п.1. Уравнение касательной
Рассмотрим кривую (y=f(x)).
Выберем на ней точку A с координатами ((x_0,y_0)), проведем касательную AB в этой точке.
Как было показано в §42 данного справочника, угловой коэффициент касательной равен производной от функции f в точке (x_0): $$ k=f'(x_0) $$ Уравнение прямой AB, проведенной через две точки: ((y_B-y_A)=k(x_B-x_A)).
Для (A(x_0,y_0), B(x,y)) получаем: begin{gather*} (y-y_0)=k(x-x_0)\ y=k(x-x_0)+y_0\ y=f'(x_0)(x-x_0)+f(x_0) end{gather*}
Уравнение касательной к кривой (y=f(x)) в точке (x_0) имеет вид: $$ y=f'(x_0)(x-x_0)+f(x_0) $$ при условии, что производная (f'(x_0)=aneinfty) – существует и конечна.
Чтобы записать уравнение касательной с угловым коэффициентом в виде (y=kx+b), нужно раскрыть скобки и привести подобные: $$ y=f'(x_0)(x-x_0)+f(x_0)=underbrace{f'(x_0)}_{=k}x+underbrace{f(x_0)-f'(x_0)cdot x_0}_{=b} $$
Уравнение касательной с угловым коэффициентом: begin{gather*} y=kx+b\ k=f'(x_0), b=f(x_0)-f'(x_0)cdot x_0 end{gather*}
п.2. Алгоритм построения касательной
На входе: уравнение кривой (y=f(x)), абсцисса точки касания (x_0).
Шаг 1. Найти значение функции в точке касания (f(x_0))
Шаг 2. Найти общее уравнение производной (f’ (x))
Шаг 3. Найти значение производной в точке касания (f'(x_0 ))
Шаг 4. Записать уравнение касательной (y=f’ (x_0)(x-x_0)+f(x_0)), привести его к виду (y=kx+b)
На выходе: уравнение касательной в виде (y=kx+b)
Например:
Пусть (f(x)=x^2+3). Найдем касательную к этой параболе в точке (x_0=1). (f(x_0)=1^2+3=4 ) |
п.3. Вертикальная касательная
В случае, если производная (f'(x_0)=pminfty) – существует, но бесконечна, в точке (x_0) проходит вертикальная касательная (x=x_0).
Внимание!
Не путайте вертикальные касательные с вертикальными асимптотами.
Вертикальная асимптота проходит через точку разрыва 2-го рода (x_0notin D), в которой функция не определена и производная не существует. График функции приближается к асимптоте на бесконечности, но у них никогда не бывает общих точек.
А вертикальная касательная проходит через точку (x_0in D), входящую в область определения. График функции и касательная имеют одну общую точку ((x_0,y_0)).
Вертикальные касательные характерны для радикалов вида (y=sqrt[n]{x}).
Например:
Пусть (f(x)=sqrt[5]{x-1}+1). Найдем касательную к этой кривой в точке (x_0=1). (f(x_0)=sqrt[5]{1-1}+1=1) |
п.4. Примеры
Пример 1. Для функции (f(x)=2x^2+4x)
a) напишите уравнения касательных, проведенных к графику функции в точках его пересечения с осью OX.
Находим точки пересечения, решаем уравнение: $$ 2x^2+4x=0Rightarrow 2x(x+2)=0Rightarrow left[ begin{array}{l} x=0\ x=-2 end{array} right. $$ Две точки на оси: (0;0) и (-2;0). Касательная в точке (x_0=0): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot 0+4=4\ y=4(x-0)+0=4x end{gather*} Касательная в точке (x_0=-2): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot (-2)+4=-4\ y=-4(x+2)+0=-4x-8 end{gather*} |
б) Найдите, в какой точке касательная образует с положительным направлением оси OX угол 45°. Напишите уравнение этой касательной.
Общее уравнение касательной: (f'(x)=4x+4) По условию (f'(x_0)=tgalpha=tg45^circ=1) Решаем уравнение: $$ 4x_0+4=1Rightarrow 4x_0=-3Rightarrow x_0=-frac34 $$ Точка касания (x_0=-frac34) begin{gather*} f(x_0)=2cdotleft(-frac34right)^2+4cdotleft(-frac34right)=frac98-3=-frac{15}{8} end{gather*} Уравнение касательной: begin{gather*} y=1cdotleft(x+frac34right)-frac{15}{8}=x-frac98 end{gather*} |
в) найдите, в какой точке касательная будет параллельна прямой (2x+y-6=0). Напишите уравнение этой касательной.
Найдем угловой коэффициент заданной прямой: (y=-2x+6Rightarrow k=-2). Касательная должна быть параллельной, значит, её угловой коэффициент тоже (k=-2). Получаем уравнение: begin{gather*} f'(x_0)=-2\ 4x_0+4=-2Rightarrow 4x_0=-6Rightarrow x_0=-frac32 end{gather*} Точка касания (x_0=-frac32) begin{gather*} f(x_0)=2cdotleft(-frac32right)^2+4cdotleft(-frac32right)=\ =frac92-6=-frac32 end{gather*} Уравнение касательной: begin{gather*} y=-2cdotleft(x+frac32right)-frac32=-2x-frac92 end{gather*} Или, в каноническом виде: begin{gather*} 2x+y+frac92=0 end{gather*} |
г) в какой точке функции можно провести горизонтальную касательную? Напишите уравнение этой касательной.
У горизонтальной прямой (k=0). Получаем уравнение: (f'(x_0)=0). begin{gather*} 4x_0+4=0Rightarrow 4x_0=-4Rightarrow x_0=-1 end{gather*} Точка касания (x_0=-1) begin{gather*} f(x_0)=2cdot(-1)^2+4cdot(-1)=-2 end{gather*} Уравнение касательной: begin{gather*} y=0cdot(x+1)-2=-2 end{gather*} |
Ответ: а) (y=4x) и (y=-4x-8); б) (y=x-frac98); в) (2x+y+frac92=0); г) (y=-2)
Пример 2. Напишите уравнение касательной к графику функции в заданной точке:
a) ( f(x)=frac5x+frac x5, x_0=4 ) begin{gather*} f(x_0)=frac54+frac45=frac{25+16}{20}=frac{41}{20}\ f'(x)=left(frac5xright)’+left(frac x5right)’=-frac{5}{x^2}+frac15=frac{-25+x^2}{5x^2}=frac{x^2-25}{5x^2}\ f'(x_0)=frac{4^2-25}{5cdot 4^2}=-frac{9}{80} end{gather*} Уравнение касательной: $$ y=-frac{9}{80}(x-4)+frac{41}{20}=-frac{9}{80}x+frac{9}{20}+frac{41}{20}=-frac{9}{80}x+2,5 $$
б) ( f(x)=frac{x^2+5}{3-x}, x_0=2 ) begin{gather*} f(x_0)=frac{2^2+5}{3-2}=frac91=9\ f'(x)=frac{(x^2+5)'(3-x)-(x^2+5)(3-x)’}{(3-x)^2}=frac{2x(3-x)+(x^2+5)}{(3-x)^2}=\ =frac{6x-2x^2+x^2+5}{(3-x)^2}=frac{-x^2+6x+5}{(3-x)^2}\ f'(x_0)=frac{-2^2+6cdot 2+5}{(3-2)^2}=13 end{gather*} Уравнение касательной: $$ y=13(x-2)+9=13x-26+9=13x-17 $$
Пример 3*. Найдите точку, в которой касательная к графику функции (f(x)=frac{x^2+2}{x+3}-x) перпендикулярна прямой (y=11x+3). Напишите уравнение этой касательной.
Угловой коэффициент данной прямой (k_1=11).
Угловой коэффициент перпендикулярной прямой (k_2=-frac{1}{k_1}=-frac{1}{11}) begin{gather*} f'(x)=left(frac{x^2+2}{x+3}right)’-x’=frac{2x(x+3)-(x^2+2)cdot 1}{(x+3)^2}-1=frac{2x^2+6x-x^2-2-(x+3)^2}{(x+3)^2}=\ =frac{x^2+6x-2-x^2-6x-9}{(x+3)^2}=- frac{11}{(x+3)^2} end{gather*} В точке касания: begin{gather*} f'(x_0)=k_2Rightarrow=-frac{11}{(x+3)^2}=-frac{1}{11}Rightarrow (x+3)^2=121Rightarrow (x+3)^2-11^2=0Rightarrow\ Rightarrow (x+14)(x+8)=0Rightarrow left[ begin{array}{l} x=-14\ x=8 end{array} right. end{gather*}
Уравнение касательной при (x_0=-14) begin{gather*} f(x_0)=frac{(-14)^2+2}{-14+3}+14=frac{198}{-11}+14=-18+14=-4\ y=-frac{1}{11}(x+14)-4=-frac{x+58}{11} end{gather*} Уравнение касательной при (x_0=8) begin{gather*} f(x_0)=frac{8^2+2}{8+3}-8=frac{66}{11}-8=-2\ y=-frac{1}{11}(x-8)-2=-frac{x+14}{11} end{gather*}
Ответ: точка касания (-14;-4), уравнение (y=-frac{x+58}{11})
и точка касания (8;-2), уравнение (-frac{x+14}{11})
Пример 4*. Найдите уравнения общих касательных к параболам (y=x^2-5x+6) и (y=x^2+x+1). Укажите точки касания.
Найдем производные функций: begin{gather*} f_1′(x)=2x-5, f_2′(x)=2x+1 end{gather*} Пусть a – абсцисса точки касания для первой параболы, b – для второй.
