Как найти угол бас в окружности

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

В этом случае справедливы равенства

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

В этом случае справедливы равенства

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Центральные и вписанные углы

О чем эта статья:

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:
  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

ㄥBAC + ㄥBDC = 180°

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Как найти угол бас в окружности

На окружности отмечены точки A и B так, что меньшая дуга AB равна 72°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.

Пусть точка O — центр окружности. Угол AOB — центральный и равен дуге, на которую опирается. Значит, угол AOB равен 72°. Треугольник AOB — равнобедренный. Значит,

Таким образом, поскольку угол OBC прямой, угол ABC равен 90° − 54° = 36°.

Читатели, знакомые с теоремой «Угол между хордой и касательной равен половине дуги, стягиваемой хордой», могут решить эту задачу в одно действие: ∠ABC = 72° : 2 = 36°.

На окружности отмечены точки A и B так, что меньшая дуга AB равна 56°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.

Пусть точка O — центр окружности. Угол AOB — центральный и равен дуге, на которую опирается. Значит, угол AOB равен 56°. Треугольник AOB — равнобедренный. Значит,

Таким образом, поскольку угол OBC прямой, угол ABC равен 90° − 62° = 28°.

Читатель, знающий правило «Угол между хордой и касательной равен половине дуги, стягиваемой хордой», может решить эту задачу в одно действие:

Найдите угол ABC. Ответ дайте в градусах.

Впишем в окружность квадрат так, как показано на рисунке. Стороны квадрата отсекают на окружности равные дуги. Поэтому градусная мера дуги AC, на которую опирается угол ABC, составляет полного угла 360°, т. е. равна 270°. Угол ABC вписанный, поэтому он равен половине дуги, на которую опирается. Следовательно, угол ABC равен 135°.

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/centralnye-i-vpisannye-ugly

http://oge.sdamgia.ru/search?search=%D0%9D%D0%B0%D0%B9%D0%B4%D0%B8%D1%82%D0%B5%20%D1%83%D0%B3%D0%BE%D0%BB%20ABC

[/spoiler]



Ученик

(232),
закрыт



5 лет назад

Михаил Лебедев

Мудрец

(11387)


5 лет назад

ОВ – радиус. Значит, ОB=OA, но ОА=АВ => OB=OA=AB=R – тр-к равносторонний, т. е. углы равны 60 гр. (180/3).
Касательная С к окружности перпендикулярна к радиусу, проведенному в точку касания A(теорема).
Cледовательно, угол ОАС=90гр. Тогда угол ВАС=угол ОАС-угол OAB=90-60=30гр.

Skip to content

Home » ЕГЭ » B6 » Геометрия. Планиметрия. Окружность.

Точка O – центр окружности, угол BOC=160°. Найдите величину угла BAC.
Центральный и вписанный угол

Решение:

Угол BOC – центральный угол.
Угол BАC – вписанный угол.
Вписанный угол меньше центрального угла в два раза.
Угол BAC= BOC:2=160:2=80°

Центральный и вписанный угол
Ответ: 80

Видео вебинара, где рассмотрено решение геометрии.
Кликните СЮДА, чтобы посмотреть видео.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

Окружность. Центральный и вписанный угол

Центральный угол — это угол, вершина которого находится в центре окружности.

Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее.

Отрезок, соединяющий две точки окружности, называется хорда.

Самая большая хорда проходит через центр окружности и называется диаметр.

На рисунках — центральные и вписанные углы, а также их важнейшие свойства.

Угол, вершина которого лежит в центре окружности, называется центральным. Величина центрального угла равна угловой величине дуги, на которую он опирается. Угол beta тоже можно назвать центральным. Только он опирается на дугу, которая больше 180^circ .

Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным. Величина вписанного угла равна половине центрального угла, опирающегося на ту же дугу.

Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на диаметр, – прямой.

Величина центрального угла равна угловой величине дуги, на которую он опирается. Значит, центральный угол величиной в 90 градусов будет опираться на дугу, равную 90^circ, то есть displaystyle frac{1}{4} круга. Центральный угол, равный 60^circ, опирается на дугу в 60 градусов, то есть на шестую часть круга.

Докажем, что величина вписанного угла в два раза меньше центрального, опирающегося на ту же дугу.

Пусть угол AOC — центральный и опирается на дугу АС, тогда ОА и ОС — радиусы окружности.

