Как найти угол амв

reasint337

reasint337

№4. 
Дано: 
Окр. О; 
AM – касательная, AM пересекает Окр. = А; 
BM – касательная, BM пересекает Окр. = B; 
OA = AB; 
Угол AMB – ? 
—— 
Решение: 
Проведём радиус OB. OB = OA = AB, значит, треугольник OAB – равносторонний. 
Угол OAB равен углу ABO, равен углу BOA = 180°/3 = 60°. 
Т.к. AM – касательная, то угол OAM = 90°, значит, угол BAM = угол OAM – угол OAB = 90° – 60° = 30°. 
Аналогично, угол OBM равен 90°, угол ABM = 90° – 60° = 30°. 
По теореме о сумме углов треугольника, угол AMB = 180° – 30° – 30° = 120°. 
Ответ: угол AMB равен 120°. 

№8. 
Дано: 
Окр. О; 
BM и AM – касательные к Окр. из точки М; 
OM = 2r; 
Угол AMB – ? 
—— 
Решение: 
Проведём радиусы OB и OA. 
Sin BMO = OB/OM; 
Т.к. OM = 2OB, то Sin BMO = 1/2, значит, угол BMO = 30°. 
Известно, что отрезки касательных к окружности, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Значит, угол BMO = углу OMA = 30°.
Отсюда, угол AMB = угол BMO + угол OMA,
Угол ABM = 30° + 30° = 60°.
Ответ: угол ABM = 60°.

Окружность найти угол амб

Вопрос по геометрии:

Прямые МА и МВ касательные к окружности,А и В-точки касания,отрезок АВ равен радиусу окружности.Найдите угол АМВ

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!

Ответы и объяснения 2

Треугольник ОАВ равносторонний, так как АВ=R и ОА=ОА=R. Значит угол АОВ=60⁰. В четырехугольнике АМВО Ответ: thumb_up 38

∠AMB + ∠AOB + ∠OAM + ∠OBM =360 °(MAOB _четырехугольник) .
∠OAM + ∠OBM =90°+90°=180°. Следовательно ∠AMB + ∠AOB =180°.
∠AMB =180° – ∠AOB .

ΔАOВ -равносторонний (OА=OВ =АВ = Значит ∠АOВ =60° ,поэтому
∠AMB =180° – ∠AOB = 180° -60° =120°.

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи – смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

Прямые MA и MB – касательные к окружности, A и B – точки касания, отрезок AB равен радиусу окружности. Найдите угол AMB.

Ваш ответ

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,812
  • разное 16,824

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

[spoiler title=”источники:”]

http://www.soloby.ru/934910/%D0%BA%D0%B0%D1%81%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5-%D0%BE%D0%BA%D1%80%D1%83%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D0%B8-%D0%BA%D0%B0%D1%81%D0%B0%D0%BD%D0%B8%D1%8F-%D1%80%D0%B0%D0%B4%D0%B8%D1%83%D1%81%D1%83-%D0%BE%D0%BA%D1%80%D1%83%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D0%B8-%D0%BD%D0%B0%D0%B9%D0%B4%D0%B8%D1%82%D0%B5

[/spoiler]

Перпендикулярные прямые

29 июня 2022

Перпендикулярные прямые — это просто две прямые, которые пересекаются под углом 90°:

Перпендикулярные прямые

Перпендикулярные прямые встречаются в огромном количестве задач. Прямоугольные треугольники, координаты и даже клеточки в вашей тетради — это всё перпендикулярные прямые. Поэтому разберёмся с ними.

Урок состоит из пяти частей:

  1. Краткая вводная.
  2. Определение перпендикулярных прямых.
  3. Свойства перпендикулярных прямых.
  4. Простые задачи.
  5. Злые задачи.:)

Начнём с краткой вводной: что уже нужно знать про прямые и углы в данному моменту.

1. Кратная вводная

Для работы с перпендикулярными прямыми нам потребуются два вида углов: смежные и вертикальные.

1.1.Смежные углы

Определение. Два угла называются смежными, если одна сторона у них общая, а две другие являются продолжением друг друга.

Вот пример смежных углов с общей стороной $MN$:

Смежные углы

Основное свойство таких углов: их сумма всегда равна 180°:

[angle 1+angle 2={180}^circ ]

Таким образом, зная один смежный угол, мы тут же найдём другой.

1.2. Вертикальные углы

Определение. Углы, которые образуются при пересечении двух прямых и лежат напротив друг друга, называются вертикальными.

На самом деле на пересечении двух прямых возникает сразу две пары таких углов:

Вертикальные углы

Вертикальные углы всегда равны — и это их главное свойство. На рисунке мы видим, что $angle 1=angle 3$ и $angle 2=angle 4$.

