Как найти угол через арксинус

Арксинус(y = arcsin(x)) – это обратная тригонометрическая функция к синусу x = sin(y). Область определения -1 ≤ x ≤ 1 и множество значений -π/2 ≤ y ≤ +π/2.

График пересекает оси в начале координат.

arcsin(0) = 0° arcsin(0.8660254038) = 120° arcsin(-0.8660254038) = 240°
arcsin(0.01745240644) = 1° arcsin(0.8571673007) = 121° arcsin(-0.8746197071) = 241°
arcsin(0.0348994967) = 2° arcsin(0.8480480962) = 122° arcsin(-0.8829475929) = 242°
arcsin(0.05233595624) = 3° arcsin(0.8386705679) = 123° arcsin(-0.8910065242) = 243°
arcsin(0.06975647374) = 4° arcsin(0.8290375726) = 124° arcsin(-0.8987940463) = 244°
arcsin(0.08715574275) = 5° arcsin(0.8191520443) = 125° arcsin(-0.906307787) = 245°
arcsin(0.1045284633) = 6° arcsin(0.8090169944) = 126° arcsin(-0.9135454576) = 246°
arcsin(0.1218693434) = 7° arcsin(0.79863551) = 127° arcsin(-0.9205048535) = 247°
arcsin(0.139173101) = 8° arcsin(0.7880107536) = 128° arcsin(-0.9271838546) = 248°
arcsin(0.156434465) = 9° arcsin(0.7771459615) = 129° arcsin(-0.9335804265) = 249°
arcsin(0.1736481777) = 10° arcsin(0.7660444431) = 130° arcsin(-0.9396926208) = 250°
arcsin(0.1908089954) = 11° arcsin(0.7547095802) = 131° arcsin(-0.9455185756) = 251°
arcsin(0.2079116908) = 12° arcsin(0.7431448255) = 132° arcsin(-0.9510565163) = 252°
arcsin(0.2249510543) = 13° arcsin(0.7313537016) = 133° arcsin(-0.956304756) = 253°
arcsin(0.2419218956) = 14° arcsin(0.7193398003) = 134° arcsin(-0.9612616959) = 254°
arcsin(0.2588190451) = 15° arcsin(0.7071067812) = 135° arcsin(-0.9659258263) = 255°
arcsin(0.2756373558) = 16° arcsin(0.6946583705) = 136° arcsin(-0.9702957263) = 256°
arcsin(0.2923717047) = 17° arcsin(0.6819983601) = 137° arcsin(-0.9743700648) = 257°
arcsin(0.3090169944) = 18° arcsin(0.6691306064) = 138° arcsin(-0.9781476007) = 258°
arcsin(0.3255681545) = 19° arcsin(0.656059029) = 139° arcsin(-0.9816271834) = 259°
arcsin(0.3420201433) = 20° arcsin(0.6427876097) = 140° arcsin(-0.984807753) = 260°
arcsin(0.3583679495) = 21° arcsin(0.629320391) = 141° arcsin(-0.9876883406) = 261°
arcsin(0.3746065934) = 22° arcsin(0.6156614753) = 142° arcsin(-0.9902680687) = 262°
arcsin(0.3907311285) = 23° arcsin(0.6018150232) = 143° arcsin(-0.9925461516) = 263°
arcsin(0.4067366431) = 24° arcsin(0.5877852523) = 144° arcsin(-0.9945218954) = 264°
arcsin(0.4226182617) = 25° arcsin(0.5735764364) = 145° arcsin(-0.9961946981) = 265°
arcsin(0.4383711468) = 26° arcsin(0.5591929035) = 146° arcsin(-0.9975640503) = 266°
arcsin(0.4539904997) = 27° arcsin(0.544639035) = 147° arcsin(-0.9986295348) = 267°
arcsin(0.4694715628) = 28° arcsin(0.5299192642) = 148° arcsin(-0.999390827) = 268°
arcsin(0.4848096202) = 29° arcsin(0.5150380749) = 149° arcsin(-0.9998476952) = 269°
arcsin(0.5) = 30° arcsin(0.5) = 150° arcsin(-1) = 270°
arcsin(0.5150380749) = 31° arcsin(0.4848096202) = 151° arcsin(-0.9998476952) = 271°
arcsin(0.5299192642) = 32° arcsin(0.4694715628) = 152° arcsin(-0.999390827) = 272°
arcsin(0.544639035) = 33° arcsin(0.4539904997) = 153° arcsin(-0.9986295348) = 273°
arcsin(0.5591929035) = 34° arcsin(0.4383711468) = 154° arcsin(-0.9975640503) = 274°
arcsin(0.5735764364) = 35° arcsin(0.4226182617) = 155° arcsin(-0.9961946981) = 275°
arcsin(0.5877852523) = 36° arcsin(0.4067366431) = 156° arcsin(-0.9945218954) = 276°
arcsin(0.6018150232) = 37° arcsin(0.3907311285) = 157° arcsin(-0.9925461516) = 277°
arcsin(0.6156614753) = 38° arcsin(0.3746065934) = 158° arcsin(-0.9902680687) = 278°
arcsin(0.629320391) = 39° arcsin(0.3583679495) = 159° arcsin(-0.9876883406) = 279°
