Как найти углы с помощью угольника

Фото автора
Фото автора

Добрый день, уважаемые гости!

Сегодня, я хотел бы описать полезный совет, как очень быстро построить или измерить любой угол с помощью обычного строительного угольника, когда других инструментов попросту нет под рукой.

Нам сейчас совершенно не потребуются ни угломеры, ни транспортиры и построение угла будет произведено угольником всего лишь в три шага.

1. Построение

Шаг №1

Как мы знаем, угол — это место на плоскости между двумя пересекающимися линиями (или сторонами какого-либо предмета), которые выходят из одной точки, называемой вершиной угла.

Итак, при построении угла, ставим угольник делением “0” (ноль) см. в вершину будущего угла и от этой точки проводим прямую в нужном вам направлении, от которой необходимо построить угол (эта прямая может являться одной из граней или сторон детали, заготовки или фигуры).

После чего, на этой прямой откладываем 10 см и ставим точку (штрих).

Хитрый прием, как быстро с помощью обычного угольника построить или измерить любой угол?

Отметив 10 см, из этой точки проводим к прямой перпендикуляр:

Хитрый прием, как быстро с помощью обычного угольника построить или измерить любой угол?

Шаг №2

Для примера, мне нужно построить угол 26°! В вашем же случае он может быть любым: 13°, 25°, 49°, 74° и пр.

Берем смартфон, заходим в приложение “калькулятор”, переводим его в инженерный режим и вводим нужный вам угол. Я ввел “26″.

Хитрый прием, как быстро с помощью обычного угольника построить или измерить любой угол?

Далее, нажимаем кнопку “tan” или “tg”, которая обозначает “вычислить тангенс угла”.

Хитрый прием, как быстро с помощью обычного угольника построить или измерить любой угол?

Машина мне вывела число 0,487. Из школы мы знаем, что тангенс угла — это отношение противолежащего нашему углу катета к прилежащему. И, зная один катет 10 см и отношение катетов 0,487, мы за одну секунду вычисляем второй катет, который равен 4,87 см.

Скорее, вы теперь поняли, для чего я взял первый катет именно 10 единиц.

Для простоты вычислений! На 10 проще всего умножать, переставив запятую на один разряд вправо.

Шаг №3

Я округляю 4,87 до десятых и на перпендикуляре отмечаю 4,9 см.

Хитрый прием, как быстро с помощью обычного угольника построить или измерить любой угол?

Чертим гипотенузу и получаем искомый угол!

Хитрый прием, как быстро с помощью обычного угольника построить или измерить любой угол?

Я решил перепроверить построенный угол и приложил угольник Свенсона:

Хитрый прием, как быстро с помощью обычного угольника построить или измерить любой угол?

Всё верно! Получил 26°.

2. Измерение

Сейчас мы построили угол, а при измерении угла — производим все то же самое, только в обратном порядке. Измеряя угол, мы будем знать оба катета, а соответственно и их отношение. Вводим в калькуляторе значение отношения противолежащего катета к прилежащему и нажимаем кнопку “arctg”, “atg” или “tan -1”, которая обозначает обратную тангенсу функцию — арктангенс.

На дисплее калькулятора мы увидим значение нашего угла!

…написано много, а на деле все занимает не более одной минуты…

Спасибо за внимание!

Добрый день, уважаемые гости и подписчики моего канала!

На днях, знакомый профессиональный плотник показал мастерское применение угольника в качестве транспортира. Теперь я знаю, что обычным угольником можно построить не только углы 45° и 90°, а даже 10°, 20°, 30°, 40°, 50°, 60°, 70° и 80°.

Называется правило: “Правило одиннадцати”.

Почему именно “одиннадцати”? В построении любого из углов, нам всегда требуется в первую очередь отложить 11 сантиметров. По данной технологии, угол будет строиться по прямоугольному треугольнику, а точнее — по двум его катетам, один из которых равен 11 см.

Самым первым делом, с помощью угольника — проводим перпендикуляр, удаленный от края заготовки на 11 см. На фото — перпендикуляр выделен красным цветом:

Теперь мы имеем отмеченный отрезок в 11 см. и перпендикуляр. Если любую точку этого перпендикуляра соединить с углом заготовки, то мы получим прямоугольный треугольник. А дальше, немного теории 🙂

Из школьного курса геометрии мы знаем, что именно отношение двух катетов прямоугольного треугольника и определяет тригонометрические функции угла (тангенса и котангенса)

Построение 20° и 70°

Смотрите! Откладывая 11 см. по горизонтали и 4 см. по вертикали мы получаем острый угол в 20°:

На фото, на построенном перпендикуляре отмечаю 4 см. и соединяю концы отрезков:

Доказываю: Ниже, под каждой иллюстрацией, для проверки значения угла, я специально в качестве доказательства рассчитываю обратную тригонометрическую функцию  арктангенс (arctg).

