Как найти угловой коэффициент по двум точкам


Загрузить PDF


Загрузить PDF

Угловой коэффициент характеризует угол наклона прямой к оси абсцисс (угловой коэффициент численно равен тангенсу этого угла). Угловой коэффициент присутствует в уравнении прямой и используется в математическом анализе кривых, где всегда равен производной функции. Для облегчения понимания углового коэффициента представьте, что он влияет на скорость изменения функции, то есть чем больше значение углового коэффициента, тем больше значение функции (при одном и том же значении независимой переменной).

  1. Изображение с названием Find the Slope of an Equation Step 1

    1

    Используйте угловой коэффициент для нахождения угла наклона прямой к оси абсцисс и направления этой прямой. Вычислить угловой коэффициент довольно легко, если вам дано уравнение прямой. Запомните, что в любом уравнении прямой:

  2. Изображение с названием Find the Slope of an Equation Step 2

    2

    Для нахождения углового коэффициента необходимо найти значение k (коэффициент при «х»). Если данное вам уравнение имеет вид y=kx+b, то для нахождения углового коэффициента вам нужно просто посмотреть на число, стоящее перед «х». Обратите внимание, что k (угловой коэффициент) всегда находится при независимой переменной (в данном случае «х»). Если вы запутались, просмотрите следующие примеры:

  3. Изображение с названием Find the Slope of an Equation Step 3

    3

    Если данное вам уравнение имеет вид, отличный от y=kx+b, обособьте зависимую переменную. В большинстве случаев зависимая переменная обозначается как «у», а для ее обособления можно выполнять операции сложения, вычитания, умножения и другие. Помните, что любая математическая операция должна быть выполнена на обеих сторонах уравнения (чтобы не менять его исходного значения). Вам необходимо привести любое данное вам уравнение к виду y=kx+b. Рассмотрим пример:

    Реклама

  1. Изображение с названием Find the Slope of an Equation Step 4

    1

    Для вычисления углового коэффициента воспользуйтесь графиком и двумя точками. Если вам дан просто график функции (без уравнения), вы все еще можете найти угловой коэффициент. Для этого вам понадобятся координаты любых двух точек, лежащих на этом графике; координаты подставляются в формулу: {frac  {y_{2}-y_{1}}{x_{2}-x_{1}}}. Чтобы избежать ошибок при вычислении углового коэффициента, запомните следующее:

    • Если график возрастает, то угловой коэффициент имеет положительное значение.
    • Если график убывает, то угловой коэффициент имеет отрицательное значение.
    • Чем больше значение углового коэффициента, тем круче график (и наоборот).
    • Угловой коэффициент прямой, параллельной оси абсцисс, равен 0.
    • Угловой коэффициент прямой, параллельной оси ординат, не существует (он бесконечен).[4]
  2. Изображение с названием Find the Slope of an Equation Step 5

    2

    Найдите координаты двух точек. На графике отметьте любые две точки и найдите их координаты (х,у). Например, на графике лежат точки А(2,4) и В(6,6).[5]

    • В паре координат первое число соответствует «х», а второе – «у».
    • Каждому значению «х» соответствует определенное значение «у».
  3. Изображение с названием Find the Slope of an Equation Step 6

    3

    Приравняйте x1, y1, x2, y2 к соответствующим значениям. В нашем примере с точками А(2,4) и В(6,6):

    • x1: 2
    • y1: 4
    • x2: 6
    • y2: 6[6]
  4. Изображение с названием Find the Slope of an Equation Step 7

    4

    Подставьте найденные значения в формулу для вычисления углового коэффициента. Чтобы найти угловой коэффициент, используются координаты двух точек и следующая формула: {frac  {y_{2}-y_{1}}{x_{2}-x_{1}}}. Подставьте в нее координаты двух точек.

  5. Изображение с названием Find the Slope of an Equation Step 8

    5

    Объяснение сути формулы. Угловой коэффициент равен отношению изменения координаты «у» (двух точек) к изменению координаты «х» (двух точек). Изменение координаты – это разность между значениями соответствующей координаты первой и второй точек.

