Как найти углы через скалярное произведение

Нахождение угла между векторами с помощью скалярного произведения

Косинус угла между векторами a⃗=(a1;a2)vec{a}=(a_{1};a_{2}) и b⃗=(b1;b2)vec{b}=(b_{1};b_{2}) может быть вычислен по формуле

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=a1⋅b1+a2⋅b2a12+a22⋅b12+b22.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}= frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}}{sqrt{a_{1}^{2}+a_{2}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}}}.

Следовательно, угол между векторами a⃗=(a1;a2)vec{a}=(a_{1};a_{2}) и b⃗=(b1;b2)vec{b}=(b_{1};b_{2}) может быть вычислен по формуле

(a⃗,b⃗^)=arccos⁡(a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣)=arccos⁡(a1⋅b1+a2⋅b2a12+a22⋅b12+b22).left(widehat{vec{a},vec{b}}right)=arccosleft(frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}right)=arccosleft(frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}}{sqrt{a_{1}^{2}+a_{2}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}}}right).

Пример 1

Найти угол между векторами a⃗=(1;−1)vec{a}=(1; -1) и b⃗=(1;2).vec{b}=(1; 2).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=1⋅1+(−1)⋅212+(−1)2⋅12+22=1−22⋅5=−110.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{1cdot1+(-1)cdot2}{sqrt{1^{2}+(-1)^{2}}cdot sqrt{1^{2}+2^{2}}}=frac{1-2}{sqrt{2}cdotsqrt{5}}=frac{-1}{sqrt{10}}.

(a⃗,b⃗^)=arccos⁡(−110)=arccos⁡(−1010).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{-1}{sqrt{10}} right )=arccosleft ( frac{-sqrt{10}}{10} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(−1010).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{-sqrt{10}}{10} right).

Пример 2

Найти угол между векторами a⃗=(2;3)vec{a}=(2; 3) и b⃗=(3;1).vec{b}=(3; 1).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=2⋅3+3⋅122+32⋅32+12=6+313⋅10=9130=9130130.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{2cdot3+3cdot1}{sqrt{2^{2}+3^{2}}cdot sqrt{3^{2}+1^{2}}}=frac{6+3}{sqrt{13}cdotsqrt{10}}=frac{9}{sqrt{130}}=frac{9sqrt{130}}{130}.

(a⃗,b⃗^)=arccos⁡(9130130).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{9sqrt{130}}{130} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(9130130).left ( widehat{vec{a},vec{b}} right )=arccos left ( frac{9sqrt{130}}{130} right ).

Косинус угла между векторами a⃗=(a1;a2;a3)vec{a}=(a_{1};a_{2};a_{3}) и b⃗=(b1;b2;b3)vec{b}=(b_{1};b_{2};b_{3}) может быть вычислен по формуле

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=a1⋅b1+a2⋅b2+a3⋅b3a12+a22+a32⋅b12+b22+b32.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}= frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}+a_{3}cdot b_{3}}{sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}.

Следовательно, угол между векторами a⃗=(a1;a2;a3)vec{a}=(a_{1};a_{2};a_{3}) и b⃗=(b1;b2;b3)vec{b}=(b_{1};b_{2};b_{3}) может быть вычислен по формуле

(a⃗,b⃗^)=arccos⁡(a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣)=arccos⁡(a1⋅b1+a2⋅b2+a3⋅b3a12+a22+a32⋅b12+b22+b32).left(widehat{vec{a},vec{b}}right)=arccosleft(frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}right)=arccosleft(frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}+a_{3}cdot b_{3}}{sqrt{a_{1}^{2}+a_{2}^{2}+ a_{3}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}+ b_{3}^{2}}}right).

Пример 3

Найти угол между векторами a⃗=(1;2;3)иb⃗=(1;−2;3).vec{a}=(1; 2; 3) и vec{b}=(1; -2; 3).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=1⋅1+2⋅(−2)+3⋅312+22+32⋅12+(−2)2+32=1−4+914⋅14=614=37.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{1cdot1+2cdot(-2)+3cdot3}{sqrt{1^{2}+2^{2}+3^{2}}cdot sqrt{1^{2}+(-2)^{2}+3^{2}}}=frac{1-4+9}{sqrt{14}cdotsqrt{14}}=frac{6}{14}=frac{3}{7}.

(a⃗,b⃗^)=arccos⁡(37).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{3}{7} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(37).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{3}{7} right ).

