Как найти углы пересечения кривых

Угол между двумя пересекающимися кривыми определяется как угол между двумя прямыми, касательными к кривым в точке их пересечения (рис. 1) по формуле

displaystyle tg: varphi =frac{k_{1}-k_{2}}{1+k_{1}k_{2}},; ; (2)

где displaystyle k_{1} и displaystyle k_{2} — угловые коэффициенты касательных к кривым в точке их пересечения displaystyle P(x_{0},y_{0}),
т. е. частные значения в точке displaystyle x_{0} производных от y по x из уравнений этих кривых:

displaystyle k_{1}=tg: alpha _{1}=left ( frac{dy_{1}}{dx} right )_{x=x_{0}};; k_{2}=tg: alpha _{2}=left ( frac{dy_{2}}{dx} right )_{x=x_{0}}.


Угол между двумя кривыми. Практикум по математическому анализу. Урок 36

Рис.1

Пример 1. Найти углы, под которыми пересекаются следующие линии:
1) прямая displaystyle x+y-4=0 и парабола displaystyle 2y=8-x^{2};
2) эллипс displaystyle x^{2}+4y^{2}=4 и парабола displaystyle 4y=4-5x^{2};
3) синусоида displaystyle y=sin x и косинусоида displaystyle y=cos x.
Решение.
1) Совместно решая уравнения параболы и прямой, находим, что они пересекаются в двух точках: A(0;4) и B(2;2), рис.2.
Угол между двумя кривыми. Практикум по математическому анализу. Урок 36

Рис.2

Далее находим производную от y по x из уравнения параболы: displaystyle 2y'=-2x,: y'=-x и определяем угловые коэффициенты касательных к параболе в точках A и B, как частные значения этой производной:

displaystyle y'_{A}=k_{A}=0;; y'_{B}=k_{B}=-2.

Угловой коэффициент прямой один и тот же во всех ее точках; у данной прямой он равен — 1.
Согласно формуле (2) получим

displaystyle textrm{tg}: A=1,: A=45^{circ};; textrm{tg}: B=frac{-1+2}{1+2}=frac{1}{3},; Bapprox 18,5^{circ}.

2) Решая совместно уравнения кривых, находим их общие точки: A(1,2;-0,8), B(0;1) и C(-1,2;-0,8) рис.3. Затем определяем угловые коэффициенты displaystyle k_{1} и displaystyle k_{2} касательных в любой точке эллипса и параболы как производные от y по x из их уравнений

displaystyle k_{1}=-frac{x}{4y};; k_{2}=-frac{5}{2}x.

Угол между двумя кривыми. Практикум по математическому анализу. Урок 36

Рис.3

Подставляя координаты точки A, получим displaystyle k_{1}=frac{3}{8} и displaystyle k_{2}=-3. Следовательно, в точке A:

displaystyle textrm{tg}: varphi =frac{frac{3}{8}+3}{1-frac{9}{8}}=-27;; varphi approx 92^{circ}.

Под таким же углом кривые пересекаются и в точке C вследствие их симметричности относительно оси Oy.
В точке B имеем: displaystyle k_{1}=k_{2}=0, следовательно, в точке кривые имеют общую касательную, т. е. касаются друг друга. В этой точке угол между кривыми равен нулю.
3) Абсциссы точек пересечения кривых (рис.4) определяются уравнением displaystyle sin x=cos x, решая которое, получим

displaystyle x=frac{pi }{4}+pi n; (n=0,pm 1,pm 2,...).

Дифференцированием находим угловые коэффициенты касательных к синусоиде и косинусоиде: displaystyle k_{1}=cos x;: k_{2}=-sin x.
Угол между двумя кривыми. Практикум по математическому анализу. Урок 36

Рис.4

Искомый угол между кривыми определяем по общей формуле (2)
displaystyle textrm{tg}: varphi =frac{cos x+sin x}{1-cos xsin x}=pm frac{frac{sqrt{2}}{2}+frac{sqrt{2}}{2}}{1-frac{1}{2}}=pm 2sqrt{2}.
Положительному знаку соответствует острый угол displaystyle varphi approx 70,5^{circ}, отрицательному — тупой, смежный с ним угол displaystyle varphi_{1} approx 109,5^{circ}.

Углом
между двумя кривыми

у
= f1(x)
и у
= f2(x)
в точке их пересечения М0(х0,
у0)
называется угол между касательными к
этим кривым в точке М0.
Этот угол определяется по формуле

=

.

Пример.
Найти угол между параболами

у
= 8 – х2
и у
= х2.