Арктангенс отношения катетов 4 и 11 дает нам угол 19,98°. Погрешностью в две сотые определенно можно пренебречь. Соответственно, смежный угол будет равняться 70,02° или ~70°.

Построение 40° и 50°

Следующие углы 40° и 50° получаются от двух катетов: 11 см. по горизонтали и 13 см. по вертикали. Доказываю:

Построение: На этом же перпендикуляре ставим отметку в 13 см. и соединяем концы. Получаем угол в 49,76°. — погрешность мизерна и составляет не больше острия гвоздя, поэтому можно считать это углом в ~50°.

Построение 30° и 60°

Откладывая 19 см. по вертикали, мы получаем угол в 60°.

Удивительно, но именно катет 11 см. дает нам целочисленное значение второго катета, что и положено в основу этого правила.

Не имея под рукой угломера, мы легко можем построить нужные нам углы!

Теперь остается только наклеить на угольник бирку, чтобы первое время об этом не забывать 🙂

P.S.

Конечно… забыл про 10°, но этот угол очень редко применяется у плотников. Достаточно отложить на перпендикуляре 2 см. при длине второго катета в 11 см., тогда угол будет равен ~10°, а смежный с ним — 80°.

Подведем итоги:

Не имея под рукой угломера/транспортира, нам достаточно запомнить 5 чисел: 2,4,13,19 и основное 11, чтобы построить любой из углов с шагом в 10°. При этом, нам требуется только линейка!

Удачи Вам!

Математика, 2 класс

Урок № 33. Угол. Виды углов: прямой, острый, тупой

Перечень вопросов, рассматриваемых в теме:

– Какие бывают углы?

– Как распознавать углы?

Глоссарий по теме:

Угол – это геометрическая фигура, образованная двумя разными лучами с общим началом.

Острый угол – это угол, который меньше прямого.

Тупой угол – это угол, который больше прямого.

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

  1. Математика. 2 класс. Учебник для общеобразовательных организаций. В 2 ч. Ч.2/ М. И. Моро, М.А.Бантова, Г.В.Бельтюкова и др. – 5-е изд. – М.: Просвещение, 2014. – с.8-9.
  2. Математика. Рабочая тетрадь. 2 класс. Учебное пособие для общеобразовательных организаций. В 2 ч. Ч.2/ М. И. Моро, М.А.Бантова – 6-е изд., дораб. – М.: Просвещение, 2016. – с.3.
  3. Для тех, кто любит математику. Пособие для учащихся общеобразовательных организаций. М. И. Моро, С. И. Волкова – 9-е изд. – М.: Просвещение, 2014. – с.16.

Теоретический материал для самостоятельного изучения

Рассмотрите фигуры и выберите лишнюю.

Лишняя фигура под номером 2. Она образована незамкнутой линией.

Она называется угол.

Угол – это геометрическая фигура, образованная двумя разными лучами с общим началом.

Посмотрите на рисунки: по-разному открытый веер, образует разные углы.

У каждого угла есть две стороны и вершина. Углы бывают прямые, острые и тупые. Углы определить можно помощью чертежного угольника.

Прямой угол определяем с помощью чертежного угольника.

Угол, который меньше прямого угла называется острым углом.

Угол, который больше прямого угла называется тупым углом.

Посмотрите, как из обычного листа бумаги можно сделать модель прямого угла. Моделью можно воспользоваться, если у вас нет чертежного угольника. Возьмите лист бумаги и перегните его 2 раза, как показано на рисунках 1 и 2. И получите модель прямого угла.

Разверните лист. Линии сгиба образовали 4 прямых угла.

Чтобы определить, какой угол начерчен, на него накладывают угольник или модель прямого угла.

Вывод: Углы могут быть прямыми и непрямыми. Чтобы определить прямой угол или нет, нужно взять особый инструмент – угольник. Если, приложив угольник к углу, вершиной к вершине, стороны совпадут, то угол – прямой. Не совпадут – непрямой. Непрямые углы делятся на: тупые и острые. Угол, величина которого меньше величины прямого – острый, а, если величина угла больше величины прямого – тупой.

Тренировочные задания.

1.Посмотрите на крыши домов и домиков. Какие углы ты видишь на рисунке? Соотнесите вид угла с изображением домика.

Правильные ответы:

2. Выберите цифры, в записи которых присутствуют только прямые углы.

Правильные ответы:

С небольшой долей погрешности любой угол можно выставить с помощью угольника, если добавить к нему линейку. На линейке отмеряем 90 миллиметров и используем этот отрезок в качестве основания равнобедренного треугольника. И каждый миллиметр на линейке будет составлять примерно один градус. Из вершины прямого угла проводим линию на нужный градус. Например, 15 мм будет примерно соответствовать углу 15 градусов.

