle a^{, 2}=x^{, 2},) следует, что (displaystyle a) может быть (displaystyle color{blue}{x}) или (displaystyle color{green}{-x}) (см. решение уравнения (displaystyle X^{,2}=a^{,2})).
Из того, что (displaystyle b^{, 2}=9^2,) следует, что (displaystyle b) может быть (displaystyle color{blue}{9}) или (displaystyle color{green}{-9}) (см. решение уравнения (displaystyle X^{,2}=a^{,2})).
Поскольку параметр (displaystyle x) положителен и нам требуется получить квадрат разности положительных чисел, то (displaystyle a) и (displaystyle b) берем положительными, то есть со знаком (displaystyle “+”{small:})
(displaystyle a=color{blue}{x},)
(displaystyle b=color{blue}{9}.)
Тогда
(displaystyle 2ab=2cdot xcdot 9,)
(displaystyle 2ab=18x.)
Таким образом,
(displaystyle x^{,2}-,color{red}{?}+9^2=x^{,2}-18x+9^2)
и
(displaystyle x^{,2}-{bf 18x}+9^2=({bf x-9})^2.)
Ответ: (displaystyle x^{,2}-{bf 18x}+9^2=({bf x-9})^2.)
При расчёте алгебраических многочленов для упрощения вычислений используются
формулы сокращенного умножения. Всего таких формул семь. Их все необходимо знать наизусть.
Следует также помнить, что вместо
«a» и «b» в формулах могут стоять как числа, так и любые другие
алгебраические многочлены.
Разность квадратов
Запомните!
Разность квадратов двух чисел равна произведению разности этих чисел и их суммы.
a2 − b2 = (a − b)(a + b)
Примеры:
- 152 − 22 = (15 − 2)(15 + 2) = 13 · 17 = 221
- 9a2 − 4b2с2 = (3a − 2bc)(3a + 2bc)
Квадрат суммы
Запомните!
Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе
плюс квадрат второго числа.
(a + b)2 =
a2 + 2ab + b2
Обратите внимание, что с помощью этой формулы сокращённого умножения легко находить
квадраты больших чисел, не используя калькулятор или умножение в столбик. Поясним на примере:
Найти 1122.
- Разложим 112 на сумму чисел, чьи квадраты мы хорошо помним.
112 = 100 + 1 - Запишем сумму чисел в скобки и поставим над скобками квадрат.
1122 = (100 + 12)2 - Воспользуемся формулой квадрата суммы:
1122 = (100 + 12)2 = 1002 +
2 · 100 · 12 + 122 = 10 000 + 2 400 + 144 = 12 544
Помните, что формула квадрат суммы также справедлива для любых алгебраических многочленов.
- (8a + с)2 = 64a2 + 16ac + c2
Предостережение!
(a + b)2 не
равно (a2 + b2)
Квадрат разности
Запомните!
Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе
плюс квадрат второго числа.
(a − b)2 =
a2 − 2ab + b2
Также стоит запомнить весьма полезное преобразование:
(a − b)2 = (b − a)2
Формула выше доказывается простым раскрытием скобок:
(a − b)2 =
a2 −2ab + b2 = b2 − 2ab + a2 = (b − a)2
Куб суммы
Запомните!
Куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа
на второе плюс утроенное произведение первого на квадрат второго плюс куб второго.
(a + b)3 =
a3 + 3a2b + 3ab2 + b3
Как запомнить куб суммы
Запомнить эту «страшную» на вид формулу довольно просто.
- Выучите, что в начале идёт «a3».
- Два многочлена посередине имеют коэффициенты
3. - Вспомним, что любое число в нулевой степени есть 1.
(a0 = 1, b0 = 1). Легко заметить, что в формуле
идёт понижение
степени «a» и увеличение степени
«b». В этом можно убедиться:
(a + b)3 =
a3b0 +
3a2b1 + 3a1b2 +
b3a0 = a3 + 3a2b + 3ab2 + b3
Предостережение!