Запишем уравнения касательных (g_1(x)) и (g_2(x)) через эти переменные. begin{gather*} g_1(x)=f_1′(a)(x-a)+f_1(a)=(2a-5)(x-a)+a^2-5a+6=\ =(2a-5)x-2a^2+5a+a^2-5a+6=(2a-5)x+(6-a^2)\ \ g_2(x)=f_2′(b)(x-b)+f_2(b)=(2b+1)(x-b)+b^2+b+1=\ =(2b+1)x-2b^2-b+b^2+b+1=(2b+1)x+(1-b^2) end{gather*} Для общей касательной должны быть равны угловые коэффициенты и свободные члены. Получаем систему уравнений: begin{gather*} begin{cases} 2a-5=2b+1\ 6-a^2=1-b^2 end{cases} Rightarrow begin{cases} 2(a-b)=6\ a^2-b^2=5 end{cases} Rightarrow begin{cases} a-b=3\ (a-b)(a+b)=5 end{cases} Rightarrow begin{cases} a-b=3\ a+b=frac53 end{cases} Rightarrow \ Rightarrow begin{cases} 2a=3+frac53\ 2b=frac53-3 end{cases} Rightarrow begin{cases} a=frac73\ b=-frac23 end{cases} end{gather*} Находим угловой коэффициент и свободный член из любого из двух уравнений касательных: $$ k=2a-5=2cdotfrac73-5=-frac13, b=6-a^2=6-frac{49}{9}=frac59 $$ Уравнение общей касательной: $$ y=-frac x3+frac59 $$
Точки касания: begin{gather*} a=frac73, f_1(a)=left(frac73right)^2-5cdotfrac73+6=frac{49}{9}-frac{35}{3}+6=frac{49-105+54}{9}=-frac29\ b=-frac23, f_2(b)=left(-frac23right)^2-frac23+1=frac49-frac23+1frac{4-6+9}{9}=frac79 end{gather*}
Ответ: касательная (y=-frac x3+frac59); точки касания (left(frac73;-frac29right)) и (left(-frac23;frac79right))
Пример 5*. Докажите, что кривая (y=x^4+3x^2+2x) не пересекается с прямой (y=2x-1), и найдите расстояние между их ближайшими точками.
Решим уравнение: (x^4+3x^2+2x=2x-1) begin{gather*} x^4+3x^2+1=0Rightarrow D=3^2-4=5Rightarrow x^2=frac{-3pmsqrt{5}}{2} end{gather*} Оба корня отрицательные, а квадрат не может быть отрицательным числом.
Значит, (xinvarnothing) – решений нет, кривая и прямая не пересекаются.
Что и требовалось доказать.
Чтобы найти расстояние, необходимо построить касательную к кривой с тем же угловым коэффициентом (k=2), то и y данной прямой. Тогда искомым расстоянием будет расстояние от точки касания до прямой (y=2x-1).
Строим уравнение касательной. По условию: (f'(x)=4x^3+6x+2=2) begin{gather*} 4x^3+6x=0Rightarrow 2x(2x^2+3)=0Rightarrow left[ begin{array}{l} x=0\ 2x^2+3=0 end{array} right. Rightarrow left[ begin{array}{l} x=0\ x^2=-frac32 end{array} right. Rightarrow left[ begin{array}{l} x=0\ xinvarnothing end{array} right. Rightarrow x=0 end{gather*} Точка касания (x_0=0, y_0=0^4+3cdot 0^2+2cdot 0=0).
Уравнение касательной: (y=2(x-0)+0=2x)
Ищем расстояние между двумя параллельными прямыми: (y=2x) и (y=2x-1). Перпендикуляр из точки (0;0) на прямую (y=2x-1) имеет угловой коэффициент (k=-frac12), его уравнение: (y=-frac12 x+b). Т.к. точка (0;0) принадлежит этому перпендикуляру, он проходит через начало координат и (b=0). |
Уравнение перпендикуляра: (y=-frac x2).
Находим точку пересечения прямой (y=2x-1) и перпендикуляра (y=-frac x2): begin{gather*} 2x-1=-frac x2Rightarrow 2,5x=1Rightarrow x=0,4; y=-frac{0,4}{2}=-0,2 end{gather*} Точка пересечения A(0,4;-0,2).
Находим расстояние (OA=sqrt{0,4^2+(-0,2)^2}=0,2sqrt{2^2+1^2}=frac{sqrt{5}}{5})
Ответ: (frac{sqrt{5}}{5})
Касательная к графику функции f, дифференцируемой в точке xо, – это прямая, проходящая через точку (xо; f(xо)) и имеющая угловой коэффициент f ′(xо).
Угловой коэффициент имеет прямая вида y = kx + b. Коэффициент k и является угловым коэффициентом этой прямой.
Угловой коэффициент равен тангенсу острого угла, образуемого этой прямой с осью абсцисс: k = tgα
Здесь угол α – это угол между прямой y = kx + b и положительным (то есть против часовой стрелки) направлением оси абсцисс. Он называется углом наклона прямой (рис.1 и 2).
Если угол наклона прямой y = kx + b острый, то угловой коэффициент является положительным числом. График возрастает (рис.1).
Если угол наклона прямой y = kx + b тупой, то угловой коэффициент является отрицательным числом. График убывает (рис.2).
Если прямая параллельна оси абсцисс, то угол наклона прямой равен нулю. В этом случае угловой коэффициент прямой тоже равен нулю (так как тангенс нуля есть ноль). Уравнение прямой будет иметь вид y = b (рис.3).
Если угол наклона прямой равен 90º (π/2), то есть она перпендикулярна оси абсцисс, то прямая задается равенством x = c, где c – некоторое действительное число (рис.4).
Уравнение касательной к графику функции y = f(x) в точке xо:
y = f(xо) + f ′(xо) (x – xо)
Алгоритм решения уравнения касательной к графику функции y = f(x):
- Вычислить f ( x0 )
- Вычислить производные f ‘( x) и f ‘( x0 )
- Внести найденные числа x0, f ( x0 ) ,f ‘( x0 ) в уравнение касательной и решить его
Пример: Найдем уравнение касательной к графику функции f(x) = x3 – 2x2 + 1 в точке с абсциссой 2.
Решение.
Следуем алгоритму.
1) Точка касания xо равна 2. Вычислим f(xо):
f(xо) = f(2) = 23 – 2 ∙ 22 + 1 = 8 – 8 + 1 = 1
2) Находим f ′(x). Для этого применяем формулы дифференцирования, изложенные в предыдущем разделе. Согласно этим формулам, х2 = 2х, а х3 = 3х2. Значит:
f ′(x) = 3х2 – 2 ∙ 2х = 3х2 – 4х.
Теперь, используя полученное значение f ′(x), вычислим f ′(xо):
f ′(xо) = f ′(2) = 3 ∙ 22 – 4 ∙ 2 = 12 – 8 = 4.
3) Итак, у нас есть все необходимые данные: xо = 2, f(xо) = 1, f ′(xо) = 4. Подставляем эти числа в уравнение касательной и находим окончательное решение:
у = f(xо) + f ′(xо) (x – xо) = 1 + 4 ∙ (х – 2) = 1 + 4х – 8 = –7 + 4х = 4х – 7.
Ответ: у = 4х – 7.
Найти угловой коэффициент касательной к графику функции в точке с абсциссой x0 =
Найдите угловой коэффициент касательной к графику функции в точке с абсциссой x0 = 2
Найдите тангенс угла наклона касательной, проведенной к графику функции в его точке с абсциссой (-1)
Дана функция f(x)=х2- 4x+1. Найдите координаты точки, в которой угловой коэффициент касательной к графику функции равен 2
Укажите абсциссу точки графика функции у = 12 -3х + х2 в которой угловой коэффициент касательной равен 2.
Касательная к графику функции в точке. Уравнение касательной. Геометрический смысл производной
Статья дает подробное разъяснение определений, геометрического смысла производной с графическими обозначениями. Будет рассмотрено уравнение касательной прямой с приведением примеров, найдено уравнения касательной к кривым 2 порядка.
Определения и понятия
Угол наклона прямой y = k x + b называется угол α , который отсчитывается от положительного направления оси о х к прямой y = k x + b в положительном направлении.
На рисунке направление о х обозначается при помощи зеленой стрелки и в виде зеленой дуги, а угол наклона при помощи красной дуги. Синяя линия относится к прямой.
Угловой коэффициент прямой y = k x + b называют числовым коэффициентом k .
Угловой коэффициент равняется тангенсу наклона прямой, иначе говоря k = t g α .
- Угол наклона прямой равняется 0 только при параллельности о х и угловом коэффициенте, равному нулю, потому как тангенс нуля равен 0 . Значит, вид уравнения будет y = b .
- Если угол наклона прямой y = k x + b острый, тогда выполняются условия 0 α π 2 или 0 ° α 90 ° . Отсюда имеем, что значение углового коэффициента k считается положительным числом, потому как значение тангенс удовлетворяет условию t g α > 0 , причем имеется возрастание графика.
- Если α = π 2 , тогда расположение прямой перпендикулярно о х . Равенство задается при помощи равенства x = c со значением с , являющимся действительным числом.
- Если угол наклона прямой y = k x + b тупой, то соответствует условиям π 2 α π или 90 ° α 180 ° , значение углового коэффициента k принимает отрицательное значение, а график убывает.
Определение 3
Секущей называют прямую, которая проходит через 2 точки функции f ( x ) . Иначе говоря, секущая – это прямая, которая проводится через любые две точки графика заданной функции.
По рисунку видно, что А В является секущей, а f ( x ) – черная кривая, α – красная дуга, означающая угол наклона секущей.
Когда угловой коэффициент прямой равняется тангенсу угла наклона, то видно, что тангенс из прямоугольного треугольника А В С можно найти по отношению противолежащего катета к прилежащему.
Получаем формулу для нахождения секущей вида:
k = t g α = B C A C = f ( x B ) – f x A x B – x A , где абсциссами точек А и В являются значения x A , x B , а f ( x A ) , f ( x B ) – это значения функции в этих точках.
Очевидно, что угловой коэффициент секущей определен при помощи равенства k = f ( x B ) – f ( x A ) x B – x A или k = f ( x A ) – f ( x B ) x A – x B , причем уравнение необходимо записать как y = f ( x B ) – f ( x A ) x B – x A · x – x A + f ( x A ) или
y = f ( x A ) – f ( x B ) x A – x B · x – x B + f ( x B ) .
Секущая делит график визуально на 3 части: слева от точки А , от А до В , справа от В . На располагаемом ниже рисунке видно, что имеются три секущие, которые считаются совпадающими, то есть задаются при помощи аналогичного уравнения.
По определению видно, что прямая и ее секущая в данном случае совпадают.
Секущая может множественно раз пересекать график заданной функции. Если имеется уравнение вида у = 0 для секущей, тогда количество точек пересечения с синусоидой бесконечно.
Касательная к графику функции f ( x ) в точке x 0 ; f ( x 0 ) называется прямая, проходящая через заданную точку x 0 ; f ( x 0 ) , с наличием отрезка, который имеет множество значений х , близких к x 0 .
Рассмотрим подробно на ниже приведенном примере. Тогда видно, что прямая, заданная функцией y = x + 1 , считается касательной к y = 2 x в точке с координатами ( 1 ; 2 ) . Для наглядности, необходимо рассмотреть графики с приближенными к ( 1 ; 2 ) значениями. Функция y = 2 x обозначена черным цветом, синяя линия – касательная, красная точка – точка пересечения.
Очевидно, что y = 2 x сливается с прямой у = х + 1 .
