Как найти углы нормали

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора:

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Сумма векторов:

Разность векторов:

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1.  В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2.  В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и :

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму.

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

Для точки M:

То есть A + C + D = 0.

Для точки N:

Аналогично для точки K:

Получили систему из трех уравнений:

.

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

;

.

Выразим C и B через A и подставим в третье уравнение:

.

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Упростим систему:

.

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать “параллелепипед”.

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Итак, AA1 = √3

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор  или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

  

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Векторы в пространстве и метод координат» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Метод координат — весьма эффективный и универсальный способ нахождения любых углов или расстояний между стереометрическими объектами в пространстве. Если Ваш репетитор по математике имеет высокую квалификацию, то он должен это знать. В противном случае я бы советовал для «С» части сменить репетитора. Моя подготовка к ЕГЭ по математике С1-С6 обычно включает разбор основных алгоритмов и формул, описанных ниже.

Угол между прямыми а и b

Метод координат - угол между прямыми

Углом между прямыми в пространстве называется угол между любыми параллельными им пересекающимися прямыми. Этот угол равен углу между направляющими векторами данных прямых (или дополняет его до 180 град).

Какой алгоритм использует репетитор по математике для поиска угла?

1) Выбираем любые вектора overrightarrow{AB} и overrightarrow{CD}, имеющие направления прямых а и b (параллельные им).
2) Определяем координаты векторов overrightarrow{AB}(x_1;y_1) и overrightarrow{CD}(x_2;y_2) по соответствующим координатам их начал и концов (от координат конца вектора нужно отнять координаты начала).
3) Подставляем найденный координаты в формулу:
Cos (widehat{AB,CD}) =left vert Cos(widehat{ overrightarrow{AB},overrightarrow{CD}}) right vert =left vert dfrac{x_1x_2+y_1y_2}{sqrt{x_1^2+y_1^2} cdot sqrt{x_2^2+y_2^2}} right vert . Для нахождения самого угла, нужно найти арккосинус полученного результата.

Нормаль к плоскости

Нормалью vec{n} к плоскости называется любой вектор, перпендикулярный к этой плоскости.
Как найти нормаль? Для поиска координат нормали достаточно узнать координаты любых трех точек M, N и K, лежащих в данной плоскости. По этим координатам находим координаты векторов overrightarrow{MN} и overrightarrow{MK} и требуем выполнения условий overrightarrow{n} perp overrightarrow{MN} и overrightarrow{n} perp overrightarrow{MK}. Приравнивая скалярные произведение векторов к нулю, составляем систему уравнений с тремя переменными, из которой можно найти координаты нормали.

Замечание репетитора по математике: Совсем не обязательно решать систему полностью, ибо достаточно подобрать хотя бы одну нормаль. Для этого можно подставить вместо какой-нибудь из ее неизвестных координат любое число (например единицу) и решить систему двух уравнений с оставшимися двумя неизвестными. Если она решений не имеет, то это значит, что в семействе нормалей нет той, у которой по выбранной переменной стоит единица. Тогда подставьте единицу вместо другой переменной (другой координаты) и решите новую систему. Если опять промахнетесь, то Ваша нормаль будет иметь единицу по последней координате, а сама она окажется параллельной какой-нибудь координатной плоскости (в таком случае ее легко найти и без системы).

Угол между прямой и плоскостью

Угол между прямой и плоскостьюДопустим, что нам заданы прямая и плоскость координатами направляющего вектора overrightarrow{AB}(x_1;y_1) и нормали overrightarrow{n}(x_2;y_2)
Угол psi между прямой и плоскость вычисляется по следующей формуле:
Sin psi = left vert Cos(widehat{ overrightarrow{n},overrightarrow{AB}}) right vert = left vert dfrac{x_1x_2+y_1y_2}{sqrt{x_1^2+y_1^2} cdot sqrt{x_2^2+y_2^2}} right vert

Угол между плоскостями

Пусть overrightarrow{n_1} (x_1;y_1) и overrightarrow{n_1} (x_1;y_1) — две любые нормали к данным плоскостям. Угол между плоскостями Тогда косинус угла boldsymbol{psi} между плоскостями равен модулю косинуса угла между нормалями:

Cos psi = left vert Cos(widehat{ overrightarrow{n_1},overrightarrow{n_2}}) right vert =left vert dfrac{x_1x_2+y_1y_2}{sqrt{x_1^2+y_1^2} cdot sqrt{x_2^2+y_2^2}} right vert

Уравнение плоскости в пространстве

Плоскость, заданная уравнениемТочки, удовлетворяющие равенству A cdot x + B cdot y + C cdot z + D =0 образуют плоскость с нормалью overrightarrow{n}(A;B;C). Коэффициент D отвечает за величину отклонения (параллельного сдвига) между двумя плоскостями с одной и той же заданной нормалью overrightarrow{n}(A;B;C). Для того, чтобы написать уравнение плоскости нужно сначала найти ее нормаль (как это описано выше), а затем подставить координаты любой точки плоскости вместе с координатами найденной нормали в уравнение A cdot x + B cdot y + C cdot z + D =0 и найти коэффициент D.

Расстояние от точки до плоскости

Расстояние от точки до плоскости
Для вычисления расстояния rho(M;alpha) от точки M(x_0;y_0;z_0) до плоскости alpha, заданной уравнением A cdot x + B cdot y + C cdot z + D =0 можно использовать следующую формулу:

rho(M;alpha)=dfrac{|A cdot x_0 + B cdot y_0 + C cdot z_0 + D|}{sqrt{A^2+B^2+C^2}}
В знаменателе стоит длина нормали, а числителе — значение выражения из левой части уравнения плоскости в точке M(x_0;y_o;z_0)

Комментарий репетитора по математике:

Методом координат можно находить не только углы и расстояния в пространстве, но и
1) площади многоугольников (треугольника, параллелограмма), расположенных в заданной плоскости.
2) объемы простейших многогранников (параллелепипедов и пирамид).

Для понимания таких формул нужно изучить понятия векторного и смешанного произведения векторов, а также определителя матрицы. В скором времени я сделаю для вычисления объемов соответствующую справочную страничку.

Средства аналитической геометрии репетитор по математике практически не использует в работе со средним и тем более слабым учеником. И очень жаль, что загруженность среднестатистического сильного школьника не позволяет репетитору провести более-менее серьезную работу на уровне определений из высшей математики и с соответствующей практикой решения задач. Поэтому я часто ограничиваюсь простым сообщением формул и демонстрацией одного – двух примеров их использования. В школьной программе не предусмотрено время для изучения векторных приемов вообще, однако на ЕГЭ Вы имеете право решать задачу С2 любым из известных науке способов. Отсюда мораль: учите координаты. Расширенная подготовка к ЕГЭ по математике с изучением приемов аналитической геометрии даст Вам мощное и универсальное средство для решения огромного класса задач типа С2. Пользуйтесь этой страничкой на здоровье!

Колпаков А.Н. Репетитор по математике Москва (Строгино).

29
Мар 2012

13 Задание (2022) (C2)

В этой статье я еще раз покажу вам решение задачи на нахождение угла между плоскостями с помощью метода координат. Мы воспользуемся тем фактом, что угол между плоскостями равен углу между прямыми, содержащими  нормали к этим плоскостям.

Задача такая:

Основание прямой четырехугольной призмы ABCDA_1B_1C_1D_1 – прямоугольник A_1B_1C_1D_1, в котором A_1B_1=12A_1D_1=sqrt{31}. Найдите косинус угла между плоскостью основания призмы и плоскостью, проходящей через середину ребра A_1D_1 перпендикулярно прямой BD_1, если расстояние между прямыми AC и B_1D_1 равно 5. 

Геометрическое решение этой задачи весьма неочевидно, однако, с помощью метода координат она решается в одно действие.

Заметим несколько важных вещей:

1.  Угол между плоскостью основания и плоскостью, перпендикулярной прямой BD_1, не зависит от точки, через которую проведена эта плоскость. Поэтому мы эту точку даже не будем наносить на чертеж.

2. Прямые AC и B_1D_1 лежат в параллельных плоскостях ABCD и A_1B_1C_1D_1, поэтому расстояние между ними равно расстоянию между плоскостями, то есть высоте призмы. Отсюда  DD_1=5.

3. Боковые ребра прямой призмы перпендикулярны плоскости основания.