(a + b)3
не равно a3 + b3
Куб разности
Запомните!
Куб разности двух чисел равен кубу первого числа минус утроенное
произведение квадрата первого числа на второе
плюс утроенное произведение первого числа на квадрат второго минус куб второго.
(a − b)3 =
a3 − 3a2b + 3ab2 − b3
Запоминается эта формула как и предыдущая, но только с учётом чередования знаков «+» и
«−».
Перед первым членом «a3 »
стоит «+» (по правилам математики мы его не пишем).
Значит, перед следующим членом будет
стоять «−», затем опять «+» и т.д.
(a − b)3 =
+ a3 −
3a2b
+ 3ab2 −
b3
=
a3 − 3a2b + 3ab2 − b3
Сумма кубов
Не путать с кубом суммы!
Запомните!
Сумма кубов равна произведению суммы двух чисел на неполный квадрат разности.
a3 + b3 =
(a + b)(a2 − ab + b2)
Сумма кубов — это произведение двух скобок.
- Первая скобка — сумма двух чисел.
- Вторая скобка — неполный квадрат разности чисел. Неполным квадратом разности называют выражение:
(a2− ab + b2)
Данный квадрат неполный, так как посередине вместо удвоенного произведения обычное произведение чисел.
Разность кубов
Не путать с кубом разности!
Запомните!
Разность кубов равна произведению разности двух чисел на неполный квадрат суммы.
a3 − b3 =
(a − b)(a2 + ab + b2)
Будьте внимательны при записи знаков.
Применение формул сокращенного умножения
Следует помнить, что все формулы, приведённые выше, используется также и справа налево.
Многие примеры в учебниках рассчитаны на то, что вы с помощью формул соберёте многочлен обратно.
Примеры:
- a2 + 2a + 1 = (a + 1)2
- (aс − 4b)(ac + 4b) = a2c2 − 16b2
Таблицу со всеми формулами сокращённого умножения вы можете скачать в разделе
«Шпаргалки».
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
15 ноября 2015 в 10:23
Кристина Костенко
Профиль
Благодарили: 0
Сообщений: 1
Кристина Костенко
Профиль
Благодарили: 0
Сообщений: 1
(x+y+z)3=
0
Спасибо
Ответить
12 июня 2016 в 1:59
Ответ для Кристина Костенко
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Перемножить тупо лень?
0
Спасибо
Ответить
6 сентября 2015 в 19:02
Артур Хорішко
Профиль
Благодарили: 0
Сообщений: 1
Артур Хорішко
Профиль
Благодарили: 0
Сообщений: 1
(3ч-4)в квадрате=0,25
0
Спасибо
Ответить
2 сентября 2016 в 15:41
Ответ для Артур Хорішко
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
полагаю, что имеется ввиду пример:
(3 · x ?4)2=0,25
Применим формулу «разность квадратов» и решим квадратное уравнение, найдя корни.
9 · x2 ? 2 · 3 · 4 · x + 16 = 0,25
9x2-24x+15,75=0
D=9
x1=1,5
x2=1
Произведем проверку подставив в исходное выражение каждый из получившихся корней:
1) (3 · 1,5 ?4)2=0,25
0,52=0,25
2) (3 ·
?4)2=0,25
-0,52=0,25
0
Спасибо
Ответить
Квадрат суммы и разности
- Квадрат суммы
- Квадрат разности
- Разность квадратов
Квадрат суммы
Выражение (a + b)2 — это квадрат суммы чисел a и b. По определению степени выражение (a + b)2 представляет собой произведение двух многочленов (a + b)(a + b). Следовательно, из квадрата суммы мы можем сделать выводы, что
(a + b)2 = (a + b)(a + b) = a2 + ab + ab + b2 = a2 + 2ab + b2.
Квадрат суммы двух чисел равен квадрату первого числа, плюс удвоенное произведение первого числа на второе, плюс квадрат второго числа.
Из правила следует, что общая формула квадрата суммы, без промежуточных преобразований, будет выглядеть так:
(a + b)2 = a2 + 2ab + b2.