Для определения касательной следует рассмотреть поведение касательной А В при бесконечном приближении точки В к точке А . Для наглядности приведем рисунок.
Секущая А В , обозначенная при помощи синей линии, стремится к положению самой касательной, а угол наклона секущей α начнет стремиться к углу наклона самой касательной α x .
Касательной к графику функции y = f ( x ) в точке А считается предельное положение секущей А В при В стремящейся к А , то есть B → A .
Теперь перейдем к рассмотрению геометрического смысла производной функции в точке.
Геометрический смысл производной функции в точке
Перейдем к рассмотрению секущей А В для функции f ( x ) , где А и В с координатами x 0 , f ( x 0 ) и x 0 + ∆ x , f ( x 0 + ∆ x ) , а ∆ x обозначаем как приращение аргумента. Теперь функция примет вид ∆ y = ∆ f ( x ) = f ( x 0 + ∆ x ) – f ( ∆ x ) . Для наглядности приведем в пример рисунок.
Рассмотрим полученный прямоугольный треугольник А В С . Используем определение тангенса для решения, то есть получим отношение ∆ y ∆ x = t g α . Из определения касательной следует, что lim ∆ x → 0 ∆ y ∆ x = t g α x . По правилу производной в точке имеем, что производную f ( x ) в точке x 0 называют пределом отношений приращения функции к приращению аргумента, где ∆ x → 0 , тогда обозначим как f ( x 0 ) = lim ∆ x → 0 ∆ y ∆ x .
Отсюда следует, что f ‘ ( x 0 ) = lim ∆ x → 0 ∆ y ∆ x = t g α x = k x , где k x обозначают в качестве углового коэффициента касательной.
То есть получаем, что f ’ ( x ) может существовать в точке x 0 причем как и касательная к заданному графику функции в точке касания равной x 0 , f 0 ( x 0 ) , где значение углового коэффициента касательной в точке равняется производной в точке x 0 . Тогда получаем, что k x = f ‘ ( x 0 ) .
Геометрический смысл производной функции в точке в том, что дается понятие существования касательной к графику в этой же точке.
Уравнение касательной прямой
Чтобы записать уравнение любой прямой на плоскости, необходимо иметь угловой коэффициент с точкой, через которую она проходит. Его обозначение принимается как x 0 при пересечении.
Уравнение касательной к графику функции y = f ( x ) в точке x 0 , f 0 ( x 0 ) принимает вид y = f ‘ ( x 0 ) · x – x 0 + f ( x 0 ) .
Имеется в виду, что конечным значением производной f ‘ ( x 0 ) можно определить положение касательной, то есть вертикально при условии lim x → x 0 + 0 f ‘ ( x ) = ∞ и lim x → x 0 – 0 f ‘ ( x ) = ∞ или отсутствие вовсе при условии lim x → x 0 + 0 f ‘ ( x ) ≠ lim x → x 0 – 0 f ‘ ( x ) .
Расположение касательной зависит от значения ее углового коэффициента k x = f ‘ ( x 0 ) . При параллельности к оси о х получаем, что k k = 0 , при параллельности к о у – k x = ∞ , причем вид уравнения касательной x = x 0 возрастает при k x > 0 , убывает при k x 0 .
Произвести составление уравнения касательной к графику функции y = e x + 1 + x 3 3 – 6 – 3 3 x – 17 – 3 3 в точке с координатами ( 1 ; 3 ) с определением угла наклона.
Решение
По условию имеем, что функция определяется для всех действительных чисел. Получаем, что точка с координатами, заданными по условию, ( 1 ; 3 ) является точкой касания, тогда x 0 = – 1 , f ( x 0 ) = – 3 .
Необходимо найти производную в точке со значением – 1 . Получаем, что
y ‘ = e x + 1 + x 3 3 – 6 – 3 3 x – 17 – 3 3 ‘ = = e x + 1 ‘ + x 3 3 ‘ – 6 – 3 3 x ‘ – 17 – 3 3 ‘ = e x + 1 + x 2 – 6 – 3 3 y ‘ ( x 0 ) = y ‘ ( – 1 ) = e – 1 + 1 + – 1 2 – 6 – 3 3 = 3 3
Значение f ’ ( x ) в точке касания является угловым коэффициентом касательной, который равняется тангенсу наклона.
Тогда k x = t g α x = y ‘ ( x 0 ) = 3 3
Отсюда следует, что α x = a r c t g 3 3 = π 6
Ответ: уравнение касательной приобретает вид
y = f ‘ ( x 0 ) · x – x 0 + f ( x 0 ) y = 3 3 ( x + 1 ) – 3 y = 3 3 x – 9 – 3 3
Для наглядности приведем пример в графической иллюстрации.
Черный цвет используется для графика исходной функции, синий цвет – изображение касательной, красная точка – точка касания. Рисунок, располагаемый справа, показывает в увеличенном виде.
Выяснить наличие существования касательной к графику заданной функции
y = 3 · x – 1 5 + 1 в точке с координатами ( 1 ; 1 ) . Составить уравнение и определить угол наклона.
Решение
По условию имеем, что областью определения заданной функции считается множество всех действительных чисел.
Перейдем к нахождению производной
y ‘ = 3 · x – 1 5 + 1 ‘ = 3 · 1 5 · ( x – 1 ) 1 5 – 1 = 3 5 · 1 ( x – 1 ) 4 5
Если x 0 = 1 , тогда f ’ ( x ) не определена, но пределы записываются как lim x → 1 + 0 3 5 · 1 ( x – 1 ) 4 5 = 3 5 · 1 ( + 0 ) 4 5 = 3 5 · 1 + 0 = + ∞ и lim x → 1 – 0 3 5 · 1 ( x – 1 ) 4 5 = 3 5 · 1 ( – 0 ) 4 5 = 3 5 · 1 + 0 = + ∞ , что означает существование вертикальной касательной в точке ( 1 ; 1 ) .
Ответ: уравнение примет вид х = 1 , где угол наклона будет равен π 2 .
Для наглядности изобразим графически.
Найти точки графика функции y = 1 15 x + 2 3 – 4 5 x 2 – 16 5 x – 26 5 + 3 x + 2 , где
- Касательная не существует;
- Касательная располагается параллельно о х ;
- Касательная параллельна прямой y = 8 5 x + 4 .
Решение
Необходимо обратить внимание на область определения. По условию имеем, что функция определена на множестве всех действительных чисел. Раскрываем модуль и решаем систему с промежутками x ∈ – ∞ ; 2 и [ – 2 ; + ∞ ) . Получаем, что
y = – 1 15 x 3 + 18 x 2 + 105 x + 176 , x ∈ – ∞ ; – 2 1 15 x 3 – 6 x 2 + 9 x + 12 , x ∈ [ – 2 ; + ∞ )
Необходимо продифференцировать функцию. Имеем, что
y ‘ = – 1 15 x 3 + 18 x 2 + 105 x + 176 ‘ , x ∈ – ∞ ; – 2 1 15 x 3 – 6 x 2 + 9 x + 12 ‘ , x ∈ [ – 2 ; + ∞ ) ⇔ y ‘ = – 1 5 ( x 2 + 12 x + 35 ) , x ∈ – ∞ ; – 2 1 5 x 2 – 4 x + 3 , x ∈ [ – 2 ; + ∞ )
Когда х = – 2 , тогда производная не существует, потому что односторонние пределы не равны в этой точке:
lim x → – 2 – 0 y ‘ ( x ) = lim x → – 2 – 0 – 1 5 ( x 2 + 12 x + 35 = – 1 5 ( – 2 ) 2 + 12 ( – 2 ) + 35 = – 3 lim x → – 2 + 0 y ‘ ( x ) = lim x → – 2 + 0 1 5 ( x 2 – 4 x + 3 ) = 1 5 – 2 2 – 4 – 2 + 3 = 3
Вычисляем значение функции в точке х = – 2 , где получаем, что
- y ( – 2 ) = 1 15 – 2 + 2 3 – 4 5 ( – 2 ) 2 – 16 5 ( – 2 ) – 26 5 + 3 – 2 + 2 = – 2 , то есть касательная в точке ( – 2 ; – 2 ) не будет существовать.
- Касательная параллельна о х , когда угловой коэффициент равняется нулю. Тогда k x = t g α x = f ‘ ( x 0 ) . То есть необходимо найти значения таких х , когда производная функции обращает ее в ноль. То есть значения f ’ ( x ) и будут являться точками касания, где касательная является параллельной о х .
Когда x ∈ – ∞ ; – 2 , тогда – 1 5 ( x 2 + 12 x + 35 ) = 0 , а при x ∈ ( – 2 ; + ∞ ) получаем 1 5 ( x 2 – 4 x + 3 ) = 0 .
– 1 5 ( x 2 + 12 x + 35 ) = 0 D = 12 2 – 4 · 35 = 144 – 140 = 4 x 1 = – 12 + 4 2 = – 5 ∈ – ∞ ; – 2 x 2 = – 12 – 4 2 = – 7 ∈ – ∞ ; – 2 1 5 ( x 2 – 4 x + 3 ) = 0 D = 4 2 – 4 · 3 = 4 x 3 = 4 – 4 2 = 1 ∈ – 2 ; + ∞ x 4 = 4 + 4 2 = 3 ∈ – 2 ; + ∞
Вычисляем соответствующие значения функции
y 1 = y – 5 = 1 15 – 5 + 2 3 – 4 5 – 5 2 – 16 5 – 5 – 26 5 + 3 – 5 + 2 = 8 5 y 2 = y ( – 7 ) = 1 15 – 7 + 2 3 – 4 5 ( – 7 ) 2 – 16 5 – 7 – 26 5 + 3 – 7 + 2 = 4 3 y 3 = y ( 1 ) = 1 15 1 + 2 3 – 4 5 · 1 2 – 16 5 · 1 – 26 5 + 3 1 + 2 = 8 5 y 4 = y ( 3 ) = 1 15 3 + 2 3 – 4 5 · 3 2 – 16 5 · 3 – 26 5 + 3 3 + 2 = 4 3
Отсюда – 5 ; 8 5 , – 4 ; 4 3 , 1 ; 8 5 , 3 ; 4 3 считаются искомыми точками графика функции.
Рассмотрим графическое изображение решения.
Черная линия – график функции, красные точки – точки касания.
- Когда прямые располагаются параллельно, то угловые коэффициенты равны. Тогда необходимо заняться поиском точек графика функции, где угловой коэффициент будет равняться значению 8 5 . Для этого нужно решить уравнение вида y ‘ ( x ) = 8 5 . Тогда, если x ∈ – ∞ ; – 2 , получаем, что – 1 5 ( x 2 + 12 x + 35 ) = 8 5 , а если x ∈ ( – 2 ; + ∞ ) , тогда 1 5 ( x 2 – 4 x + 3 ) = 8 5 .