1.3. Какие бывают углы

И вообще, нам пока известны четыре типа углов: острый, прямой, тупой и развёрнутый.

Четыре типа углов

Интересное свойство прямого угла: если при пересечении двух прямых возник прямой угол, то все остальные углы (вертикальные, смежные с ним) тоже будут прямыми. И вот тут мы переходим к основной теме урока.

2. Определение перпендикулярных прямых

Определение. Если при пересечении двух прямых возникло четыре прямых угла, такие прямые называются перпендикулярными.

Мы уже знаем, что достаточно найти на таком пересечении всего один угол в 90 градусов — остальные три угла станут прямыми автоматически:

Четыре прямых угла

Перпендикулярные прямые обозначают значком «$bot $»: $ABbot CD$, $abot b$ и т.д.

Часто в задачах рассматриваются не все прямые, а лишь отрезки, лежащие на этих прямых

3. Свойства перпендикулярных прямых

Сначала разберём два «стандартных» свойства, которые вы найдёте в любом учебнике геометрии 7-го класса. А затем — одно «нестандартное», но именно оно чаще всего и встречается в настоящих задачах.

3.1. Теорема о двух прямых, перпендикулярных третьей

Теорема 1. Две прямые, перпендикулярные к третьей, не пересекаются.

Две прямые перпендикулярны третьей

Прямая $ABbot EF$ и прямая $MNbot EF$. Следовательно, прямые $AB$ и $MN$ не пересекаются. Проще говоря, они параллельны (см. урок «Параллельные прямые»).

3.2. Теорема о прямой, перпендикулярной данной

Теорема 2. Через каждую точку прямой можно провести прямую, перпендикулярную данной, и притом только одну.

Доказательство этой теоремы состоит из двух частей: сначала докажем, что такую прямую провести можно, а затем — что она единственная.

Прямая, перпендикулярная данной, строится очень просто. Рассмотрим прямую $a$, на которой отмечена точка $M$:

Прямая и точка на этой прямой

Отложим от луча $MK$ угол, равный 90°. В любую сторону: в верхнюю полуплоскость или нижнюю — не имеет значения. Получим луч $MN$:

Перпендикуляр к прямой

Наконец, продолжим луч $MN$ в противоположную другую сторону (т.е. построим дополнительный луч). Получим искомую прямую $MNbot a$:

Построение перпендикулярной прямой

Единственность такого построения следует либо из аксиомы о том, что нужный угол можно отложить в нужном направлении одним и только одним способом, либо из предыдущей теоремы о двух прямых, перпендикулярных данной. В самом деле, пусть есть ещё одна прямая $ML$, которая, как и $MN$, перпендикулярна прямой $a$:

Две перпендикулярные прямые проходят через одну точку

Поскольку $MNbot a$ и $MLbot a$, по предыдущей теореме эти прямые не пересекаются. Что противоречит нашему построению, в котором у прямых $MN$ и $ML$ есть общая точка $M$. Следовательно, прямые $MN$ и $ML$ совпадают, что и требовалось доказать.

3.3. Важное свойство прямого угла

Две теоремы, которые мы рассмотрели выше, редко встречаются в реальных примерах. Зато сейчас мы рассмотрим свойство, которое действительно помогает решать многие задачи. Звучит оно очень просто:

Теорема 3. Если прямой угол разделить на две части, то сумма этих новых углов равна 90°. Другими словами, если один угол равен $alpha $, то другой равен ${90}^circ -alpha $:

Два угла образуют прямой угол

Это утверждение может показаться очевидным. И оно действительно является таковым. Однако деление прямого угла на части встречается в задачах настолько часто, что я не мог не упомянуть об этом.

Кроме того, начинающие ученики часто не замечают такие углы на чертежах. Поэтому сейчас мы будем отрабатывать эту теорему на реальных задачах.

4. Простые задачи

Начнём с простых задач.

Задача 1. На рисунке $ABbot MN$, $angle NOT={37}^circ $, $angle BOT+angle NOS={125}^circ $. Найдите углы $MOS$ и $SOT$.

Перпендикулярные прямые задача 1 пересечение

Решение. Пусть $angle NOS=x$. Тогда из равенства

[angle BOT+angle NOS={125}^circ ]

получаем, что $angle BOT={125}^circ -x$. С другой стороны, углы $BOT$ и $NOT$ в сумме дают 90°. Потому

[begin{align}{125}^circ -x+{37}^circ &={90}^circ \ x&={72}^circ end{align}]

Теперь мы можем найти угол $SOT$:

[begin{align}angle SOT &=angle NOS+angle NOT= \ &={72}^circ +{37}^circ = \ &={109}^circ end{align}]

Кроме того, углы $MOS$ и $NOS$ — смежные, поэтому их сумма равна 180°. Отсюда получаем:

[begin{align}angle MOS&={180}^circ -angle NOS= \ &={180}^circ -{72}^circ = \ &={108}^circ end{align}]

Оба требуемых угла найдены. Задача решена.