Многочлен a2 + 2ab + b2 называется разложением квадрата суммы.
Так как a и b обозначают любые числа или выражения, то правило даёт нам возможность сокращённым путём возводить в квадрат любое выражение, которое может быть рассмотрено как сумма двух слагаемых.
Пример. Возвести в квадрат выражение 3x2 + 2xy.
Решение: Чтобы не производить дополнительных преобразований, воспользуемся формулой квадрата суммы. У нас должна получиться сумма квадрата первого числа, удвоенного произведения первого числа на второе и квадрата второго числа:
(3x2 + 2xy)2 = (3x2)2 + 2(3x2 · 2xy) + (2xy)2.
Теперь, пользуясь правилами умножения и возведения в степень одночленов, упростим получившееся выражение:
(3x2)2 + 2(3x2 · 2xy) + (2xy)2 = 9x4 + 12x3y + 4x2y2.
Квадрат разности
Выражение (a – b)2 — это квадрат разности чисел a и b. Выражение (a – b)2 представляет собой произведение двух многочленов (a – b)(a – b). Следовательно, из квадрата разности мы можем сделать выводы, что
(a – b)2 = (a – b)(a – b) = a2 – ab – ab + b2 = a2 – 2ab + b2.
Квадрат разности двух чисел равен квадрату первого числа, минус удвоенное произведение первого числа на второе, плюс квадрат второго числа.
Из правила следует, что общая формула квадрата разности, без промежуточных преобразований, будет выглядеть так:
(a – b)2 = a2 – 2ab + b2.
Многочлен a2 – 2ab + b2 называется разложением квадрата разности.
Это правило применяется к сокращённому возведению в квадрат выражений, которые могут быть представлены как разность двух чисел.
Пример. Представьте квадрат разности в виде трёхчлена:
(2a2 – 5ab2)2.
Решение: Используя формулу квадрата разности, находим:
(2a2 – 5ab2)2 = (2a2)2 – 2(2a2 · 5ab2) + (5ab2)2.
Теперь преобразуем выражение в многочлен стандартного вида:
(2a2)2 – 2(2a2 · 5ab2) + (5ab2)2 = 4a4 – 20a3b2 + 25a2b4.
Разность квадратов
Выражение a2 – b2 — это разность квадратов чисел a и b. Выражение a2 – b2 представляет собой сокращённый способ умножения суммы двух чисел на их разность:
(a + b)(a – b) = a2 + ab – ab – b2 = a2 – b2.
Произведение суммы двух чисел на их разность равно разности квадратов этих чисел.
Из правила следует, что общая формула разности квадратов выглядит так:
a2 – b2 = (a + b)(a – b).
Это правило применяется к сокращённому умножению таких выражений, которые могут быть представлены: одно — как сумма двух чисел, а другое — как разность тех же чисел.
Пример. Преобразуйте произведение в двучлен:
(5a2 + 3)(5a2 – 3).
Решение:
(5a2 + 3)(5a2 – 3) = (5a2)2 – 32 = 25a4 – 9.
В примере мы применили формулу разности квадратов справа налево, то есть, нам дана была правая часть формулы, а мы преобразовали её в левую:
(a + b)(a – b) = a2 – b2.
На практике все три рассмотренные формулы применяются и слева направо, и справа налево, в зависимости от ситуации.
Формулы сокращённого умножения необходимы во всех разделах математики. От элементарной до высшей. Они применяются практически везде — в упрощении выражений, решении уравнений и неравенств, сокращении дробей, вычислении пределов, решении интегралов — список можно продолжать ещё долго…
Следовательно, нужно основательно разобраться с этими формулами. Понять, откуда они берутся, зачем они нужны, как их применять на практике и, самое главное, как их запомнить. А запомнить всё-таки придётся, да…
Поехали?
Квадрат суммы, квадрат разности, разность квадратов, куб суммы, куб разности, сумма кубов, разность кубов — что за звери?