90 мм я взял для простоты расчета. Можно взять любой произвольный размер, но тогда надо будет пересчитывать, приводя размер линейки к девяностам градусов. Погрешность же будет возникать из-за того, что линейка прямая, а градусы располагаются по дуге. Если нужна более высокая точность, то надо добавить циркуль и вместо прямой линейки вычертить дугу, радиус которой легко высчитать с помощью известной формулы, где сказано что длина окружности равна диаметру, умноженному на число “Пи”, равное 3,14 с хвостиком.

Угол – геометрическая фигура, образованная двумя лучами, выходящими из одной точки.

Стороны угла – лучи, которые образуют угол.

Вершина угла – точка, из которой выходят лучи.

Угол называют тремя заглавными латинскими буквами, которыми обозначены вершина и две точки, расположенные на сторонах угла.

Важно: в названии буква, обозначающая вершину угла, стоит между двумя буквами, обозначающими точки на сторонах угла. Так, угол, изображенный на рисунке, можно назвать: ∠AOB  или ∠BOA,  но ни в коем случае не ∠OAB, ∠OBA, ∠ABO, ∠BAO.

Величину угла измеряют в градусах: ∠AOB=24°.

Виды углов:

  • Прямой (ровно 90 градусов)
  • Острый (меньше 90 градусов)
  • Тупой (больше 90 градусов и меньше 180 градусов)
  • Развёрнутый (ровно 180 градусов)

 

1. Биссектриса угла

Биссектриса угла – это луч с началом в вершине угла, делящий его на два равных угла.

Или

Биссектриса угла – это геометрическое место точек, равноудаленных от сторон угла.

OD – биссектриса угла ∠AOB. Она делит этот угол на два равных угла.

∠AOD=∠BOD=∠AOB/2

Точка D – произвольная точка на биссектрисе. Она равноудалена от сторон OA и OB угла ∠AOB.

2. Углы, образованные при пересечении двух прямых

Вертикальные углы – пара углов, у которых стороны одного угла являются продолжением сторон второго.

Свойство: вертикальные углы равны.

Смежные углы – пара углов, у которых одна сторона общая, а две другие стороны расположены на одной прямой.

Свойство: сумма смежных углов равна 180°.

Пример

Пары углов: (1) и (3), (2) и (4) называются вертикальными.

По свойству вертикальных углов:

∠COD=∠AOB

∠BOD=∠AOC

Пары углов: (1) и (2), (2) и (3), (3) и (4), (4) и (1) называются смежными.

По свойству смежных углов:

∠COD+∠DOB=180°∠DOB+∠BOA=180°∠BOA+∠AOC=180°∠AOC+∠COD=180°

 3. Углы, образованные при пересечении двух прямых секущей

Прямая, пересекающая две заданные прямые, называется секущей этих прямых.

Существует пять видов углов, которые образуются при пересечении двух прямых секущей.

Пары углов: (1) и (5), (2) и (6), (3) и (7), (4) и (8) называются соответственными.

(Легко запомнить: они соответствуют друг другу, похожи друг на друга).

Пары углов: (3) и (5), (4) и (6) называются внутренними односторонними.

(Легко запомнить: лежат по одну сторону от секущей, между двумя прямыми).

Пары углов:(1) и (7), (2) и (8) называются внешними односторонними.

(Легко запомнить: лежат по одну сторону от секущей по разные стороны от двух прямых).

Пары углов:(3) и (6), (4) и (5)называются внутренними накрест лежащими.

(Легко запомнить: лежат между двумя прямыми, расположены наискосок друг относительно друга).

Пары углов: (1) и (8), (2) и (7) называются внешними накрест лежащими.

(Легко запомнить: лежат по разные стороны от двух прямых, расположены наискосок друг относительно друга).

Если прямые, которые пересекает секущая, параллельны, то углы имеют следующие свойства:

  • Соответственные углы равны.
  • Внутренние накрест лежащие углы равны.
  • Внешние накрест лежащие углы равны.
  • Сумма внутренних односторонних углов равна 180°.
  • Сумма внешних односторонних углов равна 180°.

4. Сумма углов многоугольника

Сумма углов произвольного n-угольника вычисляется по формуле:

Sn=180°⋅(n−2)

где n – это количество углов в n-угольнике.

Пользуясь этой формулой, можно вычислить сумму углов для произвольного n-угольника.

Сумма углов треугольника: 

S3=180°⋅(3−2)=180°

Сумма углов четырёхугольника: 

S4=180°⋅(4−2)=360°

Сумма углов пятиугольника: 

S5=180°⋅(5−2)=540°

Так можно продолжать до бесконечности.

Правильный многоугольник – это выпуклый многоугольник, у которого все стороны равны и все углы равны.

Некоторые правильные многоугольники: 

Чтобы найти величину угла правильного n-угольника, необходимо сумму углов этого многоугольника разделить на количество углов.

αn=180°⋅(n−2)n

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!

Добавить комментарий