Пример 4

Найти угол между векторами a⃗=(2;−1;−2)vec{a}=(2; -1; -2) и b⃗=(1;3;−2).vec{b}=(1; 3; -2).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=2⋅1+(−1)⋅3+(−2)⋅(−2)22+(−1)2+(−2)2⋅12+32+(−2)2=2−3+49⋅14=33⋅14=114=1414.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{2cdot1+(-1)cdot3+(-2)cdot(-2)}{sqrt{2^{2}+(-1)^{2}+(-2)^{2}}cdot sqrt{1^{2}+3^{2}+(-2)^{2}}}=frac{2-3+4}{sqrt{9}cdotsqrt{14}}=frac{3}{3cdotsqrt{14}}=frac{1}{sqrt{14}}=frac{sqrt{14}}{14}.

(a⃗,b⃗^)=arccos⁡(1414).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{sqrt{14}}{14} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(1414).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{sqrt{14}}{14} right ).

Нахождение угла между векторами с помощью векторного произведения

Синус угла между векторами можно вычислить по формуле: sin⁡(a⃗,b⃗^)=∣a⃗×b⃗∣∣a⃗∣⋅∣b⃗∣.sin(widehat{vec{a},vec{b}})=frac{left | vec{a}times vec{b} right |}{left | vec{a} right |cdotleft | vec{b} right |}.

Пример 1

Найти угол между векторами a⃗=(2;−1;2)vec{a}=(2;-1;2) и b⃗=(3;0;1).vec{b}=(3;0;1).

a⃗×b⃗=∣ijk2−12301∣=(−1−0)i−(2−6)j+(0+3)k=−i+4j+3k.vec{a}times vec{b}=begin{vmatrix}i&j&k\2&-1&2\3&0&1end{vmatrix}=(-1-0)i-(2-6)j+(0+3)k=-i+4j+3k.

∣a⃗×b⃗∣=(−1)2+42+32=1+16+9=26.left | vec{a}times vec{b} right |=sqrt{(-1)^{2}+4^{2}+3^{2}}=sqrt{1+16+9}=sqrt{26}.

∣a⃗∣=22+(−1)2+22=4+1+4=9=3.left | vec{a} right |=sqrt{2^{2}+(-1)^{2}+2^{2}}=sqrt{4+1+4}=sqrt{9}=3.

∣b⃗∣=32+02+12=9+0+1=10.left | vec{b} right |=sqrt{3^{2}+0^{2}+1^{2}}=sqrt{9+0+1}=sqrt{10}.

sin⁡(a⃗,b⃗^)=26310=132325=1335=6515.sin(widehat{vec{a},vec{b}})=frac{sqrt{26}}{3sqrt{10}}=frac{sqrt{13}sqrt{2}}{3sqrt{2}sqrt{5}}=frac{sqrt{13}}{3sqrt{5}}=frac{sqrt{65}}{15}.

(a⃗,b⃗^)=arcsin⁡(6515).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{65}}{15} right ).

Ответ: (a⃗,b⃗^)=arcsin⁡(6515).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{65}}{15} right ).

Пример 2

Найти угол между векторами a⃗=(1;1;3)vec{a}=(1;1;3) и b⃗=(0;1;1).vec{b}=(0;1;1).

a⃗×b⃗=∣ijk113011∣=(1−3)i−(1−0)j+(1−0)k=−2i−j+k.vec{a}times vec{b}=begin{vmatrix}i&j&k\1&1&3\0&1&1end{vmatrix}=(1-3)i-(1-0)j+(1-0)k=-2i-j+k.

∣a⃗×b⃗∣=(−2)2+(−1)2+12=4+1+1=6.left | vec{a}times vec{b} right |=sqrt{(-2)^{2}+(-1)^{2}+1^{2}}=sqrt{4+1+1}=sqrt{6}.

∣a⃗∣=12+12+32=1+1+9=11.left | vec{a} right |=sqrt{1^{2}+1^{2}+3^{2}}=sqrt{1+1+9}=sqrt{11}.

∣b⃗∣=02+12+12=0+1+1=2.left | vec{b} right |=sqrt{0^{2}+1^{2}+1^{2}}=sqrt{0+1+1}=sqrt{2}.

sin⁡(a⃗,b⃗^)=6112=32112=311=3311.sin(widehat{vec{a},vec{b}})=frac{sqrt{6}}{sqrt{11}sqrt{2}}=frac{sqrt{3}sqrt{2}}{sqrt{11}sqrt{2}}=frac{sqrt{3}}{sqrt{11}}=frac{sqrt{33}}{11}.