□ Для
нахождения координат точек пересечения
заданных кривых решим систему уравнений

В
результате получим А(2;
4) и В(−2;
4). Продифференцируем уравнения парабол:

= −2х,

= 2х.
Найдем значения

и

для точки А(2;
4):

= −4,

= 4. Следовательно,

=

=

и

=


.

Аналогично
определяется угол между кривыми в точке
В(−2;
4):

=


.

§ 21. Формула тейлора

Теорема.
Пусть функция f(x)
имеет в точке а
и некоторой ее окрестности производные
порядка п
+ 1. Пусть х
– любое значение аргумента из указанной
окрестности, х
а.
Тогда между точками а
и х
найдется точка

такая, что справедлива формула:

f(x)
= f(а)
+

(х
а)
+
(х
а)2+
…+

(х
а)п
+

+
(х
а)п+1.

Эту
формулу называют формулой
Тейлора
.

Выражение

Rn+1(x)
=

(х
а)п+1

называют
остаточным
членом

формулы Тейлора.

Запишем остаточный
член в другом виде:

так
как

(а,
х),
то найдется число

,
0 <

< 1, что

= а
+

(х
а)
и тогда

Rn+1(x)
=

(х
а)п+1,
0 <

< 1.

Эта
форма остаточного члена наиболее
употребительна в приложениях.

Если
в формуле Тейлора а
= 0, то получим формулу
Маклорена
:

f(x)
= f(0)
+

х
+

х2
+
… +

хп
+
Rn+1(x)

с
остаточным членом

Rn+1(x)
=

хп+1,
0 <

< 1.

Разложение
некоторых элементарных функций по
формуле Маклорена

1.
f(x)
= ех.

Так как

f(x)
=

=

= … = f
п+1(x)
= ех,

f(0)
=

=

= … = f
п+1(0)
= 1,

то
формула Маклорена имеет вид

ех
= 1 +

+

+

+…+

+ Rn+1(x),

где

Rn+1(x)
=

хп+1,
0 <

< 1.

Аналогично
можно разложить по формуле Маклорена
следующие функции:

2.
f(x)
=

.

= х

+



+
…+ (−1)т+1

+ R2т(x),

где
R2т(x)
= (−1)т
·
,
0 <

< 1.

3.
f(x)
=

.

= 1

+



+
…+ (−1)т

+ R2т+1(x),

где
R2т+1(x)
= (−1)т+1
·
,
0 <

< 1.

4.
f(x)
= (1 + х)т.

(1
+ х)т
=1+
х+
х2+

х
3+…+

+

х
п
+Rn+1(x),

где

Rn+1(x)=

х
п+1(1
+

)тп-1,
0 <

< 1.

Пример.
Вычислить число е.

□ Запишем
разложение ех
по формуле Маклорена:

ех

= 1+

+

+

+…+

+
хп+1,
0 <

< 1.

Если
заменить функцию ех
ее многочленом Тейлора степени п
(отбросим остаточный член), то получим
приближенное равенство

ех

1 +

+

+

+…+

,
(1)

абсолютная
погрешность которого

| Rn+1(x)
| =

| х
|п+1,
0 <

< 1.

Если
рассматривать функцию ех
для −1 ≤ х
≤ 1, то

|
Rn+1(x)
| ≤

<

.

Полагая
в (1) х
= 1, получаем приближенное значение числа

е
≈ 1+

+

+

+ …+

.

При
этом | Rn+1(x)
| <

.

Если
требуется вычислить значение е
с точностью

= 0,001, то число п
определяется из неравенства

< 0,001, или (п
+ 1)! > 3000,

которое
выполняется при п
= 6. Следовательно,

е
≈ 1+

+

+

+ …+

.

Вычисляя
с четырьмя знаками после запятой, получим

е
≈ 2,7180.

Три
знака после запятой гарантированы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Задание. Найти тангенс угла между кривыми $y=x^2-1$ и
$y=x^3-1$ в точке их пересечения, которая имеет большую абсциссу.

Решение. Вначале найдем точки пересечения графиков заданных функций, для этого совместно разрешим уравнение заданных кривых:

$$begin{array}{c}
left{begin{array}{l}
y_{1}=x^{2}-1 \
y_{2}=x^{3}-1
end{array} Rightarrow x^{2}-1=x^{3}-1 Rightarrow x^{3}-x^{2}=0 Rightarrowright. \
Rightarrow x_{1,2}=0, x_{3}=1
end{array}$$

Таким образом, искомая точка $x=1$.