  6. Изображение с названием Find the Slope of an Equation Step 9

    6

    Другой вид формулы для вычисления углового коэффициента. Стандартная формула для вычисления углового коэффициента: k = {frac  {y_{2}-y_{1}}{x_{2}-x_{1}}}. Но она может иметь следующий вид: k = Δy/Δx, где Δ – это греческая буква «дельта», обозначающая в математике разность. То есть, Δx = x_2 – x_1, а Δy = y_2 – y_1.[8]

    Реклама

  1. Изображение с названием Find the Slope of an Equation Step 10

    1

    Научитесь брать производные от функций. Производная характеризует скорость изменения функции в определенной точке, лежащей на графике этой функции. В данном случае графиком может быть как прямая, так и кривая линия. То есть производная характеризует скорость изменения функции в конкретный момент времени. Вспомните общие правила, по которым берутся производные, и только потом переходите к следующему шагу.

    • Прочитайте статью Как брать производную.
    • Как брать простейшие производные, например, производную показательного уравнения, описано этой статье. Вычисления, представленные в следующих шагах, будут основаны на описанных в ней методах.
  2. Изображение с названием Find the Slope of an Equation Step 11

    2

    Научитесь различать задачи, в которых угловой коэффициент требуется вычислить через производную функции. В задачах не всегда предлагается найти угловой коэффициент или производную функции. Например, вас могут попросить найти скорость изменения функции в точке А(х,у). Также вас могут попросить найти угловой коэффициент касательной в точке А(х,у). В обоих случаях необходимо брать производную функции.

  3. Изображение с названием Find the Slope of an Equation Step 12

    3

    Возьмите производную данной вам функции. Здесь строить график не нужно – вам понадобится только уравнение функции. В нашем примере возьмите производную функции f(x)=2x^{2}+6x. Берите производную согласно методам, изложенным в упомянутой выше статье:

    • Производная: f'(x)=4x+6
  4. Изображение с названием Find the Slope of an Equation Step 13

    4

    В найденную производную подставьте координаты данной вам точки, чтобы вычислить угловой коэффициент. Производная функции равна угловому коэффициенту в определенной точке. Другими словами, f'(х) – это угловой коэффициент функции в любой точке (x,f(x)). В нашем примере:

  5. Изображение с названием Find the Slope of an Equation Step 14

    5

    Если возможно, проверьте полученный ответ на графике. Помните, что угловой коэффициент можно вычислить не в каждой точке. Дифференциальное исчисление рассматривает сложные функции и сложные графики, где угловой коэффициент можно вычислить не в каждой точке, а в некоторых случаях точки вообще не лежат на графиках. Если возможно, используйте графический калькулятор, чтобы проверить правильность вычисления углового коэффициента данной вам функции. В противном случае проведите касательную к графику в данной вам точке и подумайте, соответствует ли найденное вами значение углового коэффициента тому, что вы видите на графике.

    • Касательная будет иметь тот же угловой коэффициент, что и график функции в определенной точке. Для того, чтобы провести касательную в данной точке, двигайтесь вправо/влево по оси Х (в нашем примере на 22 значения вправо), а затем вверх на единицу по оси Y. Отметьте точку, а затем соедините ее с данной вам точкой. В нашем примере соедините точки с координатами (4,2) и (26,3).

    Реклама

Об этой статье

Эту страницу просматривали 143 640 раз.

Была ли эта статья полезной?

  Угловой коэффициент прямой. В этой статье мы с вами рассмотрим задачи связанные с координатной плоскостью включённые в ЕГЭ по математике. Это задания на:

— определение углового коэффициента прямой, когда известны две точки через которые она проходит;
— определение абсциссы или ординаты точки пересечения двух прямых на плоскости.

Что такое абсцисса и ордината точки было описано в прошлой статье данной рубрики. В ней мы уже рассмотрели несколько задач связанных с координатной плоскостью. Что необходимо понимать для рассматриваемого типа задач? Немного теории.

Уравнение прямой на координатной плоскости имеет вид:

Уравнение прямой

где k это и есть угловой коэффициент прямой.

Следующий момент! Угловой коэффициент прямой равен тангенсу угла наклона прямой. Это угол между данной прямой и осью ох.

Угловой коэффициент прямой

Он лежит в пределах от 0 до 180 градусов.

