Как найти угловую частоту переменного тока

Переменный синусоидальный ток

Колебания маятника также
подчиняются закону синуса.
Если
записать проекцию траектории
движения математического
маятника на
движущуюся бумажную ленту —
получится синусоида.

Синусоидальным
током называется периодический переменный
ток, который с течением времени изменяется
по закону
 синуса.

Синусоидальный ток —
элементарный, то есть его невозможно
разложить на другие более простые
переменные токи.

Переменный
синусоидальный ток выражается формулой:

,
где

 —
амплитуда
синусоидального тока;

 —
некоторый угол,
называемый фазой
синусоидального тока
.

Фаза синусоидального
тока изменяется
пропорционально времени .

Множитель ,
входящий в выражение фазы  —
величина постоянная, называемая угловой
частотой
 переменного
тока
.

Угловая
частота синусоидального
тока зависит от частоты этого
тока и определяется формулой:

,
где

 —
угловая частота
синусоидального тока;

 —
частота синусоидального
тока;

 — период синусоидального
тока;

 —
центральный
угол окружности,
выраженный в радианах.

Зависимость
синусоидального тока от времени

Зависимость
синусоидального тока от угла ωt

Периоду соответствует
угол ,
половине периода угол и
так далее…

Исходя
из формулы ,
можно определить размерность угловой
частоты:

,
где

 — время в секундах,

 —
угол в радианах,
является безразмерной величиной.

Фаза синусоидального
тока измеряется
 радианами.

1
радиан = 57°17′, угол 90° =
 радиан,
угол 180° =
 радиан,
угол 270° =
 радиан,
угол 360° =
 радиан,
где
 радиан;  — число
«Пи»
, ° — угловой
градус
 и  — угловая
минута
.

Формула описывает
случай, когда наблюдение за изменением
переменного синусоидального тока
начинается с момента времени при .
Если не
равен нулю, тогда формула для определения
мгновенного значения переменного
синусоидального тока примет следующий
вид:

,
где

 — фаза переменного
синусоидального тока;

 — угол,
называемый начальной
фазой переменного синусоидального
тока
.

Начальная
фаза переменного тока 

Начальная
фаза переменного тока 

Если
в формуле принять ,
то будем иметь

и .

Начальная
фаза — это фаза синусоидального тока
в момент времени
 .

Начальная
фаза переменного синусоидального тока
может быть положительной или
отрицательной величиной.
При мгновенное
значение синусоидального тока в момент
времени положительно,
при  —
отрицательно.

Если
начальная фаза ,
то ток определяется по формуле .
Мгновенное значение его в момент
времени равно

,
то есть равно положительной амплитуде
тока.

Если
начальная фаза ,
то ток определяется по формуле .
Мгновенное значение его в момент
времени равно

,
то есть равно отрицательной амплитуде
тока.

9. Идеальные элементы
электрической цепи синусоидального
тока

11.
Неразветвленная
цепь синусоидального тока. Резонанс
напряжений

Резонанс
напряжений
 –
резонанс, происходящий в
последовательном колебательном
контуре при
его подключении к источнику
напряжения, частота которого
совпадает с собственной
частотой контура.

Описание явления

Пусть
имеется колебательный контур с частотой
собственных колебаний f,
и пусть внутри него работает генератор
переменного тока такой же частоты f.

В
начальный момент конденсатор контура
разряжен, генератор не работает. После
включения напряжение на генераторе
начинает возрастать, заряжая конденсатор.
Катушка в первое мгновение не пропускает
ток из-за ЭДС самоиндукции. Напряжение
на генераторе достигает максимума,
заряжая до такого же напряжения
конденсатор.

Далее:
конденсатор начинает разряжаться на
катушку. Напряжение на нем падает с
такой же скоростью, с какой уменьшается
напряжение на генераторе.

Далее:
конденсатор разряжен до нуля, вся энергия
электрического поля, имевшаяся в
конденсаторе, перешла в энергию магнитного
поля катушки. На клеммах генератора в
этот момент напряжение нулевое.