Далее находим производные заданных функций в найденной точке:

$$begin{array}{c}
y_{1}^{prime}=left(x^{2}-1right)^{prime}=left(x^{2}right)^{prime}-(1)^{prime}=2 x-0=2 x, y_{1}^{prime}(1)=2 \
y_{2}^{prime}=left(x^{3}-1right)^{prime}=left(x^{3}right)^{prime}-(1)^{prime}=3 x^{2}-0=3 x^{2}, y_{2}^{prime}(1)=3
end{array}$$

Итак, искомый тангенс:

$$operatorname{tg} phi=frac{3-2}{1+2 cdot 3}=frac{1}{7}$$

Ответ. $operatorname{tg} phi=frac{1}{7}$



Знаток

(296),
закрыт



14 лет назад

Евгений

Мастер

(2175)


14 лет назад

Надем точку пересечения 1/х=√x. Корень один x=1
Далее найдем угол наклона каждой касательной в точке x=1
k1= (1/x)’=(-1/x^2), подставляем x=1, k1=-1
k2= (√x)’= 1/2√x, получаем k2=0,5
Далее находим угол между двумя касательными по формуле: tga = |(k1-k2)/(1+k1*k2)|=1/3
C тебя два поцелуя! 🙂

Источник: Мозг

Алексей Логинов

Гуру

(4856)


14 лет назад

Как я понимаю, найти угол между и касательными в точке пересечения?
Найдем значение x в тчоке пересечения:
y1 = 1 / x ; y2 = sqrt( x )
1 / x = sqrt( x )
x = 1
Найдем производные
y1′(x) = -1 / x^2
y2′(x) = 1 / [ 2 * sqrt( x ) ]
Значение производной в точке касания – угловой коэффициент касательной, т. е.
k1 = tg( ф1 ) = y1′( x = 1 ) = -1
k2 = tg( ф2 ) = y2′( x = 1 ) = 1/2
Угол между прямыми: ф = arctg[ ( k2 – k1) / ( 1 + k1*k2 ) ]

Как найти угол под которым пересекаются кривые

Читайте также:

  1. II. Операционная стратегия на примере отдельного предприятия.
  2. PEST-анализ и пример его использования
  3. SWOT-анализ и пример его использования
  4. VI. ПРИМЕРНЫЙ ПЕРЕЧЕНЬ КОНТРОЛЬНЫХ ВОПРОСОВ ПО ПОДГОТОВКЕ К ЭКЗАМЕНУ
  5. А Примерный перечень вопросов, рассматриваемых на практических занятиях
  6. А. Работа переписчиков на Руси. Причины и примеры порчи текста в древнеславянских рукописях библейских книг.
  7. А.2. Пример описания объекта
  8. Анализ примера
  9. Аппаратная поддержка мультипрограммирования на примере процессора Pentium 1 страница
  10. Аппаратная поддержка мультипрограммирования на примере процессора Pentium 2 страница
  11. Аппаратная поддержка мультипрограммирования на примере процессора Pentium 3 страница
  12. Аппаратная поддержка мультипрограммирования на примере процессора Pentium 4 страница

Решение.Найдем точки пересечения кривых, решив систему уравнений

Отсюда имеем , . Далее, определим угловые коэффициенты касательных к параболе в точках и .Соответственно имеем , . Угловой коэффициент прямой во всех точках один и тот же и равен в нашем случае 2. Далее находим углы ,

.

Пример 3.Определить в каких точках заданной линии касательная к этой линии параллельна прямой и написать уравнение этой касательной

, .

Решение. Находим производную . Далее находим значение из уравнения . Имеем, .Значения функции при есть и . Отсюда имеем, и точки заданной линии в которых касательная к этой линии параллельна данной прямой . Найдем теперь уравнения этих касательных. Используя формулу (1), получим

-уравнение касательной в точке ,

-уравнение касательной в точке .

Контрольные вопросы.

1.Геометрический смысл производной.

2.Касательная и нормаль к кривой.

3.Угол между двумя кривыми.

4.Другие приложения производной.

Задания.

1.Найти углы, под которыми пересекаются эллипс и парабола

, .

2. Определить в каких точках заданной линии касательная к этой линии параллельна прямой и написать уравнение этой касательной

1) , ; 2) , ; 3) , .

3.Найти угол между кривой и прямой

Дата добавления: 2014-12-16 ; Просмотров: 3162 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Планиметрические задачи

Задача 1.Написать уравнения касательной и нормали к графику функциив данной точке, если:

Решение. Уравнение касательной будем искать по формуле ; уравнение нормали — по формуле По условию, .

Подставляем все найденные значения в уравнение касательной:

Теперь находим уравнение нормали:

Ответ: уравнение касательной:; уравнение нормали:

Задача 2.Написать уравнения касательной и нормали в точке

Подставим полученные решения в равенство

Найдем производную функции, заданной параметрически .

Подставляем все найденные значение в уравнение касательной:

Теперь находим уравнение нормали:

Ответ: уравнение касательной: уравнение нормали: .