То есть, если мы приведём уравнение прямой к виду y = kx + b, то далее всегда сможем определить коэффициент k (угловой коэффициент).

Так же, если мы исходя из условия сможем определить тангенс угла наклона прямой, то тем самым найдём её угловой коэффициент.

Следующий теоретический момент! Уравнение прямой походящей через две данные точки. Формула имеет вид:

Подробнее об этой формуле рассказано в этой статье!

Рассмотрим задачи (аналогичные задачам из открытого банка заданий):

Найдите угловой коэффициент прямой, проходящей через точки с координатами (–6;0) и (0;6).

В данной задаче самый рациональный путь решения это найти тангенс угла между осью ох и данной прямой. Известно, что он равен угловому коэффициенту. Рассмотрим прямоугольный треугольник образованный прямой и осями ох и оу:

Тангенсом угла в прямоугольном треугольнике является отношение противолежащего катета к прилежащему:

*Оба катета равны шести (это их длины).

Конечно, данную задачу можно решить используя формулу нахождения уравнения прямой проходящей через две данные точки. Но это будет более длительный путь решения.

Ответ: 1

Найдите угловой коэффициент прямой, проходящей через точки с координатами (5;0) и (0;5).

Формула уравнения прямой походящей через две данные точки имеет вид:

Наши точки  имеют координаты (5;0) и (0;5). Значит,

Приведём формулу к виду  y = kx + b   

Получили, что угловой коэффициент  k = – 1.

Ответ: –1

Прямая a проходит через точки с координатами (0;6) и (8;0). Прямая b проходит через точку с координатами (0;10) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью оx.

В данной задаче можно найти уравнение прямой a, определить угловой коэффициент для неё. У прямой b угловой коэффициент будет такой же, так как они параллельны. Далее можно найти уравнение прямой b. А затем, подставив в него значение y = 0, найти абсциссу. НО!

В данном случае, проще использовать свойство подобия треугольников.

Прямоугольные треугольники, образованные данными (параллельными) прямыми о осями координат подобны, а это значит, что отношения их соответствующих сторон равны.

Искомая абсцисса равна 40/3.

Ответ: 40/3

Прямая a проходит через точки с координатами (0;8) и (–12;0). Прямая b проходит через точку с координатами (0; –12) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью оx.

Для данной задачи самый рациональный путь решения — это применение свойства подобия треугольников. Но мы решим её другим путём.

Нам известны точки, через которые проходит прямая а. Можем составить уравнение прямой. Формула уравнения прямой походящей через две данные точки имеет вид:

По условию точки  имеют координаты (0;8) и (–12;0). Значит,

Приведём к виду   y = kx + b:

Получили, что угловой  k = 2/3.

*Угловой коэффициент можно было найти через тангенс угла в прямоугольном треугольнике с катетами 8 и 12.

Известно, у параллельных прямых угловые коэффициенты равны. Значит уравнение прямой проходящей через точку (0;-12) имеет вид:

Найти величину b  мы можем подставив абсциссу и ординату в уравнение:

Таким образом, прямая имеет вид:

Теперь чтобы найти искомую абсциссу точки пересечения прямой с осью ох, необходимо подставить у = 0:

Ответ: 18

Найдите ординату точки пересечения оси оy и прямой, проходящей через точку В(10;12) и параллельной прямой, проходящей через начало координат и точку А(10;24).

Найдём уравнение прямой проходящей через точки с координатами (0;0) и (10;24).

Формула уравнения прямой походящей через две данные точки имеет вид:

Наши точки  имеют координаты (0;0) и (10;24). Значит,

Приведём к виду   y = kx + b   

Угловые коэффициенты параллельных прямых равны. Значит, уравнение прямой, проходящей через точку В(10;12) имеет вид:

Значение b  найдём подставив в это уравнение координаты точки В(10;12):

Получили уравнение прямой:

Чтобы найти ординату точки пересечения этой прямой с осью оу  нужно подставить в найденное уравнение х = 0:

*Самый простой способ решения. При помощи параллельного  переноса сдвигаем данную прямую вниз вдоль оси оу до точки (10;12). Сдвиг происходит на 12 единиц, то есть точка А(10;24) «перешла» в точку В(10;12), а точка О(0;0) «перешла» в точку (0;–12). Значит, полученная прямая будет пересекать ось оу в точке (0;–12).