Итак, вот они, формулы сокращённого умножения:
Эти семь формул — полный джентльменский набор. Последние две формулы (сумма и разность кубов) записаны не так как в большинстве учебников, а наоборот — справа налево. Это не просто так.) Любая формула в математике работает в обоих направлениях — как туда, так и обратно. Именно такая запись наиболее наглядно показывает, откуда берутся формулы сокращённого умножения.
Они берутся из… умножения. Вот ведь удивил, да?) Что ж, смотрите сами. Берём, например, самую первую формулу по списку:
(a+b)2 = (a+b)(a+b) = a2+ab+ba+b2 = a2+2ab+b2
Вот и все дела. Самое обычное перемножение скобок и приведение подобных. Именно так и получаются все формулы сокращённого умножения. Сокращённое умножение — потому, что в самих формулах нет раскрытия скобок и приведения подобных. Эти промежуточные действия сокращены. Сразу дан готовый результат. Пользуйтесь на здоровье!
Эти формулы надо знать наизусть. Без знания первых трёх формул, с квадратами, даже не мечтайте о тройке! Без всех остальных (с кубами) — о четвёрке и выше. Нет-нет, бросаться зубрить весь этот список прямо сейчас мы не будем.) Об этом позже. Пока просто знакомимся.)
Зачем нужны формулы сокращённого умножения?
Полезная вещь первая — самая очевидная. Это быстрое (т.е. сокращённое) умножение многих алгебраических выражений без промежуточных выкладок. Меньше выкладок — меньше и ошибок. Но это не самая главная полезная вещь! А вот вторая.
Дело в том, что вся математика строится на преобразованиях выражений. Вся! От школьной до высшей. Сообразил, что, где и как преобразовать и упростить — решил пример. Не сообразил — увы, не решил. Есть, допустим, выражение (a–b)(a+b). Как его можно преобразовать? Да просто тупо перемножить скобки и привести подобные. Не вопрос.) А вот что делать с a2–b2? Чему это равняется? Попробуй, догадайся! Только знания и спасают, да…
Сравним два равенства:
(a–b)(a+b) = a2–b2
и
a2–b2 = (a–b)(a+b)
Для математики эти два равенства абсолютно одинаковы. А вот для нас с вами — не совсем. Возьмём первую запись, слева направо:
(a–b)(a+b) = a2–b2
Это самое обычное умножение скобок, не более того. Никаких принципиально новых возможностей. А теперь возьмём второй вариант того же равенства, справа налево:
a2–b2 = (a–b)(a+b)
А вот такая запись резко повышает уровень вашей математической культуры! Почему? Потому, что такая запись формулы, справа налево, — это разложение на множители! А разложение на множители — процедура поважнее простого умножения, да…) Сомневаетесь? Не надо. В соответствующей теме подробно расскажу.)
И такое разложение на множители имеет место быть во всех формулах сокращённого умножения! Почему? Давайте внимательно посмотрим на наш список. В левой части каждой формулы мы увидим перемножение скобок:
(a+b)2 = (a+b)(a+b) =…
(a-b)2 = (a-b)(a-b) = …
(a-b)(a+b) = …
(a+b)3 = (a+b)(a+b)(a+b) =…
и т.д.
Стало быть, левая часть каждой формулы разложена на множители, а вот правая часть — нет. Список, что приведён выше, — это, действительно, всего лишь сокращённое умножение. Но! Стоит только поменять местами левую и правую части каждой из формул, как тот же самый список становится формулами разложения на множители!
Для полного понимания перепишу этот список ещё разок, но справа налево. Вот так:
Такая обратная запись формул сокращённого умножения идеально подходит для разложения на множители многочленов, для сокращения алгебраических дробей и для решения самых разнообразных примеров. Но есть существенная проблема. Как их запомнить?