(a⃗,b⃗^)=arcsin⁡(3311).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{33}}{11} right ).

Ответ: (a⃗,b⃗^)=arcsin⁡(3311).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{33}}{11} right ).

Тест по теме “Как найти угол между двумя векторами”

Два вектора

a→

и

b→

 всегда образуют угол.

Угол между векторами может принимать значения от

до

180°

включительно.

Если векторы не параллельны, то их можно расположить на пересекающихся прямых.

Векторы могут образовать:

1. острый угол;

Lenkis_vekt4.png

2. тупой угол;

Lenkis_vekt5.png

3. прямой угол (векторы перпендикулярны).

Lenkis_vekt2.png

Если векторы расположены на параллельных прямых, то они могут образовать:

4. угол величиной

 (векторы сонаправлены);

Lenkis_vekt1.png

5. угол величиной

180°

 (векторы противоположно направлены).

Lenkis_vekt3.png

Если один из векторов или оба вектора нулевые, то угол между ними будет равен

.

Угол между векторами записывают так:

Скалярное произведение векторов

Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними:

a→⋅b→=a→⋅b→⋅cosa→b→ˆ

.

Результат скалярного произведения векторов является числом (в отличие от результата рассмотренных ранее действий с векторами — сложения, вычитания и умножения на число. В таких случаях результатом был вектор). При умножении вектора на вектор получается число, так как длины векторов — это числа, косинус угла — число — соответственно, их произведение также будет являться числом.

1. Если угол между векторами острый, то скалярное произведение будет положительным числом (так как косинус острого угла — положительное число). 

Если векторы сонаправлены, то угол между ними будет равен

, а косинус равен (1), скалярное произведение также будет положительным.

2. Если угол между векторами тупой, то скалярное произведение будет отрицательным (так как косинус тупого угла — отрицательное число). 

Если векторы направлены противоположно, то угол между ними будет равен

180°

. Скалярное произведение также отрицательно, так как косинус этого угла равен (-1).

Справедливы и обратные утверждения:

1. Если скалярное произведение векторов — положительное число, то угол между данными векторами острый.

2. Если скалярное произведение векторов — отрицательное число, то угол между данными векторами тупой.

Особенный третий случай!

Обрати внимание!

3. Если угол между векторами прямой, то скалярное произведение векторов равно нулю, так как косинус прямого угла равен (0).

Обратное суждение: если скалярное произведение векторов равно нулю, то эти векторы перпендикулярны.

Вектор, умноженный на самого себя, будет числом, которое называется скалярным квадратом вектора. Скалярный квадрат вектора  равен квадрату длины данного вектора и обозначается как 

a→2

.

Свойства скалярного произведения

Для любых векторов и любого числа справедливы следующие свойства:

1.

a→2≥0

, к тому же

a→2>0

, если

a→≠0→

.

2. Переместительный, или коммутативный, закон скалярного произведения:

a→⋅b→=b→⋅a→

.

3. Распределительный, или дистрибутивный, закон скалярного произведения:

a→+b→⋅c→=a→⋅c→+b→⋅c→

.

4. Сочетательный, или ассоциативный, закон скалярного произведения:

k⋅a→⋅b→=k⋅a→⋅b→

.

Использование скалярного произведения

Удобно использовать скалярное произведение векторов для определения углов между прямыми и между прямой и плоскостью.

Угол между прямыми

Ознакомимся с ещё одним определением.

Вектор называют направляющим вектором прямой, если он находится на прямой или параллелен этой прямой.

Taisne_vektors.png

Чтобы определить косинус угла между прямыми, надо определить косинус угла между направляющими векторами этих прямых, то есть найти векторы, параллельные прямым, и определить косинус угла между векторами.

Для этого необходимо рассмотреть определение скалярного произведения, если векторы даны в координатной системе.

Если

a→x1;y1;z1

,

b→x2;y2;z2

, то

a→⋅b→=x1⋅x2+y1⋅y2+z1⋅z2

.

Прежде была рассмотрена формула определения длины вектора в координатной форме.

Теперь, объединив эти формулы, получим формулу для определения косинуса угла между векторами в координатной форме. Так как из формулы скалярного произведения следует, что

cosα=a→⋅b→a→⋅b→

, то

cosα=x1⋅x2+y1⋅y2+z1⋅z2x12+y12+z12 ⋅x22+y22+z22

.