Искомая ордината равна  –12.

Ответ: –12

Найдите ординату точки пересечения прямой, заданной уравнением 

+ 2у = 6, с осью Oy.

Координата точки пересечения заданной прямой с осью оу имеет вид (0;у). Подставим в уравнение абсциссу х = 0, и найдём ординату:

Ордината  точки пересечения прямой с осью оу равна 3.

*Решается система:

Ответ: 3

Найдите ординату точки пересечения прямых, заданных уравнениями 

3х + 2у = 6   и  у = – х.

Когда заданны две прямые, и стоит вопрос о нахождении координат точки пересечения этих прямых, решается система из данных уравнений:

В первом уравнении подставляем    – х   вместо у:

Ордината равна минус шести.

Ответ: 6

Найдите угловой коэффициент прямой, проходящей через точки с координатами (–2;0) и (0;2).

Посмотреть решение

Найдите угловой коэффициент прямой, проходящей через точки с координатами (2;0) и (0;2).

Посмотреть решение

Прямая a проходит через точки с координатами (0;4) и (6;0). Прямая b проходит через точку с координатами (0;8) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью Ox.

Посмотреть решение

Прямая a проходит через точки с координатами (0;4) и (–6;0). Прямая b проходит через точку с координатами (0; –6) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью Ox.

Посмотреть решение

Найдите ординату точки пересечения оси оy и прямой, проходящей через точку B (6;4) и параллельной прямой, проходящей через начало координат и точку A (6;8).

Посмотреть решение

Найдите абсциссу точки пересечения прямой, заданной уравнением 2х + 2у = 6, с осью ох.

Посмотреть решение

Найдите абсциссу точки пересечения прямых, заданных уравнениями 3х + 2у = 6  и у = х.

Посмотреть решение

Конечно, некоторые задачи, которые мы рассмотрели можно было решить более рациональными способами. Но ставилась цель показать разные подходы к решению. Надеюсь, это удалось.

1. Необходимо чётко усвоить, что угловой коэффициент прямой равен тангенсу угла наклона прямой. Это поможет вам при решении многих задач данного типа.

2. Формулу нахождения прямой проходящей через две данные точки нужно понимать обязательно. С её помощью всегда найдёте уравнение прямой, если даны координаты двух её точек.

3. Помните о том, что угловые коэффициенты параллельных прямых равны.

4. Как вы поняли, в некоторых задачах удобно использовать признак подобия треугольников. Задачи решаются практически устно.

5. Задачи в которых даны две прямые и требуется найти абсциссу или ординату точки их пересечения можно решить графическим способом. То есть, построить их на координатной плоскости (на листе в клетку) и определить точку пересечения визуально. *Но этот способ применим не всегда.

6. И последнее. Если дана прямая и координаты точек её пересечения с осями координат, то в таких задачах удобно находить угловой коэффициент через нахождение тангенса угла в образованном прямоугольном треугольнике. Как «увидеть» этот треугольник при различных расположениях прямых на плоскости схематично показано ниже:

>> Угол наклона прямой от 0 до 90 градусов <<

>> Угол наклона прямой от 90 до 180 градусов <<

В данных двух случаях, по свойству тангенса:

То есть, чтобы найти уголвой коэффициент прямой, необходимо вычислить тангенс бетта в полученном прямоугольном треугольнике и записать результат с отрицательным знаком.

В данной рубрике продолжим рассматривать задачи, не пропустите!

На этом всё. Успеха Вам!

С уважением, Александр.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

На этой странице вы найдете два калькулятора, которые строят уравнение прямой по координатам двух точек, принадлежащих этой прямой.

Первый калькулятор находит уравнение прямой с угловым коэффициентом, то есть уравнение в форме y=ax+b. Также он строит график и отдельно выводит угловой коэффициент и значение y в месте пересечения прямой с осью ординат.

Второй калькулятор находит параметрические уравнения прямой, то есть систему уравнений вида x=at+x_0\y=bt+y_0. Он также строит график и отдельно выводит направляющий вектор.

Формулы расчета можно найти под калькуляторами.