Первое уравнение не имеет корней, так как дискриминант меньше нуля. Запишем, что
– 1 5 x 2 + 12 x + 35 = 8 5 x 2 + 12 x + 43 = 0 D = 12 2 – 4 · 43 = – 28 0
Другое уравнение имеет два действительных корня, тогда
1 5 ( x 2 – 4 x + 3 ) = 8 5 x 2 – 4 x – 5 = 0 D = 4 2 – 4 · ( – 5 ) = 36 x 1 = 4 – 36 2 = – 1 ∈ – 2 ; + ∞ x 2 = 4 + 36 2 = 5 ∈ – 2 ; + ∞
Перейдем к нахождению значений функции. Получаем, что
y 1 = y ( – 1 ) = 1 15 – 1 + 2 3 – 4 5 ( – 1 ) 2 – 16 5 ( – 1 ) – 26 5 + 3 – 1 + 2 = 4 15 y 2 = y ( 5 ) = 1 15 5 + 2 3 – 4 5 · 5 2 – 16 5 · 5 – 26 5 + 3 5 + 2 = 8 3
Точки со значениями – 1 ; 4 15 , 5 ; 8 3 являются точками, в которых касательные параллельны прямой y = 8 5 x + 4 .
Ответ: черная линия – график функции, красная линия – график y = 8 5 x + 4 , синяя линия – касательные в точках – 1 ; 4 15 , 5 ; 8 3 .
Возможно существование бесконечного количества касательных для заданных функций.
Написать уравнения всех имеющихся касательных функции y = 3 cos 3 2 x – π 4 – 1 3 , которые располагаются перпендикулярно прямой y = – 2 x + 1 2 .
Решение
Для составления уравнения касательной необходимо найти коэффициент и координаты точки касания, исходя из условия перпендикулярности прямых. Определение звучит так: произведение угловых коэффициентов, которые перпендикулярны прямым, равняется – 1 , то есть записывается как k x · k ⊥ = – 1 . Из условия имеем, что угловой коэффициент располагается перпендикулярно прямой и равняется k ⊥ = – 2 , тогда k x = – 1 k ⊥ = – 1 – 2 = 1 2 .
Теперь необходимо найти координаты точек касания. Нужно найти х , после чего его значение для заданной функции. Отметим, что из геометрического смысла производной в точке
x 0 получаем, что k x = y ‘ ( x 0 ) . Из данного равенства найдем значения х для точек касания.
y ‘ ( x 0 ) = 3 cos 3 2 x 0 – π 4 – 1 3 ‘ = 3 · – sin 3 2 x 0 – π 4 · 3 2 x 0 – π 4 ‘ = = – 3 · sin 3 2 x 0 – π 4 · 3 2 = – 9 2 · sin 3 2 x 0 – π 4 ⇒ k x = y ‘ ( x 0 ) ⇔ – 9 2 · sin 3 2 x 0 – π 4 = 1 2 ⇒ sin 3 2 x 0 – π 4 = – 1 9
Это тригонометрическое уравнение будет использовано для вычисления ординат точек касания.
3 2 x 0 – π 4 = a r c sin – 1 9 + 2 πk или 3 2 x 0 – π 4 = π – a r c sin – 1 9 + 2 πk
3 2 x 0 – π 4 = – a r c sin 1 9 + 2 πk или 3 2 x 0 – π 4 = π + a r c sin 1 9 + 2 πk
x 0 = 2 3 π 4 – a r c sin 1 9 + 2 πk или x 0 = 2 3 5 π 4 + a r c sin 1 9 + 2 πk , k ∈ Z
Z – множество целых чисел.
Найдены х точек касания. Теперь необходимо перейти к поиску значений у :
y 0 = 3 cos 3 2 x 0 – π 4 – 1 3
y 0 = 3 · 1 – sin 2 3 2 x 0 – π 4 – 1 3 или y 0 = 3 · – 1 – sin 2 3 2 x 0 – π 4 – 1 3
y 0 = 3 · 1 – – 1 9 2 – 1 3 или y 0 = 3 · – 1 – – 1 9 2 – 1 3
y 0 = 4 5 – 1 3 или y 0 = – 4 5 + 1 3
Отсюда получаем, что 2 3 π 4 – a r c sin 1 9 + 2 πk ; 4 5 – 1 3 , 2 3 5 π 4 + a r c sin 1 9 + 2 πk ; – 4 5 + 1 3 являются точками касания.
Ответ: необходимы уравнения запишутся как
y = 1 2 x – 2 3 π 4 – a r c sin 1 9 + 2 πk + 4 5 – 1 3 , y = 1 2 x – 2 3 5 π 4 + a r c sin 1 9 + 2 πk – 4 5 + 1 3 , k ∈ Z
Для наглядного изображения рассмотрим функцию и касательную на координатной прямой.
Рисунок показывает, что расположение функции идет на промежутке [ – 10 ; 10 ] , где черная прямя – график функции, синие линии – касательные, которые располагаются перпендикулярно заданной прямой вида y = – 2 x + 1 2 . Красные точки – это точки касания.
Касательная к окружности, эллипсу, гиперболе, параболе
Канонические уравнения кривых 2 порядка не являются однозначными функциями. Уравнения касательных для них составляются по известным схемам.
Касательная к окружности
Для задания окружности с центром в точке x c e n t e r ; y c e n t e r и радиусом R применяется формула x – x c e n t e r 2 + y – y c e n t e r 2 = R 2 .
Данное равенство может быть записано как объединение двух функций:
y = R 2 – x – x c e n t e r 2 + y c e n t e r y = – R 2 – x – x c e n t e r 2 + y c e n t e r
Первая функция располагается вверху, а вторая внизу, как показано на рисунке.
Для составления уравнения окружности в точке x 0 ; y 0 , которая располагается в верхней или нижней полуокружности, следует найти уравнение графика функции вида y = R 2 – x – x c e n t e r 2 + y c e n t e r или y = – R 2 – x – x c e n t e r 2 + y c e n t e r в указанной точке.
Когда в точках x c e n t e r ; y c e n t e r + R и x c e n t e r ; y c e n t e r – R касательные могут быть заданы уравнениями y = y c e n t e r + R и y = y c e n t e r – R , а в точках x c e n t e r + R ; y c e n t e r и
x c e n t e r – R ; y c e n t e r будут являться параллельными о у , тогда получим уравнения вида x = x c e n t e r + R и x = x c e n t e r – R .
Касательная к эллипсу
Когда эллипс имеет центр в точке x c e n t e r ; y c e n t e r с полуосями a и b , тогда он может быть задан при помощи уравнения x – x c e n t e r 2 a 2 + y – y c e n t e r 2 b 2 = 1 .
Эллипс и окружность могут быть обозначаться при помощи объединения двух функций, а именно: верхнего и нижнего полуэллипса. Тогда получаем, что
y = b a · a 2 – ( x – x c e n t e r ) 2 + y c e n t e r y = – b a · a 2 – ( x – x c e n t e r ) 2 + y c e n t e r
Если касательные располагаются на вершинах эллипса, тогда они параллельны о х или о у . Ниже для наглядности рассмотрим рисунок.
Написать уравнение касательной к эллипсу x – 3 2 4 + y – 5 2 25 = 1 в точках со значениями x равного х = 2 .
Решение
Необходимо найти точки касания, которые соответствуют значению х = 2 . Производим подстановку в имеющееся уравнение эллипса и получаем, что
x – 3 2 4 x = 2 + y – 5 2 25 = 1 1 4 + y – 5 2 25 = 1 ⇒ y – 5 2 = 3 4 · 25 ⇒ y = ± 5 3 2 + 5
Тогда 2 ; 5 3 2 + 5 и 2 ; – 5 3 2 + 5 являются точками касания, которые принадлежат верхнему и нижнему полуэллипсу.
Перейдем к нахождению и разрешению уравнения эллипса относительно y . Получим, что
x – 3 2 4 + y – 5 2 25 = 1 y – 5 2 25 = 1 – x – 3 2 4 ( y – 5 ) 2 = 25 · 1 – x – 3 2 4 y – 5 = ± 5 · 1 – x – 3 2 4 y = 5 ± 5 2 4 – x – 3 2
Очевидно, что верхний полуэллипс задается с помощью функции вида y = 5 + 5 2 4 – x – 3 2 , а нижний y = 5 – 5 2 4 – x – 3 2 .
Применим стандартный алгоритм для того, чтобы составить уравнение касательной к графику функции в точке. Запишем, что уравнение для первой касательной в точке 2 ; 5 3 2 + 5 будет иметь вид
y ‘ = 5 + 5 2 4 – x – 3 2 ‘ = 5 2 · 1 2 4 – ( x – 3 ) 2 · 4 – ( x – 3 ) 2 ‘ = = – 5 2 · x – 3 4 – ( x – 3 ) 2 ⇒ y ‘ ( x 0 ) = y ‘ ( 2 ) = – 5 2 · 2 – 3 4 – ( 2 – 3 ) 2 = 5 2 3 ⇒ y = y ‘ ( x 0 ) · x – x 0 + y 0 ⇔ y = 5 2 3 ( x – 2 ) + 5 3 2 + 5
Получаем, что уравнение второй касательной со значением в точке
2 ; – 5 3 2 + 5 принимает вид
y ‘ = 5 – 5 2 4 – ( x – 3 ) 2 ‘ = – 5 2 · 1 2 4 – ( x – 3 ) 2 · 4 – ( x – 3 ) 2 ‘ = = 5 2 · x – 3 4 – ( x – 3 ) 2 ⇒ y ‘ ( x 0 ) = y ‘ ( 2 ) = 5 2 · 2 – 3 4 – ( 2 – 3 ) 2 = – 5 2 3 ⇒ y = y ‘ ( x 0 ) · x – x 0 + y 0 ⇔ y = – 5 2 3 ( x – 2 ) – 5 3 2 + 5
Графически касательные обозначаются так:
Касательная к гиперболе
Когда гипербола имеет центр в точке x c e n t e r ; y c e n t e r и вершины x c e n t e r + α ; y c e n t e r и x c e n t e r – α ; y c e n t e r , имеет место задание неравенства x – x c e n t e r 2 α 2 – y – y c e n t e r 2 b 2 = 1 , если с вершинами x c e n t e r ; y c e n t e r + b и x c e n t e r ; y c e n t e r – b , тогда задается при помощи неравенства x – x c e n t e r 2 α 2 – y – y c e n t e r 2 b 2 = – 1 .