Угол между прямой и плоскостью

Введём понятие о нормальном векторе плоскости.

Нормальный вектор плоскости — это любой ненулевой вектор, лежащий на прямой, перпендикулярной к данной плоскости.

Plakne_vektors.png

Используя следующий рисунок, легко доказать, что косинус угла

β

между нормальным вектором

n→

 данной плоскости и неким вектором

b→

 равен синусу угла

α

между прямой и плоскостью, так как

α

и

β

 вместе образуют угол в

90°

.

Plakne_vektors_lenkis.png

При нахождении косинуса угла между

n→

и

b→

можно использовать это число как синус угла между прямой, на которой лежит вектор

b→

, и плоскостью.

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a→ и b→ , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы OA→=b→ и OB→=b→

Определение 1

Углом между векторами a→ и b→ называется угол между лучами ОА и ОВ.

Полученный угол будем обозначать следующим образом: a→,b→^

Нахождение угла между векторами

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a→,b→^=0, когда векторы являются сонаправленными и a→,b→^=π , когда векторы противоположнонаправлены.

Определение 2

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π2 радиан.

Если хотя бы один из векторов является нулевым, то угол a→,b→^ не определен.

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a→, b→=a→·b→·cosa→,b→^.

Если заданные векторы a→ и b→ ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cosa→,b→^=a→,b→a→·b→

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Пример 1

Исходные данные: векторы a→ и b→ . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно -9. Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cosa→,b→^=-93·6=-12 , 

Теперь определим угол между векторами: a→,b→^=arccos (-12)=3π4

Ответ: cosa→,b→^=-12, a→,b→^=3π4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a→=(ax, ay), b→=(bx, by) выглядит так:

cosa→,b→^=ax·bx+ay·byax2+ay2·bx2+by2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a→=(ax, ay, az), b→=(bx, by, bz) будет иметь вид: cosa→,b→^=ax·bx+ay·by+az·bzax2+ay2+az2·bx2+by2+bz2

Пример 2

Исходные данные: векторы a→=(2, 0, -1), b→=(1, 2, 3) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cosa→,b→^=2·1+0·2+(-1)·322+02+(-1)2·12+22+32=-170⇒a→,b→^=arccos(-170)=-arccos170

  1. Также можно определить угол по формуле:

cosa→,b→^=(a→, b→)a→·b→,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a→=22+02+(-1)2=5b→=12+22+32=14a→,b→^=2·1+0·2+(-1)·3=-1cosa→,b→^=a→,b→^a→·b→=-15·14=-170⇒a→,b→^=-arccos170

Ответ: a→,b→^=-arccos170

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Пример 3

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A(2, -1), B(3, 2), C(7, -2). Необходимо определить косинус угла между векторами AC→ и BC→.

Решение 

Найдем координаты векторов по координатам заданных точек AC→=(7-2, -2-(-1))=(5, -1)BC→=(7-3, -2-2)=(4, -4)

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cosAC→, BC→^=(AC→, BC→)AC→·BC→=5·4+(-1)·(-4)52+(-1)2·42+(-4)2=2426·32=313

Ответ: cosAC→, BC→^=313

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы OA→=a→ и OB→=b→ , тогда, согласно теореме косинусов в треугольнике ОАВ, будет верным равенство:

AB2=OA2+OB2-2·OA·OB·cos(∠AOB) ,

что равносильно:

b→-a→2=a→+b→-2·a→·b→·cos(a→, b→)^

и отсюда выведем формулу косинуса угла:

cos(a→, b→)^=12·a→2+b→2-b→-a→2a→·b→

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

cos(a→, b→)^=a→, b→a→·b→

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Автор статьи

Марина Николаевна Ковальчук

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Угол между векторами

Для того, чтобы мы могли ввести формулу для вычисления угла между векторами через координаты, нужно сначала разобраться с самим понятием угла между этими векторами.

Определение 1

Пусть нам даны два вектора $overline{α}$ и $overline{β}$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $overline{α}=overline{OA}$ и $overline{β}=overline{OB}$, тогда угол $AOB$ будет носить название угол между двумя векторами. (рис. 1).

Угол между векторами. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ

Причем мы будем считать, что если векторы $overline{α}$ и $overline{β}$ будут сонаправленными, или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться $0^circ$.