Запоминаем формулы сокращённого умножения! Секретные приёмы…
Начинаем с самого простого — запоминаем названия формул. Это совсем легко. Смотрим в таблицу и видим выражение (a+b)2. Или квадрат скобок. А в скобках что? Правильно, сумма! Стало быть, выражение (a+b)2 называется квадрат суммы. Аналогично, (a–b)2 называется квадрат разности. Элементарно, Ватсон!
С выражениями (a+b)3 и (a–b)3 всё то же самое — куб суммы и куб разности соответственно.
А как назвать a2–b2? “Одно выражение в квадрате минус другое выражение в квадрате?” Точно, но слишком уж длинно. Зато разность квадратов — и точно, и кратко!
Надеюсь, что названия сумма кубов и разность кубов у вас уже не вызовут недоумения?
А вот теперь начинается самое сложное — запоминание самих формул, со всеми этими выражениями. К сожалению, здесь тот самый случай, когда без механической памяти не обойтись. Это огорчает.
Однако здесь у нас с вами тайные знания! Эти знания помогут вам побыстрее сориентироваться во всех этих скобках, плюсах/минусах, квадратах/кубах, сведя механическую зубрёжку к минимуму. Читаем дальше и вникаем.
Итак, начинаем с квадрата суммы:
Просто медитировать, сверля формулу взглядом, будет недостаточно. Для лучшего запоминания настоятельно рекомендую выучить (да-да, именно выучить!) словесную формулировку:
Квадрат суммы двух выражений равен квадрату первого выражения ПЛЮС удвоенное произведение первого выражения на второе ПЛЮС квадрат второго выражения.
Эта мантра реально облегчает жизнь во многих разделах школьной математики! Да и в институте, при работе со всякими там пределами да интегралами, тоже. Ещё не раз вспомните эту формулировку добрым словом!)
Если вы запомнили квадрат суммы, то дальше будет проще. Можно включать логику и здравый смысл. Переходим к квадрату разности:
Сравните с квадратом суммы! Нашли отличие? Да! Перед удвоенным произведением появился минус. Ведь должен же он где-то появиться?! Перед a2 и b2 он появиться никак не может, ибо любое число в квадрате есть число положительное. Остаётся только серединка.) Для понимания рекомендую просто перемножить скобки сами на себя да привести подобные. И тогда у вас пропадут все вопросы.
В словесной расшифровке:
Квадрат разности двух выражений равен квадрату первого выражения МИНУС удвоенное произведение первого выражения на второе ПЛЮС квадрат второго выражения.
Разность квадратов:
Эта формула обычно и так легко запоминается. Единственное, можно случайно влепить в скобки два плюса или два минуса. Но тогда это уже будут квадрат суммы и квадрат разности. А это — совсем другие формулы…
Итак:
Произведение разности двух выражений и их суммы равно разности квадратов этих выражений.
Переходим к следующей группе формул — к сумме и разности кубов:
Приём для запоминания здесь следующий. В первых скобках (маленьких) знак совпадает со знаком в исходном выражении: плюс-плюс, минус-минус. А вот во вторых (больших) скобках — меняется на противоположный. Причём меняется не перед квадратами, а снова посерединке! Квадраты a2 и b2 — положительные!
Кстати, посмотрите внимательнее на большие скобки в каждой из формул и сравните с формулами квадрата суммы и квадрата разности!
Нашли отличия? Да! В кубах не хватает двойки посерёдке. Именно по этой причине выражения в больших скобках
a2+ab+b2
и
a2–ab+b2
часто называют неполным квадратом суммы/разности.
А теперь можно и шаблонные словесные формулировки из учебников привести:
Сумма кубов двух выражений равна произведению суммы этих выражений и неполного квадрата их разности.
Разность кубов двух выражений равна произведению разности этих выражений и неполного квадрата их суммы.
Вот так. Слово “неполный” хорошо помогает не запутаться. Допустим, в тревожной боевой обстановке на контрольной или экзамене нахлынули сомнения — писать двойку в сумме/разности кубов или нет? Вот тут самое время вспомнить, что в кубах стоят неполные квадраты. А для полных квадратов есть свои формулы. Которые к кубам не имеют никакого отношения.