Поместим нашу призму в систему координат и нанесем на чертеж данные задачи:

Вспомним, что

1. В уравнении плоскости ax+by+cz+d=0 коэффициенты (a;b;c) являются координатами вектора нормали к плоскости.

2. Угол между плоскостями равен углу между прямыми, содержащими нормали к этим плоскостям (как углы со взаимно перпендикулярными сторонами)

Получается, что в этой задаче нам нужно найти угол между вектором BD_1 ( по условию задачи плоскость проведена перпендикулярно прямой BD_1) и вектором B_1B (это вектор нормали к плоскости основания).

Косинус угла  beta между векторами vec{a}(x_1;y_1;z_1) и vec{b}(x_2;y_2;z_2) вычисляется по формуле:

cos{beta}={{x_1}{x_2}+{y_1}{y_2}+{z_1}{z_2}}/{sqrt{{x_1}^2+{y_1}^2+{z_1}^2}{sqrt{{x_2}^2+{y_2}^2+{z_2}^2}} }

Найдем координаты вектора BD_1

B(0;0;5)

D_1(sqrt{31};12;0)

vec{BD_1}(sqrt{31};12;-5)

vec{B_1B}(0;0;5)

Пусть beta  – угол между плоскостью основания призмы и плоскостью, проходящей через середину ребра AD перпендикулярно прямой BD_1.

Тогда cos{beta}=delim{|}{{-25}/{sqrt{(sqrt{31})^2+12^2+({-5})^2}sqrt{25}}}{|}=5/{sqrt{200}}=1/{2sqrt{2}}={sqrt{2}}/4

Ответ: {sqrt{2}}/4

И.В. Фельдман, репетитор по математике.

Угол между плоскостями и  вектор нормали. Задание С2

|
Отзывов (11)
| Метки: решение задания С2

ЛЕКЦИЯ

по
учебной дисциплине

МАТЕМАТИКА

Тема
№ 2. Основы аналитической геометрии

Занятие
.Плоскость в пространстве

Введение

В лекции рассмотрим
различные виды уравнения плоскости в
пространстве, докажем, что уравнение
первой степени определяет в пространстве
плоскость, по уравнениям плоскостей
научимся определять их взаимное
расположение в пространстве.

1.
Основные понятия

Определение.
Пусть задана прямоугольная система
координат, любая поверхность S
и уравнение

F(x,
y,
z)
= 0
(1)

Будем
говорить, что уравнение является (1)
является уравнением поверхности S
в заданной системе координат, если ему
удовлетворяют координаты каждой точки
этой поверхности и не удовлетворяют
координаты никакой точки, которая не
принадлежит этой поверхности. С точки
зрения данного определения поверхность
есть множество точек пространства R3
.

Пример.
Уравнение

x2
+ y2
+ z2
= 52

поверхность,
которая является сферой радиуса 5, с
центром в точке 0(0,0,0).

2.
Уравнения плоскости в пространстве

2.1. Общее уравнение
плоскости

Определение.
Плоскостью
называется
поверхность, вес точки которой
удовлетворяют общему уравнению:

Ax
+ By
+ Cz
+ D
= 0,

где
А, В, С – координаты вектора

вектор нормали
к плоскости.

Возможны
следующие частные случаи:

А
= 0 – плоскость параллельна оси Ох

В
= 0 – плоскость параллельна оси Оу

С
= 0 – плоскость параллельна оси Оz

D
= 0 – плоскость проходит через начало
координат

А
= В = 0 – плоскость параллельна плоскости
хОу

А
= С = 0 – плоскость параллельна плоскости
хОz

В
= С = 0 – плоскость параллельна плоскости
yOz

А
= D
= 0 – плоскость проходит через ось Ох

В
= D
= 0 – плоскость проходит через ось Оу

С
= D
= 0 – плоскость проходит через ось Oz

А
= В = D
= 0 – плоскость совпадает с плоскостью
хОу

А
= С = D
= 0 – плоскость совпадает с плоскостью
xOz

В
= С = D
= 0 – плоскость совпадает с плоскостью
yOz

2.2. Уравнение
плоскости, проходящей через три точки

Для
того, чтобы через три какие- либо точки
пространства можно было провести
единственную плоскость, необходимо,
чтобы эти точки не лежали на одной
прямой.