Гипербола может быть представлена в виде двух объединенных функций вида
y = b a · ( x – x c e n t e r ) 2 – a 2 + y c e n t e r y = – b a · ( x – x c e n t e r ) 2 – a 2 + y c e n t e r или y = b a · ( x – x c e n t e r ) 2 + a 2 + y c e n t e r y = – b a · ( x – x c e n t e r ) 2 + a 2 + y c e n t e r
В первом случае имеем, что касательные параллельны о у , а во втором параллельны о х .
Отсюда следует, что для того, чтобы найти уравнение касательной к гиперболе, необходимо выяснить, какой функции принадлежит точка касания. Чтобы определить это, необходимо произвести подстановку в уравнения и проверить их на тождественность.
Составить уравнение касательной к гиперболе x – 3 2 4 – y + 3 2 9 = 1 в точке 7 ; – 3 3 – 3 .
Решение
Необходимо преобразовать запись решения нахождения гиперболы при помощи 2 функций. Получим, что
x – 3 2 4 – y + 3 2 9 = 1 ⇒ y + 3 2 9 = x – 3 2 4 – 1 ⇒ y + 3 2 = 9 · x – 3 2 4 – 1 ⇒ y + 3 = 3 2 · x – 3 2 – 4 и л и y + 3 = – 3 2 · x – 3 2 – 4 ⇒ y = 3 2 · x – 3 2 – 4 – 3 y = – 3 2 · x – 3 2 – 4 – 3
Необходимо выявить, к какой функции принадлежит заданная точка с координатами 7 ; – 3 3 – 3 .
Очевидно, что для проверки первой функции необходимо y ( 7 ) = 3 2 · ( 7 – 3 ) 2 – 4 – 3 = 3 3 – 3 ≠ – 3 3 – 3 , тогда точка графику не принадлежит, так как равенство не выполняется.
Для второй функции имеем, что y ( 7 ) = – 3 2 · ( 7 – 3 ) 2 – 4 – 3 = – 3 3 – 3 ≠ – 3 3 – 3 , значит, точка принадлежит заданному графику. Отсюда следует найти угловой коэффициент.
y ‘ = – 3 2 · ( x – 3 ) 2 – 4 – 3 ‘ = – 3 2 · x – 3 ( x – 3 ) 2 – 4 ⇒ k x = y ‘ ( x 0 ) = – 3 2 · x 0 – 3 x 0 – 3 2 – 4 x 0 = 7 = – 3 2 · 7 – 3 7 – 3 2 – 4 = – 3
Ответ: уравнение касательной можно представить как
y = – 3 · x – 7 – 3 3 – 3 = – 3 · x + 4 3 – 3
Наглядно изображается так:
Касательная к параболе
Чтобы составить уравнение касательной к параболе y = a x 2 + b x + c в точке x 0 , y ( x 0 ) , необходимо использовать стандартный алгоритм, тогда уравнение примет вид y = y ‘ ( x 0 ) · x – x 0 + y ( x 0 ) . Такая касательная в вершине параллельна о х .
Следует задать параболу x = a y 2 + b y + c как объединение двух функций. Поэтому нужно разрешить уравнение относительно у . Получаем, что
x = a y 2 + b y + c ⇔ a y 2 + b y + c – x = 0 D = b 2 – 4 a ( c – x ) y = – b + b 2 – 4 a ( c – x ) 2 a y = – b – b 2 – 4 a ( c – x ) 2 a
Графически изобразим как:
Для выяснения принадлежности точки x 0 , y ( x 0 ) функции, нежно действовать по стандартному алгоритму. Такая касательная будет параллельна о у относительно параболы.
Написать уравнение касательной к графику x – 2 y 2 – 5 y + 3 , когда имеем угол наклона касательной 150 ° .
Решение
Начинаем решение с представления параболы в качестве двух функций. Получим, что
– 2 y 2 – 5 y + 3 – x = 0 D = ( – 5 ) 2 – 4 · ( – 2 ) · ( 3 – x ) = 49 – 8 x y = 5 + 49 – 8 x – 4 y = 5 – 49 – 8 x – 4
Значение углового коэффициента равняется значению производной в точке x 0 этой функции и равняется тангенсу угла наклона.
k x = y ‘ ( x 0 ) = t g α x = t g 150 ° = – 1 3
Отсюда определим значение х для точек касания.
Первая функция запишется как
y ‘ = 5 + 49 – 8 x – 4 ‘ = 1 49 – 8 x ⇒ y ‘ ( x 0 ) = 1 49 – 8 x 0 = – 1 3 ⇔ 49 – 8 x 0 = – 3
Очевидно, что действительных корней нет, так как получили отрицательное значение. Делаем вывод, что касательной с углом 150 ° для такой функции не существует.
Вторая функция запишется как
y ‘ = 5 – 49 – 8 x – 4 ‘ = – 1 49 – 8 x ⇒ y ‘ ( x 0 ) = – 1 49 – 8 x 0 = – 1 3 ⇔ 49 – 8 x 0 = – 3 x 0 = 23 4 ⇒ y ( x 0 ) = 5 – 49 – 8 · 23 4 – 4 = – 5 + 3 4
Имеем, что точки касания – 23 4 ; – 5 + 3 4 .
Ответ: уравнение касательной принимает вид
Угловой коэффициент.
Угловой коэффициент— коэффициент k в уравнении прямой на плоскости y = kx + b. Он численно равняется тангенсу угла между выбранной прямой и осью 0х. Этот угол отсчитывается от положительного направления оси 0х до прямой против хода часовой стрелки и располагается и пределах от 0 до 180 градусов.
Для обозначения углового коэффициента употребляют латинский символ k. И, основываясь на определении получаем:
Когда прямая параллельна оси 0х или совпадает с ней, то угол ее наклона расценивают, как равный нулю.
Когда прямая параллельна оси 0у, то угловой коэффициент отсутствует и принято указывать, что угловой коэффициент обращается в бесконечность.
Положительный угловой коэффициент прямой свидетельствует о росте графика функции, отрицательный угловой коэффициент – об убывании.
При этом большим значениям углового коэффициента k будет соответствовать более крутая прямая, а меньшим – более пологая.
Угловой коэффициент прямой так же есть возможность вычислить, когда установлены координаты двух произвольных точек прямой:
Тогда, в образовавшемся прямоугольном треугольнике M1РM2 вычисляем тангенс:
Касательная к графику функции, как составить уравнение, свойства, угловой коэффициент касательной проведенной к графику функции, формула, примеры решения
На экзаменах по дисциплинам с физико-математическим уклоном или при расчетах встречается тип задач о касательной к графику функции.
Однако следует разобраться в основных терминах и соотношениях.
Специалисты рекомендуют пользоваться специальным алгоритмом, позволяющим правильно находить точку касания прямой с какой-либо фигурой.
Общие сведения
Касательной называется прямая, имеющая с фигурой или графиком заданной функции одну общую точку. Однако иногда она проходит через 2 точки. В этом случае ее называют секущей. Прямая задается следующим уравнением: y = kx + b. Значение «k» — это угловой коэффициент.
Для решения задач следует разобрать основные понятия, определения, формулы и свойства касательной.
Кроме того, очень важно понять ее геометрический смысл, поскольку без него будет сложно разобраться в более сложных дисциплинах с физико-математическим уклоном.
Определения и понятия
У касательной есть определенный параметр — угол наклона (а).
Его необходимо отсчитывать от оси абсцисс (только положительное направление) к прямой, заданной графиком y = kx + b.
От него зависит ее расположение.
Коэффициент «к» равен значению тангенса угла наклона, т. е. tg(a).
Математики сделали некоторые выводы, которые основываются на значении углового коэффициента:
В первом, втором и третьем случаях коэффициент является положительным, а в последнем — отрицательным. Эти факты следует учитывать при решении задач. Касательная прямая может являться и секущей, т. е. соприкасаться с графиком функции сразу в двух и более точках. Следует отметить, что при параллельности прямой оси ОХ (y = b), она может пересекать функцию бесконечное число раз.
Существует еще одно определение: касательной к функции вида y = f(x) в точке (х0, f(x0)) является прямая, которая проходит через эту точку с тем условием, что отрезок имеет множество значений, близких к ней (х -> x0).
Геометрический смысл
Пусть дана некоторая функция y = f(x) и секущая АВ (рис. 1). Координаты последней в точках А и В следующие: А(х0;f(x0)) и В(х0+zx;f(x0+zx)). Величина «zx» — приращение аргумента по х, которое показано стрелками. Если подставить координаты в функцию, то она имеет такой вид: zy = zf(x) = f(x0+zx) — f(zx).
Рисунок 1. Геометрический смысл.
Соотношение, которое было получено выше, называется производной. Если к графику в точке проведена секущая или касательная, то тангенс угла будет равен самой производной заданной функции в точке с координатой х0.
Из этого определения можно сделать вывод о существовании производной. Если значение последней равно 0, то, следовательно, не существует общих точек с заданной фигурой.
Касательные к фигурам и графикам
При решении задач следует обратить внимание на частные случаи. Нужно произвести расчеты уравнения прямой или найти точки соприкосновения с окружностью, эллипсом, гиперболой или параболой. Очень распространенная задача встречается также в механике о ременной передаче.
Частные случаи позволят найти оптимальное решение и метод расчета, поскольку экономия времени является важным элементом при научных исследованиях, написании контрольных работ и сдаче экзаменов. Важный этап — идентификация типа задачи. Касательная к вышеперечисленным фигурам — основной тип заданий, но существуют и более сложные функции.
Например, сложно составить уравнение прямой, которая имеет точки касания с какой-либо сложной функцией.
В некоторых случаях необходимо перед выполнением расчетов ее упростить, т. е. привести подобные слагаемые, раскрыть скобки или воспользоваться другими приемами для упрощения выражения.
Одна и несколько окружностей
Радиус, который проводится через точку касания, составляет с касательной прямой угол (перпендикулярен). Перпендикуляр к касательной, проходящий через точку касания, является радиусом или диаметром заданного круга. Из этого следует, что радиус является нормалью по отношению к прямой. Секущая — прямая, которая проходит через график или фигуру, но имеет от двух и более точек пересечения.
Формула окружности с центром в точке О (xc;yc) и радиусом R имеет следующий вид: sqr(х-хc) + sqr(y-yc) = R^2.