Пусть angleABC — вписанный угол, опирающийся на дугу АС,

АВ и ВС — хорды окружности.

Первый случай: Точка O лежит на BC, то есть ВС — диаметр окружности.

Треугольник AOB — равнобедренный, АО = ОВ как радиусы. Значит, angle A=angle B.

angle AOC — внешний угол triangle AOB, а внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Получили, что angle AOC=angle A+angle B=2cdot angle B=2angle ABC.

Второй случай: Центр окружности точка О не лежит на ВС. Построим диаметр BК:

Если точка О лежит внутри вписанного угла АВС, как на рисунке слева, то

angle AOC=angle AOK+angle KOC=2angle ABK+2angle KBC=2angle ABC.

Если О лежит вне вписанного угла АВС, как на рисунке справа, то

angle AOC=angle AOK-angle COK=2angle ABK-2angle CBK=2angle ABC.

Мы получили, что в каждом из этих случаев величина центрального угла в два раза больше, чем величина вписанного угла, опирающегося на ту же дугу.

Теорема доказана.

При решении задач по геометрии также применяются следующие теоремы:

1. Равные центральные углы опираются на равные хорды.

2. Равные вписанные углы опираются на равные хорды.

3. Равные хорды стягивают равные дуги.

Докажем теорему 3.

Пусть хорды AB и CD равны. Докажем, что AMB дуги CND имеют одинаковую градусную меру, то есть равны.

Доказательство:

По условию, AB = CD. Соединим концы хорд с центром окружности. Получим: AO = BO = CO = DO = r.

triangle AOB=triangle CPD по трем сторонам, отсюда следует, что центральные углы равны, т.е. angle AOB=angle COD. Значит, и дуги, на которые они опираются, также равны, т.е. дуги AMB и CND имеют одинаковую градусную меру.

Теорема доказана.

Верна и обратная теорема:

Если две дуги окружности равны, то равны и хорды, их стягивающие.

Пусть дуги AMB и CND равны. Тогда angle AOB=angle COD как центральные углы, опирающиеся на эти дуги. Значит, треугольники triangle AOB и triangle CPD равны по двум сторонам и углу между ними, и тогда AB=CD, что и требовалось доказать.

Эти две теоремы можно объединить в одну, которая формулируется так:

Хорды окружности равны тогда и только тогда, когда равны дуги, которые они стягивают.

Разберем задачи ЕГЭ и ОГЭ по теме: Окружность, центральный угол, вписанный угол.

Задача 1, ЕГЭ. Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.

Вписанный угол, опирающийся на диаметр, — прямой.

Ответ: 90.

Задача 2, ЕГЭ. Центральный угол на 36 ^circ больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.

Рисунок к задаче 1

Решение:

Пусть центральный угол равен x, а вписанный угол, опирающийся на ту же дугу, равен y.

Мы знаем, что x=2y.

Отсюда 2y=36+y,

y=36.

Ответ: 36.

Задача 3, ЕГЭ. Радиус окружности равен 1. Найдите величину тупого вписанного угла, опирающегося на хорду, равную sqrt{2}. Ответ дайте в градусах.

Решение:

Пусть хорда AB равна sqrt{2}. Тупой вписанный угол, опирающийся на эту хорду, обозначим alpha. В треугольнике AOB стороны AO и OB равны 1, сторона AB равна sqrt{2}. Нам уже встречались такие треугольники. Очевидно, что треугольник AOB — прямоугольный и равнобедренный, то есть угол AOB равен 90{}^circ . Тогда дуга ACB равна 90{}^circ , а дуга AKB равна 360{}^circ - 90{}^circ = 270 {}^circ . Вписанный угол alpha опирается на дугу AKB и равен половине угловой величины этой дуги, то есть 135.

Ответ: 135.

Задача 4, ЕГЭ. Хорда AB делит окружность на две части, градусные величины которых относятся как 5 : 7. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Рисунок к задаче 3

Решение:

Главное в этой задаче — правильный чертеж и понимание условия. Как вы понимаете вопрос: «Под каким углом хорда видна из точки С?»