PLANETCALC, Уравнение прямой с угловым коэффициентом по двум точкам

Уравнение прямой с угловым коэффициентом по двум точкам

Первая точка

Вторая точка

Значение y в точке пересечения с осью ординат

Точность вычисления

Знаков после запятой: 2

PLANETCALC, Параметрическое уравнение прямой

Параметрическое уравнение прямой

Первая точка

Вторая точка

Параметрическое уравнение для x

Параметрическое уравнение для y

Точность вычисления

Знаков после запятой: 2

Уравнение прямой с угловым коэффициентом

Найдем уравнение прямой с угловым коэффициентом по двум известным точкам (x_0, y_0) и (x_1, y_1).

Нам надо найти угловой коэффициент a и y координату точки пересечения прямой с осью ординат b.

Мы можем составить следующие уравнения для двух точек относительно a и b
y_0=ax_0+b\y_1=ax_1+b

Вычитаем первое из второго
y_1 - y_0=ax_1 - ax_0+b - b\y_1 - y_0=ax_1 - ax_0\y_1 - y_0=a(x_1 -x_0)

Откуда
a=frac{y_1 - y_0}{x_1 -x_0}

b можно найти как
b=y-ax
Таким образом, как только мы нашли а, для расчета b достаточно только подставить значения x_0, y_0, a или x_1, y_1, a в выражение выше.

Параметрическое уравнение прямой

Найдем параметрическое уравнение прямой по двум известным точкам (x_0, y_0) и (x_1, y_1).

Нам надо найти компоненты направляющего вектора.
D=begin{vmatrix}d_1\d_2end{vmatrix}=begin{vmatrix}x_1-x_0\y_1-y_0end{vmatrix}
Этот вектор описывает величину и направление воображаемого движения по прямой от первой до второй точки.

Имея направляющий вектор, легко записать параметрические уравнения прямой
x=d_1t+x_0\y=d_2t+y_0
Обратите внимание, что если t = 0, то x = x_0, y = y_0 и если t = 1, то x = x_1, y = y_1

Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.

Угол наклона прямой и угловой коэффициент прямой

Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси Ох с их угловым коэффициентом. Допустим, что задана декартова система координат Ох на плоскости.

Определение 1

Угол наклона прямой к оси Ох, расположенный в декартовой системе координат Оху на плоскости, это угол, который отсчитывается от положительного направления Ох к прямой против часовой стрелки.

Угол наклона прямой и угловой коэффициент прямой

Когда прямая параллельна Ох или происходит совпадение в ней, угол наклона равен 0. Тогда угол наклона заданной прямой α определен на промежутке [0, π).

Определение 2

Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.

Стандартное обозначение буквой k. Из определения получим, что k=tg α. Когда прямая параллельна Ох, говорят, что угловой коэффициент не существует, так как он обращается в бесконечность.

Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.

Угол наклона прямой и угловой коэффициент прямой

Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.

Пример 1

Посчитать угловой коэффициент прямой при угле наклона равном 120°.

Решение

Из условия имеем, что α=120°. По определению необходимо вычислить угловой коэффициент. Найдем его из формулы k=tg α=120=-3.

Ответ: k=-3.

Если известен угловой коэффициент, а необходимо найти угол наклона к оси абсцисс, тогда следует учитывать значение углового коэффициента. Если k>0, тогда угол прямой острый и находится по формуле α=arctg k. Если k<0, тогда угол тупой, что дает право определить его по формуле α=π-arctgk.

Пример 2

Определить угол наклона заданной прямой к Ох при угловом коэффициенте равном 3.

Решение

Из условия имеем, что угловой коэффициент положительный, а это значит, что угол наклона к Ох меньше 90 градусов. Вычисления производятся по формуле α=arctg k=arctg 3.

Ответ: α=arctg 3.

Пример 3

Найти угол наклона прямой к оси Ох, если угловой коэффициент = -13.

Решение

Если принять за обозначение углового коэффициента букву k, тогда α является углом наклона к заданной прямой по положительному направлению Ох. Отсюда k=-13<0, тогда необходимо применить формулу α=π-arctgkПри подстановке получим выражение:

α=π-arctg-13=π-arctg 13=π-π6=5π6.

Ответ: 5π6.