Для решения следует выразить значение у, но при этом нужно рассматривать 2 случая:
Две функции являются полукругами и вместе образуют окружность. Чтобы составить график круга в точке (х0;у0), нужно уравнение в этой точке. В точках с координатами (хц;yц+R) и (хц;yц-R) уравнения касательных к окружности задаются следующими уравнениями: y = yц + R и y = yц — R. Если взять точки (хц+R;yц) и (хц-R;yц), они будут иметь такую форму: x = xц + R и x = xц — R.
В случае для двух окружностей всего можно провести до 4 касательных (2 внешних и 2 внутренних). Это зависит от случая расположения фигур. Точкой пересечения внешних считается внешняя гомотетия (подобие), а внутренних — в центре внутреннего подобия. Внешними называются прямые, которые касаются внешних точек круга. Если касательные являются внутренними, то они пересекают линию, соединяющую центры окружностей.
Следует отметить, что внешний и внутренний центры гомотетии лежат на некоторой прямой. Она проходит через центры заданных окружностей. Это был рассмотрен случай, когда одна окружность меньше другой.
Однако при равенстве их диаметров появляются некоторые свойства: внешние касательные параллельны и внешнего центра гомотетии не существует.
Основные соотношения можно вывести, используя уравнение прямой (касательной) и расстояние от точки до прямой. Пусть окружности с радиусами R1 и R2 имеют следующие координаты центров: с1(х1;у1) и с2(х2;у2). Уравнение прямой записывается таким образом: ах + by + c = 0. Расстояния до прямой от точек с1 и с2 вычисляются таким образом: ах1 + by1 + c = R1 и ах2 + by2 + c = R2. Формула находится с помощью вычитания первого уравнения из второго: а(х2 — х1) + b(y2 — у1) = R2 — R1. Следовательно, расстояние вычисляется по следующей формуле: d = sqrt[(х2 — х1)^2 + (y2 — у1)^2].
Эллипс, гипербола и парабола
Пусть задан эллипс с полуосями a и b.
Его центром является точка с координатами (xц;уц). Уравнение, описывающее фигуру имеет такой вид: [(х — хц)^2 / a^2] + [(y — yц)^2 / b^2] = 1. Необходимо выразить переменную y. Функция будет состоять из двух полуэллипсов: y = (b/a) * sqrt[a^2 — (x-xц)^2] + yц и y = -(b/a) * sqrt[a^2 — (x-xц)^2] + yц. Касательные к геометрической фигуре могут быть параллельными оси ОХ или ОУ.
В некоторых случаях график задан уравнениями кривых, к которым относятся гипербола и парабола. Пусть первая имеет координаты центра (xц;уц) с вершинами (xц+а;уц) и (xц-a;уц). Ее уравнение принимает такой вид: [(х — хц)^2 / a^2] — [(y — yц)^2 / b^2] = 1. Если же ее вершины имеют такие координаты (xц;уц+b) и (xц;уц-b), то она описывается следующим равенством [(х — хц)^2 / a^2] — [(y — yц)^2 / b^2] = -1. В последнем равенстве меняется знак. При решении нужно разбить на две объединенные функции:
В первом случае прямые параллельны оси ординат, а во втором — абсцисс. Чтобы написать уравнение прямой, нужно определить, к какой из функций принадлежит точка, выполнив подстановку в текущие равенства. После этого их следует проверить на тождественность.
Чтобы записать уравнение прямой-касательной к параболе y = ax^2 + bx + c в точке с координатами (x0;y(x0)), нужно привести равенство к следующему виду: y = y'(x0) * (x-x0) + y(x0). Из формулы можно сделать вывод о том, что прямая параллельна оси абсцисс. Параболу нужно рассматривать, как объединение двух функций (x = ay^2 + by + c). Рекомендуется решить его относительно y. Дискриминант вычисляется таким образом: D = b^2 — 4a(c — x).
В зависимости от его значения находятся корни:
Существует несколько типов задач на нахождение уравнения прямой, которая соприкасается с заданным графиком функции. Самой простой является задача со следующей формулировкой: прямая является касательной к графику функции. Найдите все точки касания. В этом случае задается уравнение графика функции и прямой. Некоторые задания считаются более сложными. В них необходимо написать уравнение касательной или касательных.
Рекомендации специалистов
Для решения задачи нужно внимательно прочитать условие и выяснить величины, которые следует найти. Все построено на нахождении производной функции. После этого нужно подставить значение координат точки в выражение первообразной. В некоторых случаях функция задается параметрически. Для удобства ее рекомендуется перевести в каноническую форму.
Рекомендуется разбивать задачу на несколько подзадач, поскольку будет очень просто выполнить проверку и исправить найденные ошибки. Существует несколько способов нахождения уравнения касательной: автоматизированный и ручной. В первом случае нужно использовать программное обеспечение. Оптимальным решением проблемы является онлайн-калькулятор.
При ручном режиме нужно решать, а иногда выполнить построение графика. Для оптимизации вычислений можно использовать Excel. График должен быть качественно построен и предельно понятен. В некоторых случая нужно будет вычислять предельные значения используя границы (lim).
Упражнения и ход вычислений
Нужно написать уравнение прямой-касательной к y(x) = x^3 — 2x^2 + 3 в т. xо = 2. Следует воспользоваться следующим алгоритмом:
Одним из типов задач является нахождение точек, лежащих на ОХ, в которых прямые (касательные) || OX. Задана функция f(x) = x^3 — x^2 — 3x + 7. Угол наклона равен 0 градусов, т. к. касательная || OX (производная в точках касания равна 0).
Алгоритм решения следующий:
Рекомендуется оставить в таком виде, поскольку при вычислении кубического корня появятся некоторые погрешности. В этих примерах необязательно составление графика.
Таким образом, геометрический смысл уравнения касательной к функции — производная. Следует изучить основные понятия, формулы и разобрать решение типовых задач. Также нужно повторить таблицу производных функций.
[spoiler title=”источники:”]
http://www.calc.ru/Uglovoy-Koeffitsiyent.html
http://sprint-olympic.ru/uroki/algebra/77841-kasatelnaia-k-grafiky-fynkcii-kak-sostavit-yravnenie-svoistva-yglovoi-koefficient-kasatelnoi-provedennoi-k-grafiky-fynkcii-formyla-primery-resheniia.html
[/spoiler]
Калькулятор онлайн.
Уравнение прямой касательной к графику функции в заданной точке
Эта математическая программа находит уравнение касательной к графику функции ( f(x) ) в заданной пользователем
точке ( x_0 ).
Программа не только выводит уравнение касательной, но и отображает процесс решения задачи.
Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.
Статью из энциклопедии о касательной прямой вы можете посмотреть
здесь (статья из Википедии).
Если вам нужно найти производную функции, то для этого у нас есть задача Найти производную.
Примеры подробного решения >>
Введите выражение функции ( f(x)) и число (x_0) – абсциссу точки в которой нужно построить касательную
Наши игры, головоломки, эмуляторы:
Немного теории.
Угловой коэффициент прямой
Напомним, что графиком линейной функции ( y=kx+b) является прямая. Число (k=tg alpha ) называют угловым коэффициентом
прямой, а угол ( alpha ) – углом между этой прямой и осью Ox
Если ( k>0), то (0< alpha < frac{pi}{2} ), в этом случае функция ( y=kx+b) возрастает.
Если ( k<0), то (-frac{pi}{2}< alpha < 0 ), в этом случае функция ( y=kx+b) убывает.
Уравнение касательной к графику функции
Если точка М(а; f(a)) принадлежит графику функции у = f(x) и если в этой точке к графику функции можно
провести касательную, не перпендикулярную оси абсцисс, то из геометрического смысла производной следует, что угловой
коэффициент касательной равен f'(a). Далее мы выработаем алгоритм составления уравнения касательной к графику любой функции.
Пусть даны функция у = f(x) и точка М(а; f(a)) на графике этой функции; пусть известно, что существует f'(a). Составим уравнение
касательной к графику заданной функции в заданной точке. Это уравнение, как уравнение любой прямой, не параллельной оси ординат,
имеет вид y = kx + b, поэтому задача состоит в нахождении значений коэффициентов k и b.
С угловым коэффициентом k все понятно: известно, что k = f'(a). Для вычисления значения b воспользуемся тем, что искомая прямая
проходит через точку М(а; f(a)). Это значит, что если подставить координаты точки М в уравнение прямой, получим верное
равенство: (f(a)=ka+b ), т.е. ( b = f(a) – ka ).
Осталось подставить найденные значения коэффициентов k и b в уравнение прямой:
$$ y=kx+b $$
$$ y=kx+ f(a) – ka $$
$$ y=f(a)+ k(x-a) $$
$$ y=f(a)+ f'(a)(x-a) $$
Нами получено уравнение касательной к графику функции ( y = f(x) ) в точке ( x=a ).
Алгоритм нахождения уравнения касательной к графику функции ( y=f(x) )
1. Обозначить абсциссу точки касания буквой ( a )
2. Вычислить ( f(a) )
3. Найти (f'(x) ) и вычислить (f'(a) )
4. Подставить найденные числа ( a, f(a), f'(a) ) в формулу ( y=f(a)+ f'(a)(x-a) )
Касательная к графикам функции в точке
Угол наклона прямой линии [y=k x+b] — это угол [a], который берет свой отсчет от положительного направления оси координат ox по направлению к прямой. Угол наклона может иметь значение как со знаком плюс, так и со знаком минус.
На расположенном рис.1 показана прямая и угол наклона относительно оси.
Для каждого угла наклона характерен угловой коэффициент прямой.
Определение
Угловой коэффициент — это числовой коэффициент прямой вида [boldsymbol{y=k x+b}]. В уравнение он обозначается буквой k.
Угловой коэффициент равен значению тангенса наклона заданной прямой линии: [k=operatorname{tg} alpha].
Основные значения угла наклона прямой
- Угол наклона прямой линии будет иметь нулевое значение, только в случае, когда параллельна ось Ox, и значение углового коэффициента равняется нулю. Потому что [operatorname{tg} 0=0]. Следовательно уравнение прямой будет записываться следующим образом: [y=b].
- В случае, когда угол наклона будет острым, то должно выполняться два следующих условия: [0<alpha<frac{pi}{2}] или [0^{circ}<alpha<90^{circ}]. Отсюда следует, что значение углового коэффициента будет являться положительным значением. Потому что значение тангенса удовлетворяет следующему условию, где показатель тангенса больше нулевого значения: [t g>0]. При этом будет наблюдаться возрастание графика функции на протяжении всей координатной прямой.
- При условии, что угол [alpha=frac{pi}{2}], из этого следует, что прямая будет располагаться относительно оси Ox в перпендикулярном положении. Условие задается следующим равенством [x=c]. Где с — это простое действительное число.