Далее:
так как магнитное поле не может
существовать стационарно, оно начинает
уменьшаться, пересекая витки катушки
в обратном направлении. На выводах
катушки появляется ЭДС индукции, которое
начинает перезаряжать конденсатор. В
цепи колебательного контура течет ток,
только уже противоположно току заряда,
так как витки пересекаются полем в
обратном направлении. Обкладки
конденсатора перезаряжаются зарядами,
противоположными первоначальным.
Одновременно растет напряжение на
генераторе противоположного знака,
причем с той же скоростью, с какой катушка
заряжает конденсатор.

Далее:
катушка перезарядила конденсатор до
максимального напряжения. Напряжение
на генераторе к этому моменту тоже
достигло максимального.

Возникла
следующая ситуация. Конденсатор и
генератор соединены последовательно
и на обоих напряжение, равное напряжению
генератора. При последовательном
соединении источников питания их
напряжения складываются.

Следовательно,
в следующем полупериоде на катушку
пойдет удвоенное напряжение (и от
генератора, и от конденсатора), и колебания
в контуре будут происходить при удвоенном
напряжении на катушке.

В
контурах с низкой добротностью напряжение
на катушке будет ниже удвоенного, так
как часть энергии будет рассеиваться
(на излучение, на нагрев) и энергия
конденсатора не перейдет полностью в
энергию катушки). Соединены как бы
последовательно генератор и часть
конденсатора.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Переменный электрический ток


Переменный ток (AC – Alternating Current) – электрический ток, меняющий свою величину и направление с течением времени.

Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC.
Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.

DC – Direct Current – постоянный ток, не меняющий своей величины и направления.

В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.

При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.

Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.

Величина тока будет равна квадратному корню из суммы квадратов двух величин – значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.

Термины AC и DC применимы как для тока, так и для напряжения.

Параметры переменного тока и напряжения


Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T – время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота  f – величина, обратная периоду, равная количеству периодов за одну секунду.

Один период в секунду это один герц (1 Hz). Частота f = 1/T


Циклическая частота  ω – угловая частота, равная количеству периодов за секунд.

ω = 2πf = 2π/T

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза  ψ – величина угла от нуля (ωt = 0) до начала периода.
Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение – величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.

i = i(t);   u = u(t)

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:

i = Iampsin(ωt);   u = Uampsin(ωt)

С учётом начальной фазы:

i = Iampsin(ωt + ψ);   u = Uampsin(ωt + ψ)

Здесь Iamp и Uamp – амплитудные значения тока и напряжения.

Амплитудное значение – максимальное по модулю мгновенное значение за период.

Iamp = max|i(t)|;   Uamp = max|u(t)|

Может быть положительным и отрицательным в зависимости от положения относительно нуля.

Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) – максимальное отклонение от нулевого значения.

Среднее значение (avg) – определяется как среднеарифметическое всех мгновенных значений за период T.

Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение – среднеарифметическое модулей всех мгновенных значений за период.

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

Среднеквадратичное значение (rms) – определяется как квадратный корень из среднеарифметического квадратов всех
мгновенных значений за период.

Для синусоидального тока и напряжения амплитудой Iamp (Uamp)
среднеквадратичное значение определится из расчёта:

Среднеквадратичное – это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов.
Является объективным количественным показателем для любой формы тока.

В активной нагрузке переменный ток совершает такую же работу за время периода,
что и равный по величине его среднеквадратичному значению постоянный ток.


Коэффициент амплитуды и коэффициент формы

Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой
амплитудное, среднеквадратичное и средневыпрямленное значения.

Коэффициент амплитуды – отношение амплитудного значения к среднеквадратичному.

Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1

Коэффициент формы – отношение среднеквадратичного значения к средневыпрямленному.

Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1


Замечания и предложения принимаются и приветствуются!

Период, частота, амплитуда и фаза переменного тока

Период и частота переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Период переменного тока

Рисунок 1. Период и амплитуда синусоидального колебания. Период – время одного колебания; Аплитуда – его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10-3сек.

1 мкс=0,001 мс = 0,000001сек =10-6сек.

1000 мкс = 1 мс.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 103 Гц = 1 кГц;

1000 000 Гц = 106 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 109 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Формула частота переменного токаФормула период переменного тока

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2pi.

Радиан

Рисунок 2. Радиан.

Тогда,

1рад = 360°/2pi

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2pi). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ?.

Итак,

?= 6,28*f = 2fpi

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Фаза переменного тока

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

ads

Переменный ток (англ. alternating current — AC) — электрический токкоторый с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Синусоидальный ток

Рисунок 1

Формула переменного синусоидального тока

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

  • амплитуду тока обозначают lm;
  • амплитуду напряжения Um.