Уравнение с угловым коэффициентом

Уравнение вида y=k·x+b, где k является угловым коэффициентом, а b некоторым действительным числом, называют уравнением прямой с угловым коэффициентом. Уравнение характерно для любой прямой, непараллельной оси Оу.

Если подробно рассмотреть прямую на плоскости в фиксированной системе координат, которая задана уравнением с угловым коэффициентом, который имеет вид y=k·x+b.  В данном случае значит, что уравнению соответствуют координаты любой точки прямой. Если подставить координаты точки М, M1(x1, y1),  в уравнениеy=k·x+b, тогда в этом случае прямая будет проходить через эту точку, иначе точка не принадлежит прямой.

Пример 4

Задана прямая с угловым коэффициентом y=13x-1. Вычислить, принадлежат ли точки M1(3, 0) и M2(2, -2) заданной прямой.

Решение

Необходимо подставить координаты точки M1(3, 0)  в заданное уравнение, тогда получим 0=13·3-1⇔0=0. Равенство верно, значит точка принадлежит прямой.

Если подставим координаты точки M2(2, -2), тогда получим неверное равенство вида -2=13·2-1⇔-2=-13. Можно сделать вывод, что точка М2 не принадлежит прямой.

Ответ: М1 принадлежит прямой, а М2 нет.

Известно, что прямая определена уравнением y=k·x+b, проходящим через M1(0, b), при подстановке получили равенство вида b=k·0+b⇔b=b. Отсюда можно сделать вывод, что уравнение прямой с угловым коэффициентом y=k·x+b на плоскости определяет прямую, которая проходит через точку 0, b. Она образует угол αс положительным направлением оси Ох, где k=tg α.

Рассмотрим на примере прямую, определенную при помощи углового коэффициента, заданного по виду y=3·x-1. Получим, что прямая пройдет через точку с координатой 0, -1 с наклоном в α=arctg3=π3 радиан по положительному направлению оси Ох. Отсюда видно, что коэффициент равен 3.

Уравнение с угловым коэффициентом

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку

Необходимо решить задачу, где необходимо получить уравнение прямой с заданным угловым коэффициентом, проходящим через точку M1(x1, y1).

Равенство y1=k·x+b можно считать справедливым, так как прямая проходит через точку M1(x1, y1). Чтобы убрать число b, необходимо из левой и правой частей вычесть уравнение с угловым коэффициентом. Из этого следует, что y-y1=k·(x-x1).  Данное равенство называют уравнением прямой с заданным угловым коэффициентом k, проходящая через координаты точки M1(x1, y1).

Пример 5

Составьте уравнение прямой, проходящей через точку М1 с координатами (4,-1), с угловым коэффициентом равным -2.

Решение

По условию имеем, что x1=4, y1=-1, k=-2. Отсюда уравнение прямой запишется таким образом y-y1=k·(x-x1)⇔y-(-1)=-2·(x-4)⇔y=-2x+7.

Ответ: y=-2x+7.

Пример 6

Написать уравнение прямой с угловым коэффициентом, которое проходит через точку М1 с координатами (3,5), параллельную прямой y=2x-2.

Решение

По условию имеем, что параллельные прямые имеют совпадающие углы наклона, отсюда значит, что угловые коэффициенты являются равными. Чтобы найти угловой коэффициент из данного уравнения, необходимо вспомнить его основную формулу y=2x-2, отсюда следует, что k=2. Составляем уравнение с угловым коэффициентом и получаем:

y-y1=k·(x-x1)⇔y-5=2·(x-3)⇔y=2x-1

Ответ: y=2x-1.

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно

Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y=k·x+b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.

Можем получить каноническое уравнение прямой на плоскости, используя уравнение прямой с угловым коэффициентом. Получаем x-x1ax=y-y1ay. Необходимо слагаемое b перенести в левую часть и поделить на выражение полученного неравенства. Тогда получим уравнение вида y=k·x+b⇔y-b=k·x⇔k·xk=y-bk⇔x1=y-bk.

Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.

Пример 7

Привести уравнение прямой с угловым коэффициентом y=-3x+12к каноническому виду.

Решение

Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:

y=-3x+12⇔-3x=y-12⇔-3x-3=y-12-3⇔x1=y-12-3

Ответ: x1=y-12-3.