- Если угол наклона прямой, является тупым, то будет применяться следующее условие: [frac{pi}{2}<alpha<pi] или [90^{circ}<alpha<180^{circ}] . Для данного случая характерно отрицательное значение углового коэффициента и убывание функции.
Определение
Секущая прямая — это прямая, которая проходит через две точки заданной функции. Иными словами, можно сказать, что секущая — это прямая, которую можно провести через две любые точки графика.
На графике показана секущая, которая обозначена красным цветом и точками А и В.
Если угловой коэффициент прямой линии равен тангенсу угла наклона, то используя прямоугольный треугольник можно найти значение тангенса. Сделать это можно вычислением по правилу: тангенс равен отношению противолежащего катета к прилежащему.
Чтобы определить значение секущий, нужно использовать следующую формулу:
[k=operatorname{tg} alpha=frac{B C}{A C}=frac{fleft(chi_{B}right)-fleft(chi_{A}right)}{chi_{B}-chi_{A}}], где:
[chi_{B}, chi_{A}] — абсциссы точек А и В;
[fleft(chi_{B}right), fleft(chi_{A}right)] — значения функции, в заданных точках.
Значение секущий определяется, используя следующее неравенство:
[k=frac{fleft(chi_{B}right)-fleft(chi_{A}right)}{chi_{B}-chi_{A}}] либо [k=frac{fleft(chi_{A}right)-fleft(chi_{B}right)}{chi_{A}-chi_{B}}]
Уравнение записывается следующим образом:
[k=frac{fleft(chi_{B}right)-fleft(chi_{A}right)}{chi_{B}-chi_{A}} cdotleft(chi-chi_{A}right)+fleft(chi_{A}right)]
[k=frac{fleft(chi_{A}right)-fleft(chi_{B}right)}{chi_{A}-chi_{B}} cdotleft(chi-chi_{B}right)+fleft(chi_{B}right)]
Определение
Касательная к графику функции — это прямая, которая проходит через определенную заданную точку, которая в свою очередь имеет отрезок с множеством числовых значений x.
Пример:
Прямая задана следующей функцией: [y=x+1]. Данная функция считается касательной к графику [y=2 sqrt{x}] с координатными точками (1;2).
Рассмотрим графики со значениями (1;2). Функция обозначается черным цветом, а касательная линия соответственно синим цветом.
Чтобы определить касательную к функции, нужно исследовать поведение касательной АВ. При этом должно быть бесконечное приближение точки В к точке А.
Значение производной функции в точке и ее геометрический смысл
Для заданной функции [f(chi)] рассмотрим секущую АВ. Точки А и В заданы следующими значениями: [left(chi_{0}, fleft(chi_{0}right)right)] и [left(chi_{0}+Delta chi ,left(chi_{0}+Delta chiright)right.].
[Delta chi] — это показатель приращения значения аргумента.
Подставив все значения в исходную функцию получим следующий вид:
[Delta y=Delta f(chi)=fleft(chi_{0}+Delta chiright)-f(Delta chi)].
Для более лучшего восприятия решения, построим график.
Из графика видно, что образуется прямоугольный треугольник ABC. Составим соотношение [frac{Delta y}{Delta x}=operatorname{tg} alpha], для этого необходимо применить основное определение тригонометрической функции, а именно тангенса.
Исходя из основного определения касательной, запишем следующее выражение:
[lim _{Delta x rightarrow 0} frac{Delta y}{Delta x}=operatorname{tg} alpha_{x}]
Используя правило производной, имеем следующее:
- производная [f(x)] в точке [x_{0}] — является пределом отношения приращения функции к аргументу.
- [Delta_{chi} rightarrow 0 text { и } fleft(x_{0}right)=lim _{Delta x rightarrow 0} frac{Delta y}{Delta x}].
Следовательно:
[f^{prime}left(x_{0}right)=lim _{Delta x rightarrow 0} frac{Delta y}{Delta x}=operatorname{tg} alpha_{x}=k_{z}]
[k_{z}] — это угловой коэффициент касательной функции.
Из данной функции можно сделать следующий вывод:
- функция [f(x)] может находится в точке со значением [x_{0}]
- функция может быть касательной к графику в некой точке касания, где угловой коэффициент равняется производной.
Понятие уравнения касательной прямой
Чтобы составить уравнение прямой, нужно знать угловой коэффициент с заданной точкой. Это точка, через которую проходит прямая. При пересечении угловой коэффициент записывается как значение [x_{0}].
Уравнение касательной записывается следующим образом:
[y=f^{prime}left(x_{0}right) cdotleft(x-x_{0}right)+fleft(x_{0}right)]
График функции [y=f(x)].
Расположение касательной прямой непосредственно зависит от значения углового коэффициента. Если прямая параллельна оси Ox, то значение коэффициента равно нулевому значению. При параллельном расположении относительно оси Oy, коэффициент угловой принимает значение бесконечности. При это уравнение касательной записывается как: [x=x_{0}].Также угловой коэффициент будет возрастать при значении больше нуля, а если коэффициент меньше нуля, то функция соответственно будет убывать.
Примеры
Нужно составить уравнение касательной к графику функции.
[y=e^{x+1}+frac{x^{3}}{3}-frac{6-sqrt{3}}{3} x-frac{17-sqrt{3}}{3}]
Порядок решения:
Из условия задачи следует, что функция может быть определенной для всех действительных значений. Точка,
которая задана с координатами (1;3) будет являться точкой касания, следовательно , [x_{0}=-1,
fleft(x_{0}right)=-3].
Для точки со значение равным -1, нужно определить производную.
Для этого составим уравнение:
[y^{prime}=left(e^{x+1}+frac{x^{3}}{3}-frac{6-sqrt{3}}{3}
x-frac{17-sqrt{3}}{3}right)^{prime}=\left(e^{x+1}right)^{prime}+left(frac{x^{3}}{3}right)^{prime}-left(frac{6-sqrt{3}}{3}
xright)^{prime}-left(frac{17-sqrt{3}}{3}right)^{prime}=e^{x+1}+x^{2}-frac{6-sqrt{3}}{3};]
[y^{prime}left(x_{0}right)=y^{prime}(-1)=e^{-1+1}+(-1)^2-frac{6-sqrt{3}}{3}=frac{sqrt{3}}{3}]
Показатель [f^{prime}(x)] в точке, которая является касательной, будет равен угловому коэффициенту.
Угловой коэффициент равен наклону тангенса. Отсюда следует, что:
[k_{x}=operatorname{tg} alpha_{x}=y^{prime}left(x_{0}right)=frac{sqrt{3}}{3}Rightarrow alpha_{chi}=operatorname{arctg} frac{sqrt{3}}{3}=frac{pi}{6}]
Подведем итоги, и запишем ответ:
[y=f^{prime}left(x_{0}right) cdotleft(x-x_{0}right)+fleft(x_{0}right);\y=frac{sqrt{3}}{3}(x+1)-3
; y=frac{sqrt{3}}{3} x-frac{9-sqrt{3}}{3}]
По условию задачи нужно определить касательную к графику функции [y=3 cdot sqrt[5]{x-1}+1]. Точки
координат равны (1;1). Также нужно составить уравнение и определить значение угла наклона.
Согласно условию задачи, область определения функции — это простые действительные числа.
Определим значение производной.
[y^{prime}=(3 cdot sqrt[5]{x-1}+1)^{prime}=3 cdot frac{1}{5} cdot(x-1)^{frac{1}{5}} 1=frac{3}{5}
cdot frac{1}{(x-1)^{frac{4}{5}}}]
При условии, что [x_{0}=1] тогда функция будет не определенной, но пределы ее можно записать как:
[lim _{x rightarrow 1+0}left(frac{3}{5} cdot frac{1}{(x-1)^{frac{4}{5}}}right)=frac{3}{5} cdot
frac{1}{(+0)^{frac{4}{5}}}=frac{3}{5} cdot frac{1}{+0}=infty]
[lim _{x rightarrow 1-0}left(frac{3}{5} cdot frac{1}{(x-1)^{frac{4}{5}}}right)=frac{3}{5} cdot
frac{1}{(-0)^{frac{4}{5}}}=frac{3}{5} cdot frac{1}{+0}=+infty]
Это значит, что вертикальная касательная в точке существует.
Ответ: после всех проведенных вычислений уравнение приобретает вид x=1, где угол наклона будет равен
[frac{pi}{2}].
Нет времени решать самому?
Наши эксперты помогут!
Касательная линия к окружности
Для того чтобы задать окружность с центром в следующих точках:
[text {(Xcenter;Ycenter)}] и радиусом R, нужно воспользоваться формулой.
[(x-x_{center})^2+(y+y_{center})^2=R^2]
Данное выражение можно представить как две функции:
[y=sqrt{R^{2}-(x-x_{center})^2+y_{center}}]
[y=-sqrt{R^{2}-(x-x_{center})^2+y_{center}}]
Из рисунка видно, что первая функция расположена в верхней части координатной плоскости. Вторая функция, соответственно в нижней части.
Чтобы составить уравнение окружности в точке, которая находится в верхней или нижней полуокружности, нужно составить уравнение для графика функции следующего вида:
[y=sqrt{R^{2}-left(x-x_{text {center }}right)^2 +y_{text {center }}}] и [y=-sqrt{R^{2}-left(x-x_{c e n t e r}right)+y_{c e n t e r}}], для конкретной точки.
Если в точках (xcenter;ycenter +R) и (xcenter;ycenter -R) касательные к окружности задаются выражением [y=y_{text {center }}+R ] и [y=y_{text {center }}-R], то они будут параллельны оси Oy. Из этого следует следующее уравнение [x=x_{text {center }}+R] и [x=x_{text {center }}-R].
Касательная к геометрической фигуре эллипс
Геометрическая фигура эллипс может быть задана следующей функцией:
[frac{left(x-x_{text {center }}right)^2}{a^{2}}+frac{left(y-y_{text {center }}right)^2}{b^{2}}=1]
Данное уравнение можно применять при следующих условиях:
- эллипс имеет в центре следующие точки: xcenter; ycenter
- a и b — это значение полуосей.
Используя два вида функций можно обозначить эллипс и окружность:
[y=frac{b}{a} cdot sqrt{a^{2}-left(x-x_{text {center }}right)+y_{text {center }}}]
[y=-frac{b}{a} cdot sqrt{a^{2}-left(x-x_{text {center }}right)+y_{text {center }}}]
Пример
Необходимо составить уравнение касательной к эллипсу [frac{(x-3)^2}{4}+frac{(y-5)^2}{25}=1]. При этом
значение точки x будет равняться двум.