Остаётся последняя парочка — куб суммы и куб разности:
Эти две формулы встречаются в заданиях пореже предыдущих пяти, но знать их тоже не помешает, да. Претендуете на пятёрку? Тогда читаем дальше!
Итак, как запомнить куб суммы? Во-первых, все знаки в формуле — плюсы! Оно и естественно. Ведь мы же перемножаем только положительные выражения, так с какого перепугу минусам-то взяться? Первое и последнее слагаемые — чистые кубы первого и второго выражений. А вот по центру — утроенные произведения.
Обратите внимание, как в формуле идут переменные a и b! Переменная a идёт по убыванию степени — сначала a3, потом a2, потом просто a (т.е. a1), а в последнем слагаемом буква a и вовсе исчезает, превращаясь в единичку или a0. Для полной ясности ситуации последнее слагаемое b3 я перепишу вот так:
b3 = 1∙b3 = a0∙b3
А вот переменная b — наоборот, идёт по возрастанию степени. От нуля и до тройки включительно: в первом слагаемом переменной b нет (т.е. она сидит в виде единички, или b0), во втором b1, в третьем b2, в четвёртом b3.
Но и это ещё не всё! Смотрите-ка, какая интересная штука: сумма степеней a и b в каждом из слагаемых всегда равна трём! Например:
a3 = a3·b0 (3+0=3)
3a2b = 3a2b1 (2+1=3)
и так далее…
Такой порядок хорошо помогает не запутаться.)
Если вы уловили принцип запоминания куба суммы, то куб разности запомнится без проблем. Всё то же самое, только минусы надо правильно расставить. А это очень легко сообразить! Какая переменная у нас с минусом? Правильно, переменная b! Следовательно, в слагаемых, где b стоит в первой степени и в кубе — будет минус. Ибо любой минус в нечётной степени всегда даёт минус. А вот минус в квадрате (b2) даст плюс. И все дела.)
Разумеется, изложенные выше советы — это не жёсткие правила математики. Это просто практические приёмы, помогающие более быстрому и комфортному запоминанию. Чисто для себя. Куда уж лучше, чем механическая зубрёжка, правда?)
Но, как ни крути, самый надёжный способ запомнить эти формулы — решать побольше примеров. Тогда весь этот перечень запомнится очень быстро. Сам собой, можно сказать.
Ну что, потренируемся?)
Примеры на формулы сокращённого умножения.
Начнём с самого простого — с прямого применения формул. Для разминки.)
Преобразовать в многочлен:
(5x+4y)2
Сразу видим квадрат скобок. А в скобках — сумму. Значит, работаем по самой первой формуле, вот этой:
Вспоминаем словесную формулировку: “Квадрат первого выражения…”. За первое выражение у нас идёт 5x. Квадрат будет 25х2. Вот и пишем:
(5x+4y)2 = 25х2….
Идём дальше: “Плюс удвоенное произведение первого выражения на второе…”. Удвоенное — это умножение на двойку. Первое выражение — это 5x, второе — это 4y. Продолжаем:
(5x+4y)2 = 25х2+2∙5x∙4y….
“Плюс квадрат второго выражения.” В роли второго выражения у нас 4y. Квадрат — это 16y2. Получим:
(5x+4y)2 = 25х2+2∙5x∙4y+16y2
Практически всё. Осталось “причесать” удвоенное произведение (перемножить 2∙5∙4) и получим окончательный ответ:
(5x+4y)2 = 25х2+40xy+16y2
Это было разминочное задание. А теперь примерчик посерьёзнее.
Разложить на множители:
4x2–20x+25
Что, внушает? Опять смотрим на наш список. Но не на тот, что в начале урока (для умножения), а на второй, для разложения на множители. Вот на этот:
Тут, разумеется, нашего выражения нет. Ну и что? Здесь важно понимать, что под буквами a и b может скрываться всё что угодно — и числа, и другие буквы, и более сложные выражения. Поэтому смотрим на список и ищем похожую формулу. И зацепкой будут степени переменной.