Общее уравнение прямой проще всего получить из y=k·x+b, но для этого необходимо произвести преобразования: y=k·x+b⇔k·x-y+b=0. Производится переход из общего уравнения прямой к уравнениям другого вида.

Пример 8

Дано уравнение прямой видаy=17x-2. Выяснить, является ли вектор с координатами a→=(-1, 7) нормальным вектором прямой?

Решение

Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:

y=17x-2⇔17x-y-2=0

Коэффициенты перед переменными являются координатами нормального вектора прямой. Запишем это так n→=17, -1, отсюда 17x-y-2=0. Понятно, что вектор a→=(-1, 7) коллинеарен вектору n→=17, -1, так как имеем справедливое соотношение a→=-7·n→. Отсюда следует, что исходный вектор a→=-1, 7 – нормальный вектор прямой 17x-y-2=0, значит, считается нормальным вектором для прямой y=17x-2.

Ответ: Является

Решим задачу обратную данной.

Необходимо перейти от общего вида уравнения Ax+By+C=0, где B≠0, к уравнению с угловым коэффициентом. для этого решаем уравнение относительно у. Получим Ax+By+C=0⇔-AB·x-CB.

Результат и является уравннием с угловым коэффициентом, который равняется -AB.

Пример 9

Задано уравнение прямой вида 23x-4y+1=0 . Получить уравнение данной прямой с угловым коэффициентом.

Решение

Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:

23x-4y+1=0⇔4y=23x+1⇔y=14·23x+1⇔y=16x+14.

Ответ: y=16x+14.

Аналогичным образом решается уравнение вида xa+yb=1, которое называют уравнение прямой в отрезках, или каноническое вида x-x1ax=y-y1ay. Нужно решить его относительно у, только тогда получим уравнение с угловым коэффициентом:

xa+yb=1⇔yb=1-xa⇔y=-ba·x+b.

Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:

x-x1ax=y-y1ay⇔ay·(x-x1)=ax·(y-y1)⇔⇔ax·y=ay·x-ay·x1+ax·y1⇔y=ayax·x-ayax·x1+y1

Пример 10

Имеется прямая, заданная уравнением x2+y-3=1. Привести к виду уравнения с угловым коэффициентом.

Решение.

Исходя из условия, необходимо преобразовать, тогда получим уравнение вида _formula_. Обе части уравнения следует умножить на -3 для того, чтобы получить необходимо уравнение с угловым коэффициентом. Преобразуя, получим:

y-3=1-x2⇔-3·y-3=-3·1-x2⇔y=32x-3.

Ответ: y=32x-3.

Пример 11

Уравнение прямой вида x-22=y+15 привести к виду с угловым коэффициентом.

Решение

Необходимо выражение x-22=y+15 вычислить как пропорцию. Получим, что 5·(x-2)=2·(y+1). Теперь необходимо полностью его разрешить, для этого:

5·(x-2)=2·(y+1)⇔5x-10=2y+2⇔2y=5x-12⇔y=52x

Ответ: y=52x-6.

Для решения таких заданий следует приводит параметрические уравнения прямой вида x=x1+ax·λy=y1+ay·λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.

Пример 12

Найти угловой коэффициент прямой, если она задана параметрическими уравнениями x=λy=-1+2·λ.

Решение

Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:

x=λy=-1+2·λ⇔λ=xλ=y+12⇔x1=y+12.

Теперь необходимо разрешить данное равенство относительно y, чтобы получить уравнение прямой с угловым коэффициентом. для этого запишем таким образом:

x1=y+12⇔2·x=1·(y+1)⇔y=2x-1

Отсюда следует, что угловой коэффициент прямой равен 2. Это записывается как k=2.

Ответ: k=2.

Получить уравнение прямой по двум точкам бывает необходимо, когда мы решаем задачи, связанные с анализом различных фигур на плоскости. В этом случае бывает полезно знать уравнение прямой, проходящей через две точки. Например, составляя такое уравнение мы уже знаем – как проходит прямая, с какие углом наклона к осям координат и можем рассчитать расположение прямой по отношению к другим прямым или к фигурам.