Рассмотрим
точки М1(x1,
y1,
z1),
M2(x2,
y2,
z2),
M3(x3,
y3,
z3)
в общей декартовой системе координат.

Для
того, чтобы произвольная точка М(x,
y,
z)
лежала в одной плоскости с точками М1,
М2,
М3
необходимо, чтобы векторы

были компланарны.

()
= 0

Таким
образом,

Уравнение
плоскости, проходящей через три точки:

2.3.Уравнение
плоскости по двум точкам и вектору,
коллинеарному плоскости.

Пусть
заданы точки М1(x1,
y1,
z1),
M2(x2,
y2,
z2)
и вектор
.

Составим
уравнение плоскости, проходящей через
данные точки М1
и М2
и произвольную точку М(х, у, z)
параллельно вектору
.

Векторы
и
вектор

должны быть компланарны, т.е.

()
= 0

Уравнение
плоскости:

2.4.Уравнение
плоскости по одной точке и двум векторам,

коллинеарным
плоскости.

Пусть
заданы два вектора

и
,
коллинеарные плоскости. Тогда для
произвольной точки М(х,
у,
z),
принадлежащей плоскости, векторы

должны быть компланарны.

Уравнение
плоскости:

2.5.Уравнение
плоскости по точке и вектору нормали.

Теорема.
Если в пространстве задана точка М
00,
у
0,
z0),
то уравнение плоскости, проходящей
через точку М
0
перпендикулярно вектору нормали

(A,
B,
C)
имеет вид:

A(x
x0)
+
B(y
y0)
+
C(z
z0)
= 0.

Доказательство.
Для произвольной точки М(х, у, z),
принадлежащей плоскости, составим
вектор
.
Т.к. вектор

– вектор нормали, то он перпендикулярен
плоскости, а, следовательно, перпендикулярен
и вектору
.
Тогда
скалярное
произведение

=
0.

Таким
образом, получаем уравнение плоскости

Теорема
доказана.

2.6.Уравнение
плоскости в отрезках.

Если
в общем уравнении Ах
+ Ву + С
z
+
D
= 0
поделить
обе части на –D

,

заменив
,
получим уравнение плоскости в отрезках:

Числа
a,
b,
c
являются точками пересечения плоскости
соответственно с осями х,
у,
z.

2.7.Расстояние от
точки до плоскости.

Расстояние
от произвольной точки М00,
у0,
z0)
до плоскости Ах+Ву+Сz+D=0
равно:

Пример.
Найти уравнение плоскости, зная, что
точка Р(4; –3; 12) – основание перпендикуляра,
опущенного из начала координат на эту
плоскость.

Таким
образом, A
= 4/13; B
= –3/13; C
= 12/13, воспользуемся формулой:

A(x
– x
0)
+ B(y – y
0)
+ C(z – z
0)
= 0.

Пример.
Найти уравнение плоскости, проходящей
через две точки P(2;
0; –1) и Q(1;
–1; 3) перпендикулярно плоскости 3х + 2у
– z
+ 5 = 0.

Вектор
нормали к плоскости 3х + 2у – z
+ 5 = 0
параллелен
искомой плоскости.

Получаем:

Пример.
Найти уравнение плоскости, проходящей
через точки А(2, –1, 4) и В(3, 2, –1)
перпендикулярно плоскости х
+ у
+ 2z
– 3 = 0.

Искомое
уравнение плоскости имеет вид: Ax
+ By
+ Cz
+ D
= 0, вектор нормали к этой плоскости
(A,
B,
C).
Вектор
(1,
3, –5) принадлежит плоскости. Заданная
нам плоскость, перпендикулярная искомой
имеет вектор нормали
(1,
1, 2). Т.к. точки А и В принадлежат обеим
плоскостям, а плоскости взаимно
перпендикулярны, то

Таким
образом, вектор нормали
(11,
–7, –2). Т.к. точка А принадлежит искомой
плоскости, то ее координаты должны
удовлетворять уравнению этой плоскости,
т.е. 112
+ 71
– 24
+ D
= 0; D
= –21.

Итого,
получаем уравнение плоскости: 11x
– 7y
– 2z
– 21 = 0.