Обозначение: $∠(overline{α},overline{β})$

Нахождение угла между векторами в пространстве с помощью скалярного произведения

Вспомним сначала, что называется скалярным произведением и каким образом его можно находить.

Определение 2

Скалярным произведением двух векторов будем называть такой скаляр (или число), который равняется произведению длин двух этих векторов с косинусом угла между данными векторами.

Математически это может выглядеть следующим образом:

$overline{δ}overline{β}=|overline{δ}||overline{β}|cos∠(overline{δ},overline{β})$

Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоваться следующей теоремой.

Теорема 1

Скалярное произведение двух данных векторов $overline{δ}$ и $overline{β}$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, равняется сумме произведений их соответствующих координат.

Математически выглядит следующим образом

$overline{δ}cdot overline{β}=δ_1 δ_2+β_1 β_2+γ_1 γ_2$

«Как найти угол между векторами» 👇

Обозначение: $overline{δ}cdot overline{β}$.

С помощью скалярного произведения мы можем найти косинус угла между векторами. Пусть нам даны векторы $overline{δ}$ и $overline{β}$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, соответственно. Из определения 2 получим, что

$cos∠(overline{δ},overline{β})=frac{overline{δ}cdot overline{β}}{|overline{δ}||overline{β}|}$

Из теоремы 1 мы знаем, что $overline{δ}cdot overline{β}=δ_1 δ_2+β_1 β_2+γ_1 γ_2$, следовательно

$cos∠(overline{δ},overline{β})=frac{δ_1 δ_2+β_1 β_2+γ_1 γ_2}{|overline{δ}||overline{β}|}$

Расписывая по формуле длины вектора значения $|overline{δ}|$ и $|overline{β}|$, окончательно получим

$cos∠(overline{δ},overline{β})=frac{δ_1 δ_2+β_1 β_2+γ_1 γ_2}{sqrt{δ_1^2+β_1^2+γ_1^2 } sqrt{δ_2^2+β_2^2+γ_2^2}}$

Найдя значение косинуса, мы легко найдем и значение самого угла.

Пример 1

Найти косинус угла между векторами $overline{δ}$ и $overline{β}$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем скалярное произведение между данными векторами через координаты:

$overline{δ}cdot overline{β}=1cdot 3+(-2)cdot 0+2cdot 4=11$

Найдем длины этих векторов:

$|overline{δ}|=sqrt{1^2+(-2)^2+2^2}=sqrt{9}=3$

$|overline{β}|=sqrt{3^2+0^2+4^2}=sqrt{25}=5$

В результате, получим

$cos⁡∠(overline{δ},overline{β})=frac{11}{3cdot 5}=frac{11}{15}$

Ответ: $frac{11}{15}$.

Нахождение угла между векторами с помощью векторного произведения

Вспомним сначала, определение векторного произведения и каким образом его можно находить.

Определение 3

Векторным произведением двух векторов называется такой вектор, который будет перпендикулярен обоим данным векторам, и его длина равна произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.

Обозначение: $overline{δ}хoverline{β}$.

Математически это выглядит следующим образом:

  1. $|overline{δ}хoverline{β}|=|overline{δ}||overline{β}|sin⁡∠(overline{δ},overline{β})$
  2. $overline{δ}хoverline{β}⊥overline{δ}$, $overline{δ}хoverline{β}⊥overline{β}$
  3. $(overline{δ}хoverline{β},overline{δ},overline{β})$ и $(overline{i},overline{j},overline{k})$ одинаково ориентированы (рис. 2)

Векторное произведение. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Векторное произведение. Автор24 — интернет-биржа студенческих работ

Для нахождения вектора векторного произведения можно пользоваться следующей формулой:

$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\δ_1&δ_2&δ_3\β_1&β_2&β_3end{vmatrix}$

С помощью векторного произведения мы можем найти синус угла между данными векторами. Пусть нам даны векторы $overline{δ}$ и $overline{β}$ с координатами $(δ_1,δ_2,δ_3)$ и $(β_1,β_2,β_3)$, соответственно. Из определения 3 получим, что

${sin angle left(overrightarrow{delta },overrightarrow{beta }right) }=frac{left|overrightarrow{delta }хoverrightarrow{beta }right|}{left|overrightarrow{delta }right||overrightarrow{beta }|}$

Найдем вектор векторного произведения по формуле:

$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\δ_1&δ_2&δ_3\β_1&β_2&β_3end{vmatrix}=(δ_2 β_3-δ_3 β_2,δ_3 β_1-δ_1 β_3,δ_1 β_2-δ_2 β_1)$

