Как найти углы в равностороннем треугольнике равны

Чему равны углы равностороннего треугольника?

Теорема

(свойство углов равностороннего треугольника)

Все углы равностороннего треугольника равны по 60º.

ugly-ravnostoronnego-treugolnikaДано: ABC,

AB=BC=AC

Доказать: ∠A=∠B=∠C=60º.

Доказательство:

Так как AB=BC, ∠A=∠C (как углы при основании равнобедренного треугольника).

Аналогично, так как AC=BC, ∠A=∠B.

Отсюда следует, что в равностороннем треугольнике все углы равны между собой: ∠A=∠B=∠C

Так как сумма углов треугольника равна 180º, то ∠A=∠B=∠C=180º:3=60º, то есть каждый угол равностороннего треугольника равен 60º.

Что и требовалось доказать.

Замечание.

Тот факт, что все углы равностороннего треугольника равны между собой, можно рассмотреть также как следствие из теоремы о соотношении между сторонами и углами треугольника. В треугольнике напротив большей стороны лежит больший угол, напротив меньшей стороны — меньший угол. Так как все три стороны правильного треугольника равны, то и все углы тоже равны.

Углы равностороннего треугольника

Чему равны углы равностороннего треугольника?

(свойство углов равностороннего треугольника)

Все углы равностороннего треугольника равны по 60º.

Аналогично, так как AC=BC, ∠A=∠B.

Отсюда следует, что в равностороннем треугольнике все углы равны между собой: ∠A=∠B=∠C

Так как сумма углов треугольника равна 180º, то ∠A=∠B=∠C=180º:3=60º, то есть каждый угол равностороннего треугольника равен 60º.

Что и требовалось доказать .

Тот факт, что все углы равностороннего треугольника равны между собой, можно рассмотреть также как следствие из теоремы о соотношении между сторонами и углами треугольника. В треугольнике напротив большей стороны лежит больший угол, напротив меньшей стороны — меньший угол. Так как все три стороны правильного треугольника равны, то и все углы тоже равны.

Свойства равностороннего треугольника: теория и пример задачи

В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.

Определение равностороннего треугольника

Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.

Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.

Свойства равностороннего треугольника

Свойство 1

В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.

Свойство 2

В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.

CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.

Свойство 3

В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.

Свойство 4

Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.

Свойство 5

Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.

  • R – радиус описанной окружности;
  • r – радиус вписанной окружности;
  • R = 2r.

Свойство 6

В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:

1. Высоту/медиану/биссектрису:

2. Радиус вписанной окружности:

3. Радиус описанной окружности:

4. Периметр:

5. Площадь:

Пример задачи

Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.

Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .

(1)
(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

.

Пример 1. Известны стороны треугольника ABC: Найти (Рис.1).

Решение. Из формул (1) и (2) находим:

И, наконец, находим угол C:

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Найдем сторону c используя теорему косинусов:

.

.

Далее, из формулы

.

. (3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

.

Пример 2. Известны две стороны треугольника ABC: и (Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

,

Из формулы (3) найдем cosA:

.

Поскольку уже нам известны два угла то находим третий:

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Так как, уже известны два угла, то можно найти третий:

.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

Пример 3. Известна одна сторона треугольника ABC: и углы (Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Найдем сторону b. Из теоремы синусов имеем:

Найдем сторону с. Из теоремы синусов имеем:

[spoiler title=”источники:”]

http://matworld.ru/geometry/reshenie-treugolnikov.php

[/spoiler]

Содержание:

  • Определение равностороннего треугольника
  • Свойства равностороннего треугольника
  • Примеры решения задач

Определение равностороннего треугольника

Определение

Равносторонним треугольником называется такой треугольник
$ABC$, у которого все стороны равны:
$AB = BC = AC$.

Свойства равностороннего треугольника

  1. В равностороннем треугольнике все углы равны.
  2. Любая биссектриса, равностороннего треугольника равна его медиане и высоте.
    Если сторона равностороннего треугольника равна
    $a$, то

    $$l_{a}=m_{a}=h_{a}=frac{a sqrt{3}}{2}$$

Примеры решения задач

Пример

Задание. Определить, чему равны углы в равностороннем треугольнике.

Решение. По свойству равностороннего треугольника, в нем все углы равны. Обозначим эту величину через
$x$, то есть
$alpha=beta=gamma=x$. Так как
сумма всех углов треугольника равна
$180^{circ}$, справедливо равенство

$$alpha+beta+gamma=180^{circ}$$

Подставим $x$:

$$
begin{array}{c}
x+x+x=180^{circ} \
3 x=180^{circ} \
x=60^{circ}
end{array}
$$

Ответ. В равностороннем треугольнике все углы по
$60^{circ}$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Дан равносторонний треугольник со стороной
$a=2 sqrt{3}$. Найти высоту, опущенную на одну из сторон.