Пример.
Найти уравнение плоскости, зная, что
точка Р(4, -3, 12) – основание перпендикуляра,
опущенного из начала координат на эту
плоскость.

Находим
координаты вектора нормали
=
(4, -3, 12). Искомое уравнение плоскости
имеет вид: 4x
– 3y
+ 12z
+ D
= 0. Для нахождения коэффициента D
подставим в уравнение координаты точки
Р:

16
+ 9 + 144 + D
= 0.

D
= –169.

Итого,
получаем искомое уравнение: 4x
– 3y
+ 12z
– 169 = 0

Пример.
Даны координаты вершин пирамиды А1(1;
0; 3), A2(2;
–1; 3), A3(2;
1; 1), A4(1;
2; 5).

  1. Найти
    длину ребра А1А2.

  1. Найти
    угол между ребрами А1А2
    и А1А4.

Найти
угол между ребром А1А4
и гранью А1А2А3.

Сначала
найдем вектор нормали к грани А1А2А3

как векторное произведение векторов
и.

=
(2–1;
1–0;
1–3)
= (1; 1; –2);

Найдем
угол между вектором нормали и вектором
.

–4
– 4 = –8.

Искомый
угол 
между вектором и плоскостью будет равен

= 900
– .

  1. Найти
    площадь грани А1А2А3.

  1. Найти
    объем пирамиды.


(ед3).

  1. Найти
    уравнение плоскости А1А2А3.

Воспользуемся
формулой уравнения плоскости, проходящей
через три точки.

2x
+ 2
y
+ 2
z
– 8 = 0

x
+
y
+
z
– 4 = 0;

3.
Взаимное расположение плоскостей

Пусть
заданы две плоскости

3.1.
Угол между плоскостями

1


0

Рис.
3

Угол
между двумя плоскостями в пространстве

связан с углом между нормалями к этим
плоскостям 1
соотношением: 
= 1
или 
= 1800
– 1,
т.е.

cos
= cos1.

Определим
угол 1.
Известно, что плоскости могут быть
заданы соотношениями:

,

где

(A1,
B1,
C1),

(A2,
B2,
C2).

Угол
между векторами нормали найдем из их
скалярного произведения:

.

Таким
образом, угол между плоскостями находится
по формуле:

Выбор
знака косинуса зависит от того, какой
угол между плоскостями следует найти
– острый, или смежный с ним тупой.

3.2. Условия
параллельности и перпендикулярности
плоскостей.

На
основе полученной выше формулы для
нахождения угла между плоскостями можно
найти условия параллельности и
перпендикулярности плоскостей.

Для
того, чтобы плоскости были перпендикулярны
необходимо и достаточно, чтобы косинус
угла между плоскостями равнялся нулю.
Это условие выполняется, если:

.

Плоскости
параллельны, векторы нормалей коллинеарны:

.Это
условие выполняется, если:
.

7

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Задание. Найти тангенс угла между кривыми $y=x^2-1$ и
$y=x^3-1$ в точке их пересечения, которая имеет большую абсциссу.

Решение. Вначале найдем точки пересечения графиков заданных функций, для этого совместно разрешим уравнение заданных кривых:

$$begin{array}{c}
left{begin{array}{l}
y_{1}=x^{2}-1 \
y_{2}=x^{3}-1
end{array} Rightarrow x^{2}-1=x^{3}-1 Rightarrow x^{3}-x^{2}=0 Rightarrowright. \
Rightarrow x_{1,2}=0, x_{3}=1
end{array}$$

Таким образом, искомая точка $x=1$.

Далее находим производные заданных функций в найденной точке:

$$begin{array}{c}
y_{1}^{prime}=left(x^{2}-1right)^{prime}=left(x^{2}right)^{prime}-(1)^{prime}=2 x-0=2 x, y_{1}^{prime}(1)=2 \
y_{2}^{prime}=left(x^{3}-1right)^{prime}=left(x^{3}right)^{prime}-(1)^{prime}=3 x^{2}-0=3 x^{2}, y_{2}^{prime}(1)=3
end{array}$$

Итак, искомый тангенс:

$$operatorname{tg} phi=frac{3-2}{1+2 cdot 3}=frac{1}{7}$$

Ответ. $operatorname{tg} phi=frac{1}{7}$

Добавить комментарий