Расписывая по формуле длины вектора значения $|overline{δ}|$, $|overline{β}|$ и $|overline{δ}хoverline{β}|$, окончательно получим

$sin∠(overline{δ},overline{β})=frac{sqrt{(δ_2 β_3-δ_3 β_2)^2+(δ_3 β_1-δ_1 β_3)^2+(δ_1 β_2-δ_2 β_1)^2}}{sqrt{δ_1^2+δ_2^2+δ_3^2}sqrt{β_1^2+β_2^2+β_3^2}}$

Найдя значение синуса, мы легко найдем и значение самого угла между векторами через координаты через формулу.

Пример 2

Найти синус угла между векторами $overline{δ}$ и $overline{β}$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем вектор векторного произведения между данными векторами по формуле:

$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\1&-2&2\3&0&4end{vmatrix}=-8overline{i}+2overline{j}+6overline{k}=(-8,1,6)$

Найдем длины этих векторов:

$|overline{δ}хoverline{β}|=sqrt{(-8)^2+2^2+6^2}=sqrt{104}=2sqrt{26}$

$|overline{δ}|=sqrt{1^2+(-2)^2+2^2}=sqrt{9}=3$

$|overline{β}|=sqrt{3^2+0^2+4^2}=sqrt{25}=5$

В результате, получим

$sin∠(overline{δ},overline{β})=frac{2sqrt{26}}{3cdot 5}=frac{2sqrt{26}}{15}$

Ответ: $frac{2sqrt{26}}{15}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

План урока:

Угол между векторами

Понятие скалярного произведения векторов

Скалярное произведение в координатах

Определение перпендикулярности векторов и прямых

Вычисление угла между векторами

Свойства скалярного произведения

Угол между векторами

Любую пару векторов можно отложить от одной точки. Если при этом вектора не сонаправлены друг с другом, то они образуют некоторый угол. Его и именуют углом между векторами.

1 skalyarnoe proizvedenie

Если же пара векторов сонаправлена, то принято считать, что угол между такими векторами составляет 0°.

На рисунке показаны два вектора, a и b. Чтобы определить угол между и b, надо отложить их от одной и той же точки:

2 skalyarnoe proizvedenie

В приведенном примере угол составил 135°. Для обозначения этого угла может быть использована такая запись:

3 skalyarnoe proizvedenie

Задание. В квадрате АВСD проведены диагонали, они пересекаются в точке О. Определите, какой угол образуют вектора:

4 skalyarnoe proizvedenie

Так как в квадрате диагонали пересекаются под углом 90°, а со сторонами образуют угол 45°, то мы легко определим, что

5 skalyarnoe proizvedenie

Здесь нам помог тот факт, что вектора из пунктов а) и б) изначально отложены из одной точки. С пунктом в) ситуация сложнее. Надо отложить от точки А вектор ОА и определить угол, образующийся при этом:

6 skalyarnoe proizvedenie

Пусть после откладывания вектора ОА от А получился вектора АА’. Нам надо найти ∠ВАА’. Нам уже известен ∠ОАВ, который является смежным с ∠ВАА’, поэтому можно записать равенство:

7 skalyarnoe proizvedenie

Ответ: а) 45°; б) 90°; в) 135°.

Понятие скалярного произведения векторов

Большое распространение в науке получила математическая операция, именуемая скалярным произведением векторов. В геометрии оно помогает находить угол между векторами, а в физике вычислять некоторые физические величины. В рамках школьной программы его используют для нахождения работы, совершенной той или иной силой. В рамках же более сложных дисциплин, с которыми мало кто сталкивается, оно применяется в квантовой механике и специальных разделах математики – тензорной алгебре, теории многообразий и т. п. Ввел его в науку Уильям Гамильтон в 1846 г, который разрабатывал теорию особых чисел – кватерионов. Они, кстати, используются компьютерами для расчетов трехмерной графики в играх и других приложениях.

Прежде, чем мы научимся применять на практике скалярное произведение, сначала сформулируем правило, позволяющее вычислить его.

8 skalyarnoe proizvedenie

Например, пусть есть вектора a и b, причем даны их длины:

9 skalyarnoe proizvedenie

Угол между и b тоже известен и составляет 60°, это записывается таким образом:

10 skalyarnoe proizvedenie

Задание. Вычислите скалярное произведение векторов d и f, если их длины составляют 6 и 10 соответственно, а угол между векторами равен 45°.