Задача 3. Найти углы, под которыми пересекаются заданные кривые:

Решение. Угол между кривыми находится по формуле

Найдем координаты точки пересечения заданных кривых. Решаем систему уравнений:

Таким образом, кривые пересекаются в точках .

Далее найдем значения производных заданных функций в точках пересечения.

производный дифференцирование уравнение планиметрический

Подставляем найденные значение в формулу нахождения угла:

Ответ: в точке угол равен 0 (т.е. касательные совпадают), в точке угол равен .

Задача 4. Задан прямоугольник с периметром 56 см. Каковы должны быть его стороны, чтобы площадь была наибольшей [7]?

Обозначим одну из сторон за, тогда вторая сторона:

Площадь такого прямоугольника составит:

Требуется найти максимум функции .

Это квадратичная функция, ее график — парабола, ветви которой направлены вниз.

Определим критические точки: .

Так, — точка экстремума, слева от нее производная положительна, а справа — отрицательна.

Очевидно, что — точка максимума. В таком случае площадь прямоугольника максимальна, когда его стороны равны 14 см, то есть когда он является квадратом.

Ответ: площадь максимальна, когда стороны прямоугольника равны 14 см.

Задача 5. Площадь прямоугольника составляет . Каковы должны быть его размеры этого прямоугольника, чтобы периметр был минимальным?[7]

Пусть стороны прямоугольника равны . Тогда:

Периметр такого прямоугольника составит:

Требуется найти минимум данной функции. Найдём производную:

Найдем точки экстремума:

Очевидно, что , поэтому нас интересует точка .Слева от нее производная отрицательна, а справа — положительна.

Так, — точка минимума.

Ответ: чтобы периметр прямоугольника был минимальным, его стороны должны составить 4 см.

Задача 6. Две стороны параллелограмма лежат на сторонах заданного треугольника, а одна из его вершин принадлежит третьей стороне. Найти условия, при которых площадь параллелограмма является наибольшей [2].

Пусть треугольник определяется двумя сторонами и углом между ними (рис.4). Построим параллелограмм в соответствии с условиями задачи. Обозначим стороны параллелограмма Площадь параллелограмма определяется формулой

Выразим через и стороны треугольника . Из подобия треугольников и следует, что

В результате площадь записывается как функция:

Отсюда видно, что экстремум функциисуществует в следующей точке:

При переходе через эту точку производная меняет свой знак с плюса на минус, то есть эта точка является точкой максимума. Другая сторона параллелограмма при этом равна

Итак, вписанный в треугольник параллелограмм со сторонами имеет наибольшую площадь при условии

где стороны треугольника. Интересно, что результат не зависит от угла между сторонами треугольника.

Ответ: площадь параллелограмма является наибольшей при условии

где стороны треугольника.

Задача 7.Среди всех равнобедренных треугольников, вписанных в данную окружность, найти треугольник с наибольшим периметром [2].

Пусть треугольник вписан в окружность данного радиуса ,

(независимая переменная) (рис.5). Выразим периметр треугольника как функцию . По теореме синусов:

. Найдем, при каком значении функция принимает наибольшее значение на данном интервале

следовательно, точка максимума, в которой функция принимает наибольшее значение на заданном промежутке. Таким образом, наибольший периметр имеет равносторонний треугольник.

Ответ: среди всех равнобедренных треугольник, вписанных в данную окружность, с наибольшим периметром является равносторонний треугольник.

Задача 8.Окно имеет форму прямоугольника, ограниченного сверху полукругом.

Периметр окна равен . Определить радиус полукруга , при котором площадь окна является наибольшей (рис.6) [2].

Очевидно, что одна сторона прямоугольника равна . Другую сторону обозначим через . Периметр всего окна выражается формулой

Площадь окна составляет:

Полученное выражение представляет собой функцию . Исследуем ее на экстремум. Находим производную:

Определяем стационарные точки:

Поскольку вторая производная отрицательна:

то найденная точка является точкой максимума, т.е. при этом значении площадь окна будет наибольшей.

Само максимальное значение площади составляет

Ответ: радиус полукруга , при котором площадь является наибольшей.

Reshak.ru — сборник решебников для учеников старших классов. Здесь можно найти решебники, ГДЗ, переводы текстов по школьной программе. Практически весь материал, собранный на сайте — сделанный для людей. Все решебники выполнены качественно, с приятной навигацией. Вы сможете скачать гдз, решебник английского, улучшить ваши школьные оценки, повысить знания, получить намного больше свободного времени.

Главная задача сайта: помогать школьникам в решении домашнего задания. Кроме того, весь материал гдз совершенствуется, добавляются новые сборники решений.

Информация

© adminreshak.ru

Добавить комментарий