Порядок решения задачи:
Нужно определить точки касания, которые приближены к значению равным двум.
В уравнение подставляем данные.
[left|left(frac{(x-3)^{2}}{4}right)right|_{x=2}+frac{(y-5)^{2}}{25}=1]
[frac{1}{4}+frac{(y-5)^{2}}{25}=1 Rightarrow(y-5)^{2}=frac{3}{4} cdot 25 Rightarrow y=pm frac{5
sqrt{3}}{2}+5]
Точки касания, принадлежащие верхнему и нижнему полуэллипсу:
[left(2 ; frac{5 sqrt{3}}{2}+5right) и left(2 ;-frac{5 sqrt{3}}{2}+5right)].
Составим уравнение эллипса для координатной оси Oy.
[frac{(x-3)^{2}}{4}+frac{(y-5)^{2}}{25}=1];
[frac{(y-5)^{2}}{25}=1-frac{(x-3)^{2}}{4}];
[(y-5)^{2}=25 cdotleft(1-frac{(x-3)^{2}}{4}right)];
[y-5=pm 5 cdot sqrt{1-frac{(x-3)^{2}}{4}};]
[y=5 pm frac{5}{2} sqrt{4-(x-3)^{2}}];
Функция верхнего полуэллипса будет задаваться следующим видом:
[y=5+frac{5}{2} sqrt{4-(x-3)^{2}}];
Нижний полуэллипс можно записать как:
[y=5-frac{5}{2} sqrt{4-(x-3)^{2}}].
Для того чтобы составить уравнение касательной в точке, нужно применить стандартный алгоритм решения.
Для первой касательной в точке [left(2 ; frac{5 sqrt{3}}{2}+5right)] уравнение будет выглядеть
следующим образом:
[y^{prime}=left(5+frac{5}{2} sqrt{4-(x-3)^{2}}right)^{prime}=frac{5}{2} cdot frac{1}{2
sqrt{4-(x-3)^{2}}} cdotleft(4-(x-3)^{2}right)^{prime}=\=-frac{5}{2} cdot
frac{x-3}{sqrt{4-(x-3)^{2}}} Rightarrow y^{prime}left(x_{0}right)=y^{prime}(2)=-frac{5}{2} cdot
frac{2-3}{sqrt{4-(2-3)^{2}}}=frac{5}{2 sqrt{3}} Rightarrow\y=y^{prime}left(x_{0}right)
cdotleft(x-x_{0}right)+y_{0} Rightarrow y=frac{5}{2 sqrt{3}}(x-2)+frac{5}{2 sqrt{3}}+5]
Для второй касательной с точкой функция будет иметь следующий вид:
[y^{prime}=left(5-frac{5}{2} sqrt{4-(x-3)^{2}}right)^{prime}=-frac{5}{2} cdot frac{1}{2
sqrt{4-(x-3)^{2}}} cdotleft(4-(x-3)^{2}right)^{prime}=\=frac{5}{2} cdot
frac{x-3}{sqrt{4-(x-3)^{2}}} Rightarrow y^{prime}left(x_{0}right)=y^{prime}(2)=-frac{5}{2} cdot
frac{2-3}{sqrt{4-(2-3)^{2}}}=-frac{5}{2 sqrt{3}} Rightarrow\y=y^{prime}left(x_{0}right) cdotleft(x-x_{0}right)+y_{0} Rightarrow y=-frac{5}{2 sqrt{3}}(x-2)-frac{5}{2 sqrt{3}}+5]
Касательная к гиперболе. Основные функции
Чтобы составить уравнение касательной к геометрической фигуре гипербола, нужно применять основной алгоритм решения задач подобного типа.
Для гиперболы будет характерно следующее неравенство:
[frac{left(x-x_{text {center }}right)^2}{a^{2}}+frac{left(y-y_{text {center }}right)^2}{b^{2}}=1]
При этом должны выполняться следующие условия:
- центр в точке xcenter;ycente
- вершины точки (xcenter+ [a]; ycenter) и (xcenter-[a]; ycenter)
Если вершины имеют значения: (xcenter;ycenter+b) и (xcenter;ycenter-b), то функция задается следующим образом: [frac{left(x-x_{text {center }}right) 2}{a^{2}}+frac{left(y-y_{text {center }}right) ^2}{b^{2}}=-1].
Гиперболу можно определить, используя две пары уравнений, которые записываются в следующем виде:
[y=frac{b}{a} cdot sqrt{left(x-x_{text {center }}right)^2}-a^{2}+y_{text {center }}]
[y=-frac{b}{a} cdot sqrt{left(x-x_{text {center }}right)^2}-a^{2}+y_{text {center }}]
или
[y=frac{b}{a} cdot sqrt{left(x-x_{text {center }}right) ^2+a^{2}}+y_{text {center }}]
[y=-frac{b}{a} cdot sqrt{left(x-x_{text {center }}right)^2}+a^{2}+y_{text {center }}]
Для первых уравнение характерно параллельное расположение касательной относительно оси Oy. Соответственно для второй пары уравнений: параллельное расположение относительно оси Ox.
Пример
Составим уравнение касательной к гиперболе следующего вида: [frac{(x-3)^{2}}{4}-frac{(x+3)^{2}}{9}], в
характерных точках [(7 ;-3 sqrt{3}-3)].
Преобразование заданное уравнение при помощи двух функций.
[frac{(x-3)^{2}}{4}-frac{(x+3)^{2}}{9}=1 Rightarrow frac{(x+3)^{2}}{9}=frac{(x-3)^{2}}{4}-1
Rightarrow(y-3)^{2}=\9 cdotleft(frac{(x-3)^{2}}{4}-1right) Rightarrow y+3=frac{3}{2} cdot sqrt{(x-3)^{2}-4}] или [y+3=-frac{3}{2}]
[sqrt{(x-3)^{2}-4} Rightarrow\y=frac{3}{2} cdot sqrt{(x-3)^{2}-4}-3\y=-frac{3}{2} cdot sqrt{(x-3)^{2}-4}-3]
Далее нужно определить к какой из двух функций относится точка с координатами: [(7 ;-3 sqrt{3}-3)].
Проверим первую функцию [y(7)=frac{3}{2} cdot sqrt{(7-3)^{2}-4}-3=3 sqrt{3}-3 neq-3 sqrt{3}-3], из уравнения следует, что заданная точка не принадлежит графику, потому что равенство не выполняется.
Следовательно, нужно определить угловой коэффициент:
[y^{prime}=left(-frac{3}{2} cdot sqrt{(x-3)^{2}-4}-3right)^{prime}=-frac{3}{2} cdot frac{x-3}{sqrt{(x-3)^{2}-4}} Rightarrow\k_{x}=y^{prime}left(x_{0}right)=left(-frac{3}{2} cdot frac{x_{0}-3}{sqrt{left(x_{0}-3right)^{2}-4}}right)=-frac{3}{2} cdot frac{7-3}{sqrt{(7-3)^{2}-4}}=-sqrt{3}]
Ответ: уравнение касательной записывается следующим образом: [y=-sqrt{3} cdot(x-7)-3 sqrt{3}-3=-sqrt{3} cdot x+4 sqrt{3}-3]
Касательная к параболе. Основные правила решения
Используя стандартный алгоритм решения, можно составить уравнение касательной к параболе [y=a x^{2}+b x+c] в точках [left(x_{0}, yleft(x_{0}right)right)]. Данное уравнение после преобразования будет иметь следующий вид:
[y=y^{prime}left(x_{0}right) cdotleft(x-x_{0}right)+yleft(x_{0}right)].
Необходимо задать параболу [x=a y^{2}+b y+c] как общая функция двух уравнений. Затем решить уравнение относительно оси Oy.
[x=a y^{2}+b y+c Rightarrow a y^{2}+b y+1-x=0;\D=b^{2}-4 a(c-x)\y=frac{-b+sqrt{b^{2} 4 a(c-x)}}{2 a};\y=frac{-b-sqrt{b^{2} 4 a(c-x)}}{2 a}.]
Чтобы определить принадлежность заданных точек [left(x_{0}, yleft(x_{0}right)right)], необходимо руководствоваться стандартным решением согласно алгоритма. Данная касательная будет иметь параллельное расположение относительно параболы.
Пример
Необходимо составить уравнение к графику касательной: [x-2 y^{2}-5 y+3] при угле наклона равным [150^{circ}]
Для решения будем применять стандартный алгоритм решения задач.
Для начала данную параболу нужно расписать и составить две функции, следующего вида:
[-2 y^{2}+5 y+3-x=0;\D=(-5)^{2}-4 cdot(-2) cdot(3-x)=49-8 x;\y=frac{5+sqrt{49-8 x}}{-4};\y=frac{5-sqrt{49-8 x}}{-4}.]
Значение углового коэффициента будет равняться значению производной в конкретной точке [x_{0}] для этой функции. И будет равен значению тангенса угла наклона.
[k_{x}=y^{prime}left(x_{0}right)=operatorname{tg} alpha_{x}=operatorname{tg} 150^{circ}=-frac{1}{sqrt{3}}];
Из уравнения сможем определить значение x для всех точек касания.
Функции будут записываться следующим образом:
[y^{prime}=left(frac{5+sqrt{49-8 x}}{-4}right)^{prime}=frac{1}{sqrt{49-8 x}} Rightarrow y^{prime}left(x_{0}right)=\frac{1}{sqrt{49-8 x_{0}}}=-frac{1}{sqrt{3}} Leftrightarrow sqrt{49-8 x_{0}}=-sqrt{3}]
В данном уравнении действительных корней нет. Так как ответ получился отрицательный.
Отсюда делаем вывод, что касательной линии с углом равным [150^{circ}] для функции такого вида не существует.
Функция второго вида:
[y^{prime}=left(frac{5-sqrt{49-8 x}}{-4}right)^{prime}=-frac{1}{sqrt{49-8 x}} Rightarrow y^{prime}left(x_{0}right)=-frac{1}{sqrt{49-8 x_{0}}}=\-frac{1}{sqrt{3}} Leftrightarrow sqrt{49-8 x_{0}}=-sqrt{3}\x_{0}=frac{23}{4} Rightarrow yleft(x_{0}right)=frac{5-sqrt{49-8 cdot frac{23}{4}}}{-4}=frac{-5+sqrt{3}}{4}]
Точки касания: [left(frac{23}{4} ; frac{-5+sqrt{3}}{4}right)].
Ответ: уравнение касательной имеет вид: [y=-frac{1}{sqrt{3}} cdotleft(x-frac{23}{4}right)+frac{-5+sqrt{3}}{4}].