Задача 2. Дан угол $AMC$, равный 140°. Внутри этого угла проведены лучи $MN$ и $MK$, причём $MNbot MC$ и $MKbot MA$. Найдите угол $KMN$.

Тупой угол задача 2 перпендикулярные прямые

Решение. Заметим, что угол $AMC$ составлен из углов $AMN$ и $CMN$, причём $angle CMN={90}^circ $ по условию. Найдём угол $AMN$:

[begin{align}angle AMN &=angle AMC-angle NMC= \ &={140}^circ -{90}^circ = \ &={50}^circ end{align}]

Точно так же найдём угол $CMK$, который вместе с углом прямым $AMK$ образует исходный угол $AMC$:

[begin{align}angle CMK &=angle AMC-angle AMN= \ &={140}^circ -{90}^circ = \ &={50}^circ end{align}]

Осталось найти искомый угол $KMN$:

[begin{align}angle KMN &=angle AMC-angle AMN-angle CMK= \ &={140}^circ -{50}^circ -{50}^circ = \ &={40}^circ end{align}]

Готово! Мы нашли нужный угол. Он равен 40 градусов.

Задача 3. Прямые $a$, $b$ и $c$ пересекаются в одной точке. Известно, что $abot b$ и $angle 1={36}^circ $. Найдите углы 2, 3 и 4.

Задача 3 пересекающиеся прямые разные углы

Решение. Углы 1 и 3 — вертикальные, поэтому они равны:

[angle 3=angle 1={36}^circ ]

Кроме того, углы 1 и 2 вместе образуют прямой угол, поэтому их сумма равна 90 градусов:

[begin{align}angle 1+angle 2 &={90}^circ \ angle 2 &={90}^circ -angle 1= \ &={90}^circ -{36}^circ = \ &={54}^circ end{align}]

Наконец, углы 2 и 4 — тоже вертикальные, поэтому они тоже равны:

[angle 4=angle 2={54}^circ ]

Итого мы нашли все требуемые углы. Они равны 54, 36 и 54 градуса.

Задача 4. На рисунке угол $AMC$ — развёрнутый, луч $MBbot AC$, угол $KMN={90}^circ $. Докажите, что $angle BMN=angle CMK$.

Задача 4 развёрнутый угол и прямые углы

Решение. Пусть $angle BMK=x$. Тогда, поскольку $ACbot MB$, углы $BMK$ и $CMK$ в сумме дают 90°. Отсюда получаем, что

[angle CMK={90}^circ -x]

С другой стороны, по условию задачи угол $NMK$ — прямой. Этот угол состоит из углов $BMN$ и $BMK$, поэтому

[angle BMN={90}^circ -x]

Видим, что углы $CMK$ и $BMN$ равны одной и той же величине: ${90}^circ -x$. Следовательно, эти углы равны, что и требовалось доказать.

5. Злые задачи

Деление задач на простые и сложные весьма условно. Часто «сложными» называют многошаговые задачи и доказательства.

Задача 5. Дан угол $AMB$, равный 64°. Из вершины этого угла проведены лучи $MC$ и $MD$, причём $MCbot MA$ и $MDbot MB$. Кроме того, полученный тупой угол $AMD$ содержит в себе лучи $MB$ и $MC$, которые деля этот угол на три части. Найдите углы $CMD$ и $AMD$.

Решение. Эта задача похожа на задачу 2. Взгляните на чертёж:

Задача 5 тупой угол и перпендикулярные лучи

Поскольку угол $AMC$ — прямой, можем найти угол $BMC$:

[begin{align}angle BMC &={90}^circ -angle AMB= \ &={90}^circ -{64}^circ \ &={26}^circend{align}]

С другой стороны, угол $BMD$ — тоже прямой, поэтому можем найти угол $CMD$:

[begin{align}angle CMD &={90}^circ -angle BMC= \ &={90}^circ -{26}^circ = \ &={64}^circend{align}]

Вновь, как и в задаче 2, получили, что углы $AMB$ и $DMC$ равны. Но это не относится к делу. Найдём угол $AMD$, представив его как сумму углов $AMB$ и $BMD$:

[begin{align}angle AMD &=angle AMB+angle BMD= \ &={64}^circ +{90}^circ = \ &={154}^circ end{align}]

Задача 6. Дан прямой угол $AMB$. Луч $MC$ делит этот угол на два острых угла: $AMC$ и $BMC$. Угол между биссектрисами углов $AMC$ и $AMB$ равен 18°. Найдите углы $AMC$ и $BMC$.