Решение. Для нахождения высоты воспользуемся формулой

$$h_{a}=frac{a sqrt{3}}{2} Rightarrow h_{a}=frac{2 sqrt{3} cdot sqrt{3}}{2} Rightarrow h_{a}=3$$

Ответ. $h_{a}=3$

Читать дальше: что такое разносторонний треугольник.

Правильный (равносторонний, или равноугольный) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.

Содержание

  • 1 Свойства
  • 2 Правильный сферический треугольник
  • 3 Теоремы о равностороннем треугольнике или содержащие его
  • 4 См. также
  • 5 Примечания

Свойства[править | править код]

Правильный тетраэдр состоит из четырёх правильных треугольников.

Пусть a — сторона правильного треугольника, R — радиус описанной окружности, r — радиус вписанной окружности.

  • Радиус вписанной окружности правильного треугольника, выраженный через его сторону:
r = frac{sqrt 3}{6} a
  • Радиус описанной окружности правильного треугольника, выраженный через его сторону:
R = frac{sqrt 3}{3} a
  • Периметр правильного треугольника:
P = 3a = 3 sqrt 3 R = 6 sqrt 3 r
  • Высоты, медианы и биссектрисы правильного треугольника:
h = m = l = frac{sqrt 3}{2} a
  • Площадь правильного треугольника рассчитывается по формулам:
S={frac  {{sqrt  3}}{4}}a^{2}={frac  {3{sqrt  3}}{4}}R^{2}=3{sqrt  3}r^{2}={frac  {{sqrt  3}}{36}}P^{2}
  • Радиус описанной окружности равен двойному радиусу вписанной окружности:
R = 2r
  • Правильными треугольниками можно замостить плоскость.
  • В правильном треугольнике окружность девяти точек совпадает с вписанной окружностью.

Правильный сферический треугольник[править | править код]

Для любого значения в интервале от 60 до 180 градусов существует правильный сферический треугольник с равными этому значению углами.

Теоремы о равностороннем треугольнике или содержащие его[править | править код]

  • Задача Наполеона
  • Прямая Симсона одно из свойств
  • Теорема Вивиани
  • Теорема Морли
  • Теорема Наполеона
  • Теорема Помпею
  • Теоремы Тебо 2 и 3
  • Точки Аполлония
  • Точки Торричелли

См. также[править | править код]

  • Замечательные прямые треугольника
  • Замечательные точки треугольника
  • Равнобедренный треугольник
  • Теорема Чевы
  • Треугольник
  • Треугольник Рёло

Примечания[править | править код]

Перейти к шаблону «Символ Шлефли» 

Символ Шлефли

Многоугольники
  • {1}
  • {2}
  • {3}
  • {4}
  • {5}
  • {6}
  • {7}
  • {8}
  • {9}
  • {10}
  • {11}
  • {12}
  • {14}
  • {15}
  • {17}
  • {18}
  • {20}
  • {30}
  • {51}[de]
  • {257}
  • {65537}
  • {4294967295}
  • {∞}
Звёздчатые многоугольники
  • {5/2}
  • {6/2}
  • {7/2}
  • {7/3}
  • {8/2}
  • {8/3}
  • {9/2}
  • {9/3}
  • {9/4}
Паркеты на плоскости
  • {3,6}
  • {4,4}
  • {6,3}
Правильные многогранники
и сферические паркеты
  • {2,n}
  • {3,3}
  • {4,3}
  • {3,4}
  • {5,3}
  • {3,5}
  • {n,2}
Многогранники Кеплера — Пуансо
  • {5/2,5}
  • {5,5/2}
  • {5/2,3}
  • {3,5/2}
Соты

{4,3,4}

Четырёхмерные многогранники
  • {3,3,3}
  • {4,3,3}
  • {3,3,4}
  • {3,4,3}
  • {5,3,3}
  • {3,3,5}

Свойства равностороннего треугольника

Свойство 1. В равностороннем треугольнике все углы равны между собой и равны ({{60}^{o }})

Естественно, не правда ли? Три одинаковых угла, в сумме ({{180}^{o }}), значит, каждый по ({{60}^{o }})

Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника (равностороннего!).

Почему так? А посмотрим-ка на равносторонний треугольник.

Он является равнобедренным, какую бы его сторону ни принять за основание – так сказать, со всех сторон равнобедренный.

Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром!

В равностороннем треугольнике оказалось не (12) особенных линий, как во всяком обычном треугольнике, а всего три!

Итак, ещё раз:

Центр равностороннего треугольника является центром вписанной и описанной окружности, а также точкой пересечения высот и медиан.

Свойство 3. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной. (R=2cdot r)

Уже должно быть очевидно, отчего так.

Посмотри на рисунок: точка( O) – центр треугольника.

Значит, (OB) – радиус описанной окружности (обозначили его (R)), а (OK) – радиус вписанной окружности (обозначим (r)).

Но ведь точка (O) – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении (2:1), считая от вершины.

Поэтому (OB=2cdot OK), то есть (R=2cdot r).

Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны.

Давай удостоверимся в этом.

Добавить комментарий