Составляем уравнение прямой по двум точкам

Итак, пусть нам даны две точки A(x_1, y_1) и B(x_2, y_2). Наша прямая проходит через две эти точки, давайте получим уравнение этой прямой. Уравнение пучка прямых, проходящих через точку с координатами A(x_1, y_1) имеет вид:

    [y-y_1=k(x-x_1) eqno  (1)]

То есть если прямая проходит через две точки A и B она – одна из этого пучка прямых, проходящих через точку A и эта прямая имеет определенный коэффициент k. Значит, координаты точки B должны удовлетворять уравнению (1), то есть

    [y_2-y_1=k(x_2-x_1) eqno  (2)]

.

Находим из (2) k:

    [k=frac{y_2-y_1}{x_2-x_1}]

и подставим в уравнение (1):

    [y-y_1=frac{y_2-y_1}{x_2-x_1} (x-x_1) eqno  (3)]

.

Преобразовывая уравнение (3) получим:

    [frac{y-y_1}{y_2-y_1}=frac{x-x_1}{x_2-x_1}]

Это и есть уравнение прямой, проходящей через две точки A(x_1, y_1) и B(x_2, y_2).

Примечание: если точки A и B лежат на прямой, которая параллельна оси Ox (y_2-y_1=0) или оси Oy x_2-x_1=0, то уравнение прямой будет иметь вид y=y_1 или x=x_1 соответственно.

Зная координаты любых двух точек прямой, мы всегда сможем определить угловой коэффициент прямой:

    [k=frac{y_2-y_1}{x_2-x_1}]

Геометрический вывод уравнения прямой

Действительно, давайте нарисуем прямую в системе координат xOy и отметим на прямой две точки A и B, координаты которых известны A(x_1, y_1) и B(x_2, y_2) и отметим на этой прямой произвольную точку M(x,y).

К выводу уравнения прямой через две дочки

Из подобия треугольников AMD и ABC находим:

    [frac{DM}{CB}=frac{AD}{AC}]

Из рисунка видно, что:

    [DM=y-y_1]

    [CB=y_2-y_1]

    [AD=x-x_1]

    [AC=x_2-x_1]

,

Таким образом, получаем уравнение прямой по двум точкам:

    [frac{y-y_1}{y_2-y_1}=frac{x-x_1}{x_2-x_1}]

Задача

Составим уравнение прямой, проходящей через две точки A(1,2) и B(3,7).

Решение: Имеем x_1=1, x_2=3, y_1=2, y_2=7. Подставим эти значения в уравнение прямой, проходящей через две заданные точки:

    [frac{y-2}{7-2}=frac{x-1}{3-1}]

    [frac{y-2}{5}=frac{x-1}{2}]

Умножим левую и правую части уравнения на 5, получим:

y-2=frac{5x-5}{2}

y=2+2,5x-2,5

y=2,5x-0,5 – получившееся уравнение прямой.

Давайте сделаем проверку – если мы все решили правильно, то при подстановке координат точек A и B мы получим верное равенство. Итак, подставим сначала координаты точки A:

y_1=2,5x_1-0,5

2=2,5 cdot 1-0,5

2=2

Теперь координаты точки B:

y_2=2,5x_2-0,5

7=2,5 cdot 3-0,5

7=7

Значит, уравнение прямой мы нашли верно.

Ответ: y=2,5x-0,5

Условие прохождения прямой через три заданные точки

Если нам в задаче нужно убедиться, что три точки с заданными координатами лежат на одной прямой, можно рассуждать так:

  1. Если две точки с заданными координатами образуют прямую, то их координаты удовлетворяют уравнению прямой, проходящей через две точки.
  2. Если третья точка также лежит на этой прямой, то и ее координаты будут удовлетворять этому уравнению.

Таким образом, если нам даны три точки A(x_1, y_1), B(x_2, y_2) и C(x_3, y_3), лежащие на одной прямой, то их координаты будут удовлетворять условию:

    [frac{y_3-y_1}{y_2-y_1}=frac{x_3-x_1}{x_2-x_1}]

Теперь вы легко сможете составить уравнение прямой по двум точкам, а также найти угловой коэффициент прямой и проверить – принадлежит ли третья точка этой прямой.

Добавить комментарий