Представьте, что вы сидите в точке С и вам необходимо видеть всё, что происходит на хорде AB. Так, как будто хорда AB — это экран в кинотеатре 🙂
Очевидно, что найти нужно угол ACB.
Сумма двух дуг, на которые хорда AB делит окружность, равна 360^circ , то есть 5x+7x=360^ circ

Отсюда x=30^ circ , и тогда вписанный угол ACB опирается на дугу, равную 210^ circ . Величина вписанного угла равна половине угловой величины дуги, на которую он опирается, значит, угол ACB равен 105^ circ .

Ответ: 105.

Задача 5, ЕГЭ.

Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 32{}^circ .

Решение:

Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

angle BAC=displaystyle frac{1}{2}angle BOC.

Значит, angle BOC=2cdot angle BAC=2cdot 32{}^circ =64{}^circ.

Ответ: 64.

Задача 6, ЕГЭ. Найдите центральный угол AOB, если он на 15{}^circ больше вписанного угла ACB, опирающегося на ту же дугу. Ответ дайте в градусах.

Решение:

Пусть величина угла АОВ равна x градусов. Величина вписанного угла АСВ равна половине центрального угла, опирающегося на ту же дугу, то есть displaystyle frac{x}{2} градусов.

Получим уравнение: displaystyle x-frac{1}{2} x = 15{}^circ, откуда x ={30}^circ.

Ответ: 30.

Задача 7, ЕГЭ. Чему равен острый вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.

Решение.

Рассмотрим треугольник AOB. Он равносторонний, так как AO = OB = AB = R.

Поэтому угол AOB = 60. Вписанный угол ACB равен половине дуги, на которую он опирается, то есть 30{}^circ.

Ответ: 30.

Задача 8, ЕГЭ.

Дуга окружности AC, не содержащая точки B, составляет 200{}^circ. А дуга окружности BC, не содержащая точки A, составляет 80{}^circ. Найдите вписанный угол ACB. Ответ дайте в градусах.

Решение:

Вписанный угол равен половине угловой величины дуги, на которую он опирается. Дуга АВ равна 360{}^circ -200{}^circ -80{}^circ -80{}^circ . Тогда angle ACB=40{}^circ.

Ответ: 40.

Задачи ОГЭ по теме: Центральный и вписанный угол, градусная мера дуги.

Задача 9, ОГЭ. Центральный угол AOB опирается на хорду AB длиной 6. При этом угол OAB равен {60}^circ. Найдите радиус окружности.

Решение.

Рассмотрим треугольник AOB: он равнобедренный, его боковые стороны равны радиусу окружности.

Углы при основании равнобедренного треугольника равны. Пусть AOB равен x, тогда x + 60{}^circ + 60{}^circ = 180{}^circ, где x = 60{}^circ. Треугольник, у которого все углы равны, — равносторонний треугольник; значит, радиус равен 6.

Ответ: 6.

Задача 10, ОГЭ. В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен {30}^circ. Найдите величину угла OAB.

Решение.

Вписанные углы ВСD и ВАD опираются на одну и ту же дугу окружности, поэтому они равны, угол OAB ={30}^circ.

Ответ: 30.

Задача 11, ОГЭ. Найдите градусную меру центрального angle MON, если известно, что NP — диаметр, а градусная мера angle MNP равна 18{}^circ.

Решение:

Треугольник MON — равнобедренный. Тогда angle MON = 180{}^circ2cdot 18{}^circ = 144{}^circ.

Ответ: 144.

Задача 12, ОГЭ.

Найдите angle DEF, если градусные меры дуг DE и EF равны {150}^circ и {68}^circ соответственно.

Решение.

Дуга FD, не содержащая точку Е, равна {360}^circ - {150}^circ - 68{}^circ = 142{}^circ. Вписанный угол DEF, опирающийся на эту дугу, равен половине ее угловой величины, angle DEF = 71{}^circ.

Ответ: 71.

Задача 13, ОГЭ. В окружности с центром O AC и BD — диаметры. Угол ACB равен {26}^circ. Найдите угол AOD. Ответ дайте в градусах.

Решение.

Угол ACB — вписанный, он равен половине центрального угла, опирающегося на ту же дугу, то есть AОВ = 52{}^circ. Угол ВОD — развернутый, поэтому угол AOD равен {180}^circ - 52{}^circ = 128{}^circ.

Ответ: 128.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Окружность. Центральный и вписанный угол» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,651
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,896
  • разное
    16,900

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Добавить комментарий