В нашем выражении есть x2 и просто x. Ясное дело, отбрасываем все формулы с кубами — у нас их явно нет. Далее выкидываем из рассмотрения формулу разности квадратов: там нет переменных в первой степени, только квадраты. А у нас — есть.
Остаются первые две формулы — квадрат суммы или квадрат разности. Уже проще, не так ли? Осталось сообразить, что в формуле квадрата суммы — только плюсы. А в нашем выражении в серединке стоит минус. Стало быть, похожая формула — это квадрат разности.
Но не факт, что квадрат разности сработает, совсем не факт… Наша задача — убедиться, что предложенное выражение 4x2–20x+25 точно соответствует квадрату разности. Только тогда у нас появится возможность записать и правую часть равенства (т.е. разложение на множители).
Для удобства я перепишу формулу и исходное выражение прямо одно под другим:
a2–2ab+b2 = (a–b)2
4x2–20x+25 = ….
Надо выяснить, что скрывается под буквами a и b в нашем выражении. Начинаем по порядочку — с самого первого слагаемого. Допустим, a2 — это 4x2. Тогда чему равно само а? Какое выражение в квадрате даёт 4x2? Очевидно, что 2х. Тогда a=2x. Есть! Первое выражение нашли.
А что может скрываться под b2. Ну, точно не 20х! Во-первых, икс уже в букве a сидит, а во-вторых, b2 должно быть с плюсом. А 20х у нас с минусом. Значит, под b2 скрывается число 25! Стало быть, b — это пятёрка!
Итого: a=2x, b=5
Всё? Можно записывать разложение? Пока нет.
Нужна последняя, контрольная проверка по выражению 20х. Надо убедиться, что наши 20х точно соответствуют удвоенному произведению 2ab.
Итак, затаив дыхание составляем удвоенное произведение первого и второго выражений:
2ab = 2∙2x∙5 = 20x
Ура! Совпало! Значит, наше выражение — это действительно квадрат разности 2х и 5. Вот теперь можно со спокойной душой записывать ответ:
4x2–20x+25 = (2х-5)2
Идея ясна? Сначала ищем в списке похожую формулу, а затем сверяем с ней выражение, предложенное в задании, на полное соответствие. Если повезло и всё совпало, то записываем ответ. Если не повезло, то, значит, раскладывать надо как-то иначе.
Это были самые простые примеры, для младшеньких. А теперь переместимся в старшие классы, с их синусами да логарифмами. Да-да, старшеньким формулы сокращённого умножения тоже бывают нужны!
Например, такое задание:
Упростить:
cos4x — 2cos2x∙sin2x + sin4x
Вся мощь тригонометрии слабо помогает в этом примере. Только алгебра седьмого класса и спасает, да…
Конечно, это выражение сильно смахивает на квадрат разности. Вот и пробуем применить эту формулу к нашему выражению! Что будет скрываться под буквами a и b? Конечно же, cos2x и sin2x. Удвоенное произведение, ясен перец, будет 2cos2x∙sin2x, как, собственно, в нашем выражении и записано. Смело сворачиваем нашего монстра в квадрат разности по формуле:
cos4x — 2cos2x∙sin2x + sin4x = (cos2x – sin2x)2
А вот теперь и тригонометрия в игру вступает! Что у нас в скобочках? У нас в скобочках косинус двойного угла!
cos2x – sin2x = cos2x
Вот вам и ответ:
cos4x — 2cos2x∙sin2x + sin4x = cos22x
Или такое задание:
Вычислить:
Пример не подарок, прямо скажем… Логарифмические формулы явно не катят, да и сами логарифмы ровно не считаются… Проверим на алгебру? Числитель явно намекает на применение формулы разности квадратов.