Решение. Просто подставляем числа из условия в формулу:

11 skalyarnoe proizvedenie

Задание. АВС – равносторонний треугольник со стороной 4. Каково скалярное произведение векторов АВ и АС?

Решение. Все углы в равностороннем треугольнике равны 60°, поэтому и угол между АВ и АС также составляет 60°.

12 skalyarnoe proizvedenie

Ответ: 8.

Напомним, что косинус, взятый от острого угла – это положительная величина, а косинус тупого угла – это отрицательное число. У прямого же угла косинус равен нулю. Это означает, что по знаку скалярного произведения можно определить тип угла между векторами.

13 skalyarnoe proizvedenie

Часто скалярное произведение применяется в физике. Например, с его помощью рассчитывается работа, совершаемая силой при перемещении того или иного тела. И сила, и перемещение – это векторные величины. Чтобы найти работу силы, надо скалярно перемножить вектора силы и перемещения:

14 skalyarnoe proizvedenie

Эта формула отражает физический смысл скалярного произведения.

Задание. Под воздействием силы 10Н тело переместилось в горизонтальном направлении на 3 метра. При этом сила образует угол 60° с направлением перемещения тела. Какую работу совершила сила?

Решение.

15 skalyarnoe proizvedenie

Скалярное произведение в координатах

Оказывается, что для перемножения векторов достаточно знать только их координаты.

16 skalyarnoe proizvedenie

Докажем эту формулу. Сначала рассмотрим случай, когда один из перемножаемых векторов, например a, является нулевым. Тогда у него нулевая длина и нулевые координаты:

17 skalyarnoe proizvedenie

Теперь рассмотрим случай, когда оба перемножаемых вектора ненулевые. Тогда отложим их от некоторой точки О и, если вектора неколлинеарны, то мы получим ∆ОАВ:

18 skalyarnoe proizvedenie

Для частных случаев, когда a и b коллинеарны (то есть либо сонаправлены, либо противоположно направлены), эта формула также справедлива. Если aи b сонаправлены, то угол α принимается равным нулю (и cosα = 1):

19 skalyarnoe proizvedenie

Если же a и b направлены противоположно, то α = 180° (и cosα = – 1):

20 skalyarnoe proizvedenie

Итак, мы убедились, что в любой ситуации формула (1) справедлива. При этом вектор АВ можно представить как разность a и b:

21 skalyarnoe proizvedenie

Если вектор а имеет координаты {x1; у1}, а координаты b– это {x2; у2},то координаты их разности a – b будут записываться в виде {х1 – х21 – у2}. С учетом этого (2) примет вид

22 skalyarnoe proizvedenie

В результате нам удалось доказать формулу скалярного произведения через координаты:

23 skalyarnoe proizvedenie

Задание. Перемножьте скалярно вектораa и b, если определены их координаты:

24 skalyarnoe proizvedenie

Ответ: а) 23; б) 0; в) 5.

Определение перпендикулярности векторов и прямых

Напомним, что скалярное произведение оказывается нулевым исключительно в случае перпендикулярности векторов. Это позволяет использовать его для проверки перпендикулярности векторов.

Задание. Проверьте, являются ли перпендикулярными вектора:

25 skalyarnoe proizvedenie

Решение. В каждом случае мы должны скалярно перемножить пару векторов. Если результат окажется нулевым, то можно сделать вывод о перпендикулярности векторов. В противном случае они не перпендикулярны. Первый вектор будет обозначать буквой а, а второй – буквой b:

26 skalyarnoe proizvedenie

Ответ: а) да; б) нет; в) да; г) нет.

Задание. При каком значении переменной х вектора а{4; 5} и b{x; – 6} окажутся перпендикулярными?

Решение. Перемножим скалярно вектора и получим некоторое выражение с переменной x:

27 skalyarnoe proizvedenie

Найдем, при каком х это выражение обращается в нуль, то есть вектора становятся перпендикулярными:

28 skalyarnoe proizvedenie

Задание. Определите, перпендикулярны ли прямые АВ и CD, если даны координаты точек: А(3; 8), В(4; 10), С(7;12) и D(5;13).