Решение. Вот это уже довольно интересная задача. Взгляните на чертёж:

Задача 6 биссектрисы внутри прямого угла

Красным цветом обозначена биссектриса прямого угла $AMB$. Она разбивает этого угол на два маленьких угла по 45°.

Синим цветом обозначена биссектриса искомого угла $AMC$. Обозначим половинки этого угла за $x$ (имеется в виду, что каждая из половин угла $AMC$ содержит по $x$ градусов).

Но тогда угол между биссектрисами — это часть угла между стороной $MA$ прямого угла $AMB$ и биссектрисой этого же угла. Откуда получаем уравнение

[begin{align}{45}^circ &=x+{18}^circ \ x &={45}^circ -{18}^circ ={27}^circ end{align}]

Но тогда угол $AMC$ будет вдвое больше:

[angle AMC=2x={54}^circ ]

А угол $BMC$, который дополняет $angle AMC$ до прямого, можно найти по формуле

[begin{align}angle BMC &={90}^circ -angle AMC= \ &={90}^circ -{54}^circ ={36}^circend{align}]

Итого искомые углы равны 54 и 36 градусов.

Задача 7. Два равных тупых угла имеют общую сторону. Две другие стороны этих углов взаимно перпендикулярны. Найдите величину тупого угла.

Задача 7 три угла вместе дают 360 градусов

Решение. Пусть два равных тупых угла содержат по $x$ градусов. Вместе с прямым углом (т.е. углом в 90 градусов) они образуют полный поворот, т.е. 360 градусов. Получаем уравнение:

[begin{align}2x+{90}^circ&={360}^circ\ 2x &={270}^circ \ x &={135}^circend{align}]

Задача 8. Из вершины развёрнутого угла проведены два луча, которые делят этот угол на три равные части. Докажите, что биссектриса среднего угла перпендикулярна сторонам развёрнутого угла.

Задача 8 развёрнутый угол биссектриса и доказательство

Доказательство. Обозначим развёрнутый угол как $AOD$, а дополнительные лучи — $OB$ и $OC$. Биссектриса угла $BOC$ — это луч $MO$ (отмечен красным цветом).

Поскольку углы $AOB$, $BOC$ и $COD$ равны и в сумме образуют развёрнутый угол, их градусные меры также равны и составляют треть от 180°:

[angle AOB=angle BOC=angle COD={60}^circ ]

Кроме того, поскольку $OM$ — биссектриса, то углы $BOM$ и $COM$ равны между собой:

[angle BOM=angle COM={30}^circ ]

Однако угол $AOM$ составлен из углов $AOB$ и $BOM$, поэтому

[begin{align}angle AOM &=angle AOB+angle BOM= \ &={60}^circ +{30}^circ ={90}^circ end{align}]

Получили, что $OMbot AD$, что и требовалось доказать.

Смотрите также:

  1. Что такое вертикальные углы
  2. Что такое смежные углы
  3. Комбинаторика в задаче B6: легкий тест
  4. Задача B15 — исследование функции с помощью производной
  5. Координаты вершин правильного тетраэдра
  6. Задача B4: обмен валют в трех различных банках

В треугольнике АВС стороны ВС и АС равны, угол С равен 112°. Биссектрисы углов А и В пересекаются в точке М. Найдите величину угла АМВ. Ответ дайте в градусах. Запишите решение и ответ.

Так как в треугольнике АВС стороны ВС и АС равны, то углы А и В тоже равны между собой (свойство равнобедренного треугольника). Известно, что угол С равен 112°. Тогда мы можем найти величину углов А и В. Угол А равен (180-112)/2 = 34 градуса. Угол В тоже равен 34 градусам. Биссектрисы углов А и В делят эти углы пополам и поэтому углы МАВ и МВА равны 17 градусам. Угол АМВ можно найти по теореме о сумме внутренних углов треугольника. Угол АМВ равен (180-(17+17))=142 градуса. Ответ: 142.

автор вопроса выбрал этот ответ лучшим

Знаете ответ?

Смотрите также:

ВПР История 7 класс Как по тексту указать название исторического источника?

Задача Пойи. Том сможет выполнить работу за 3 ч, Дик – за 4 ч. Как решить?

ВПР по русскому языку 7 класс 2020, задания, ответы, демоверсии, где найти?

ВПР 7 класс, Как решить задачу по физике про дюймовую и метрическую шкалы?

ВПР 7 класс, Как решить задачу по физике про охотника, идущего по снегу?

ВПР 7 класс, Как решить задачу по физике про травяную вытяжку?

ВПР 7 класс, Как решить задачу по физике про Петю и Васю на байдарке?

ВПР 7 класс, Как решить задачу по физике про давление гвоздя на доску?

ВПР 7 класс, Как решить задачу по физике про туриста, восходящего на гору?

ВПР 7 класс, Как решить задачу по физике про стеклянную колбу со ртутью?

Добавить комментарий