Вот этой: a2–b2 = (a-b)(a+b)
В роли a и b у нас логарифмы. Ну и что? Это формулу никак не портит, ибо законы алгебры работают во всей математике. Смело заменяем числитель дроби на произведение скобок и пишем:
А вот теперь и логарифмические формулы заработали! В первых скобках (разность) получается lg4, который и сокращается благополучно со знаменателем. А во вторых скобках (сумма) будет lg100. Что по свойствам логарифмов есть 2.
Конечно, подобные примеры в этом уроке легко решаются. Но на практике, когда ученик глубоко погружён в синусы/косинусы да логарифмы, разложение на множители просто не приходит в голову…
Посему практический совет:
Проверяем замороченные примеры на алгебру седьмого класса! В частности, на формулы сокращённого умножения.
И напоследок…
О типичном ляпе, который сразу же показывает блистательное отсутствие хоть какого-то понимания. Ляп настолько часто встречается, что хочется заявить громко:
И запомните это крепко-накрепко!
Формулы — штука жёсткая! Раз требуют удвоенного произведения 2ab, помимо чистых квадратов, значит спорить бессмысленно. Напишете такое на контрольной — будьте готовы получить заслуженную двойку! Такого не прощают. Вот так.
Наглядный пример на добрую память с квадратом суммы. Всё-таки картинки иногда проливают свет на очень многие волнующие вопросы. Нарисуем в тетрадке квадрат со стороной a+b. Можно по клеточкам. Допустим, для конкретики, a — это 4 клетки, a b — это 2 клетки.
Вот так:
Очевидно, площадь всего квадрата будет равна квадрату его стороны, т.е. как раз (a+b)2. В числах, безо всяких формул, это будет (4+2)2 = 62 = 36.
А теперь, глядя на картинку, соображаем: из чего складывается эта площадь? Правильно! Из большого (зелёного) квадрата площадью a2, маленького (жёлтого) квадратика площадью b2 и двух прямоугольников по ab площадью каждый.
Вот и получается: (a+b)2 = a2+ab+ab+b2 = a2+2ab+b2
Или, в числах, для a=4 и b=2:
(a+b)2 = a2+2ab+b2= 42+2∙4∙2+22 = 16+16+4 = 36
Вот и все дела.)
Упражнение для интересующихся: аналогичным образом доказать геометрически (т.е. через квадраты и прямоугольники) две другие формулы сокращённого умножения с квадратами — квадрат разности и разность квадратов. Попробуйте! Интересно.)
Ну что, порешаем?)
1. Преобразовать в многочлен стандартного вида:
(5a+1)2=
(3y-4)2=
(a-y3)2=
(a2+b2)2=
(3b-1)(3b+1)=
(x+7)(7-x)=
(3x+2)3=
Ответы (в беспорядке):
9b2 — 1
9y2-24y+16
27x3+18x2+36x+8
a4+2a2b2+b4
25a2+10a+1
49-x2
a2-2ay3+y6
Ну как, размялись? Получилось? Тогда продолжаем:
Разложить на множители:
16x2+8x+1 =
36x2y4-60xy2+25=
y2-100=
81a2-64x2y6=
27m3+8=
64x3-y6=
Ответы (в беспорядке):
(y-10)(y+10)
(4x-y2)(16x2+4xy2+y4)
(4x+1)2
(9a-8xy3)(9a+8xy3)
(6xy2-5)2
(3m+2)(9m2-6m+4)
И это получилось? Блеск! Значит, формулы сокращённого умножения на самом минимально необходимом уровне вы освоили. Можно браться за задания посерьёзнее.
Что-то не срослось? Бывает… Возможно, проблема не в самих формулах, а в банальной арифметике — знаках, действиях со степенями. Повторите степени! Без отточенного навыка работы со степенями дальше идти нельзя. К сожалению…
А вообще, рецепт здесь простой — решать побольше заданий! Да-да! Задания этого урока — капля в море. Помогут, но не сильно. Маловато их… Берите любой учебник 7-го класса и решайте, решайте! До автоматизма. А сайт — ваш надёжный помощник! Тогда формулы сами собой и запомнятся. А труды окупятся. Проверено!)