Решение. В этой задаче сначала надорассчитать координаты векторов АВ и CD по координатамих начальной и конечной точки:

29 skalyarnoe proizvedenie

Мы вычислили координаты векторов: АВ{1; 2} и CD{– 2; 1}. Теперь мы можем проверить их перпендикулярность, скалярно перемножив вектора:

30 skalyarnoe proizvedenie

Мы получили ноль. Это означает, что АВ и CD – перпендикулярные вектора. Значит, и прямые, на которых они лежат, также перпендикулярны.

Ответ: перпендикулярны.

Задание. Перпендикулярны ли друг другу прямые, задаваемые уравнениями

31 skalyarnoe proizvedenie

Названия точкам в данном примере присвоены произвольно. На следующем шаге по координатам точек мы находим координаты векторов, лежащих на исследуемых прямых:

32 skalyarnoe proizvedenie

Полученный ноль показывает, что исходные прямые перпендикулярны.

Ответ: перпендикулярны.

В случае, когда прямые заданы уравнениями, необязательно проделывать столь длительные вычисления для определения их перпендикулярности. Есть теорема, сокращающая объем вычислений.

33 skalyarnoe proizvedenie

Докажем это утверждение. Пусть две прямые заданы уравнениями

34 skalyarnoe proizvedenie

Найдем какие-нибудь точки этих прямых. Для этого подставим в уравнения значения х = 0 и х = 1:

35 skalyarnoe proizvedenie

Прямые окажутся перпендикулярными исключительно в том случае, если это выражение будет нулевым. Это условие перпендикулярности можно записать как уравнение:

36 skalyarnoe proizvedenie

В результате мы получили доказываемую нами формулу.

Задание. Проверьте, какие из этих пар прямых перпендикулярны:

37 skalyarnoe proizvedenie

Решение. В каждом случае надо просто перемножить угловые коэффициенты прямых, то есть числа, стоящие перед переменной х. Другие числа в этих уравнениях (свободные коэффициенты) никак не влияют на перпендикулярность. Если вычисленное произведение окажется равным (– 1), то из этого будет вытекать перпендикулярность прямых.

38 skalyarnoe proizvedenie

Вычисление угла между векторами

Мы научились по координатам векторов определять, перпендикулярны ли они. Однако в более общем случае можно рассчитать угол и между двумя неперпендикулярными векторами.

В самом деле, по известным координатам векторов легко как рассчитать длину каждого из них, так и скалярно перемножить вектора. Тогда из формулы скалярного произведения можно выразить значение косинуса угла между векторами:

39 skalyarnoe proizvedenie

Зная же косинус, можно рассчитать и сам угол, используя специальные таблицы либо функцию арккосинуса на калькуляторе.

Задание. Вычислите угол между векторами а{3; 4} и b{8; 15}.

Решение. Сначала рассчитываем длины векторов:

40 skalyarnoe proizvedenie

Задание. Точки А(2; 8), В(– 1; 5) и С(3; 1) соединили отрезками и получили ∆АВС. Вычислите угол ∠А в ∆АВС.

Решение.∠А данного треугольника представляет собой угол между двумя векторами АВ и АС. Вычислим координаты этих векторов:

41 skalyarnoe proizvedenie

Осталось лишь с помощью калькулятора найти сам ∠А:

42 skalyarnoe proizvedenie

Свойства скалярного произведения

Существует несколько важных свойств скалярного произведения. Эти свойства очень схожи с законами алгебры, которые используются при работе с обычными числами.

43 skalyarnoe proizvedenie

Переместительный закон легко доказать, опираясь только на определение операции скалярного произведения:

44 skalyarnoe proizvedenie

Задание. Известно, что угол между векторами a и с составлет 60°, так же как и угол между векторами b и с. Определены и длины векторов:

45 skalyarnoe proizvedenie

Задание. Найдите скалярное произведение векторов p и q, если

46 skalyarnoe proizvedenie

Решение. Сначала надо перемножить вектора и раскрыть при этом скобки также, как они раскрываются при перемножении обычных чисел:

47 skalyarnoe proizvedenie

Примечание. Иногда скалярное произведение вектора на самого себя именуют скалярным квадратом.

Тогда выражение (1) примет вид:

48 skalyarnoe proizvedenie

В сегодняшнем уроке мы узнали, что такое скалярное произведение. Оно имеет много приложений в физике и других науках, в частности, с его помощью вычисляется работа. В геометрии оно помогает вычислять углы между векторами, а значит, и между прямыми. В будущем, при более углубленном изучении геометрии, вы узнаете о существовании других типов произведений векторов – векторном и смешанном.

Добавить комментарий