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с-1)

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с-1)

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

Переменный электрический ток

Переменный ток – или AC (Alternating Current). Обозначение ( ~ ).

Электрический ток называется переменным, если он в течение времени меняет свое направление и непрерывно изменяется по величине.

Переменный ток, который используется для подключения бытовых или производственных электрических приборов, изменяется по синусоидальному закону:

i = Imsin(2πft)

График мгновенного значения тока

График переменного тока

  • i – мгновенное значение тока
  • Im – амплитудное или наибольшее значение тока
  • f – значение частоты переменного тока
  • t – время

Широко используется переменный ток благодаря тому, что электроэнергия переменного тока технически просто и экономно может быть преобразована из энергии более низкого напряжения в энергию более высокого напряжения и наоборот. Это свойство переменного тока позволяет передавать электроэнергию по проводам на большие расстояния.

Что называется периодом переменного тока

Период переменного тока

Промышленный переменный электрический ток получают при помощи электрических генераторов, принцип работы которых основан на законе электромагнитной индукции. Вращение генератора осуществляется механическим двигателем, использующим тепловую, гидравлическую или атомную энергию.

Переменный однофазный электрический ток имеет следующие основные характеристики:

f – частота переменного тока определяет количество циклов или периодов в единицу времени. За единицу измерения частоты переменного тока принят Герц ( Гц ):

1гц = 103кгц = 106мгц

Τ – период – время одного полного изменения переменной величины.

Если в 1 секунду происходит 1 период Τ, то частота f = 1 Гц ( Герц ).

1c = 103мс = 106мкс = 1012нс

В Российской Федерации период Τ переменного тока принят равным 0,02 секунды,следовательно по формуле
f = 1/Τ можно определить частоту переменного тока:

f = 1/0,02 = 50 Гц

ω – угловая скорость

Помимо частоты f при изучении цепей переменного тока вводится понятие угловой скорости ω. Угловая скорость ω связана с частотой f следующим соотношением:

ω=2πf

При частоте 50 Гц угловая скорость равна 314 рад/с (2 × 3,14 × 50 = 314).

Мгновенное значение (i,u,e,p) – значение величины в данный момент, мгновенное.

Максимальное или амплитудное значение (Im,Um,Em,Pm).

Эффективное значение тока – это величина переменного тока, равная такому току, который на сопротивлении R, создаёт тепловыделение равное данному переменному току, за тоже время t (I,U,E,P).

Получение синусоидальной кривой

В системе декартовых прямоугольных координат совмещены тригонометрический круг и кривая, отражающая изменение величины тригонометрической функции sinβ от величины угла β между осью и радиусом-вектором r. Радиус-вектор r вращается против часовой стрелки. Повернем радиус-вектор на угол β и от конца вектора r проведем пунктиром прямую, параллельную оси . От окружности (точка а) по оси отложим в масштабе отрезок. Из конца отрезка построим перпендикуляр до пересечения с пунктирной прямой. Получим точку с в пересечении перпендикуляра и пунктирной прямой.

График изменения переменного тока

Синусоида переменного тока

Аналогичное построение проведем, увеличивая угол β, пока радиус-вектор повернется на угол β = 360°, и получим точки аналогично точке с. Соединим точки плавной кривой, которая и будет отражать синусоидальный закон изменения величины переменного тока.

Понятие о фазе

Если две переменные величины одновременно проходят свои нулевые и максимальные значения, то они совпадают по фазе.

Если две переменные величины не одновременно проходят свои нулевые и максимальные значения, то они не совпадают по фазе.

В радиотехнике используются понятия:

1. Активное сопротивление ( Ra )

2. Индуктивное сопротивление ( XL – реактивное сопротивление )

3. Ёмкостное сопротивление ( XC – реактивное сопротивление )

Понятие об активном сопротивлении

Если по проводнику протекает ток, то вследствие явления самоиндукции, электроны распространяются не равномерно по сечению проводника, вследствие чего растёт сопротивление проводника.

Явление неравномерного распространения зарядов по сечению проводника называется – поверхностный эффект. Чем больше частота, тем больше сопротивление.

Добавить комментарий