arcsin(0.6427876097) = 40° arcsin(0.3420201433) = 160° arcsin(-0.984807753) = 280°
arcsin(0.656059029) = 41° arcsin(0.3255681545) = 161° arcsin(-0.9816271834) = 281°
arcsin(0.6691306064) = 42° arcsin(0.3090169944) = 162° arcsin(-0.9781476007) = 282°
arcsin(0.6819983601) = 43° arcsin(0.2923717047) = 163° arcsin(-0.9743700648) = 283°
arcsin(0.6946583705) = 44° arcsin(0.2756373558) = 164° arcsin(-0.9702957263) = 284°
arcsin(0.7071067812) = 45° arcsin(0.2588190451) = 165° arcsin(-0.9659258263) = 285°
arcsin(0.7193398003) = 46° arcsin(0.2419218956) = 166° arcsin(-0.9612616959) = 286°
arcsin(0.7313537016) = 47° arcsin(0.2249510543) = 167° arcsin(-0.956304756) = 287°
arcsin(0.7431448255) = 48° arcsin(0.2079116908) = 168° arcsin(-0.9510565163) = 288°
arcsin(0.7547095802) = 49° arcsin(0.1908089954) = 169° arcsin(-0.9455185756) = 289°
arcsin(0.7660444431) = 50° arcsin(0.1736481777) = 170° arcsin(-0.9396926208) = 290°
arcsin(0.7771459615) = 51° arcsin(0.156434465) = 171° arcsin(-0.9335804265) = 291°
arcsin(0.7880107536) = 52° arcsin(0.139173101) = 172° arcsin(-0.9271838546) = 292°
arcsin(0.79863551) = 53° arcsin(0.1218693434) = 173° arcsin(-0.9205048535) = 293°
arcsin(0.8090169944) = 54° arcsin(0.1045284633) = 174° arcsin(-0.9135454576) = 294°
arcsin(0.8191520443) = 55° arcsin(0.08715574275) = 175° arcsin(-0.906307787) = 295°
arcsin(0.8290375726) = 56° arcsin(0.06975647374) = 176° arcsin(-0.8987940463) = 296°
arcsin(0.8386705679) = 57° arcsin(0.05233595624) = 177° arcsin(-0.8910065242) = 297°
arcsin(0.8480480962) = 58° arcsin(0.0348994967) = 178° arcsin(-0.8829475929) = 298°
arcsin(0.8571673007) = 59° arcsin(0.01745240644) = 179° arcsin(-0.8746197071) = 299°
arcsin(0.8660254038) = 60° arcsin(0) = 180° arcsin(-0.8660254038) = 300°
arcsin(0.8746197071) = 61° arcsin(-0.01745240644) = 181° arcsin(-0.8571673007) = 301°
arcsin(0.8829475929) = 62° arcsin(-0.0348994967) = 182° arcsin(-0.8480480962) = 302°
arcsin(0.8910065242) = 63° arcsin(-0.05233595624) = 183° arcsin(-0.8386705679) = 303°
arcsin(0.8987940463) = 64° arcsin(-0.06975647374) = 184° arcsin(-0.8290375726) = 304°
arcsin(0.906307787) = 65° arcsin(-0.08715574275) = 185° arcsin(-0.8191520443) = 305°
arcsin(0.9135454576) = 66° arcsin(-0.1045284633) = 186° arcsin(-0.8090169944) = 306°
arcsin(0.9205048535) = 67° arcsin(-0.1218693434) = 187° arcsin(-0.79863551) = 307°
arcsin(0.9271838546) = 68° arcsin(-0.139173101) = 188° arcsin(-0.7880107536) = 308°
arcsin(0.9335804265) = 69° arcsin(-0.156434465) = 189° arcsin(-0.7771459615) = 309°
arcsin(0.9396926208) = 70° arcsin(-0.1736481777) = 190° arcsin(-0.7660444431) = 310°
arcsin(0.9455185756) = 71° arcsin(-0.1908089954) = 191° arcsin(-0.7547095802) = 311°
arcsin(0.9510565163) = 72° arcsin(-0.2079116908) = 192° arcsin(-0.7431448255) = 312°
arcsin(0.956304756) = 73° arcsin(-0.2249510543) = 193° arcsin(-0.7313537016) = 313°
arcsin(0.9612616959) = 74° arcsin(-0.2419218956) = 194° arcsin(-0.7193398003) = 314°
arcsin(0.9659258263) = 75° arcsin(-0.2588190451) = 195° arcsin(-0.7071067812) = 315°
arcsin(0.9702957263) = 76° arcsin(-0.2756373558) = 196° arcsin(-0.6946583705) = 316°
arcsin(0.9743700648) = 77° arcsin(-0.2923717047) = 197° arcsin(-0.6819983601) = 317°
arcsin(0.9781476007) = 78° arcsin(-0.3090169944) = 198° arcsin(-0.6691306064) = 318°
arcsin(0.9816271834) = 79° arcsin(-0.3255681545) = 199° arcsin(-0.656059029) = 319°
arcsin(0.984807753) = 80° arcsin(-0.3420201433) = 200° arcsin(-0.6427876097) = 320°
arcsin(0.9876883406) = 81° arcsin(-0.3583679495) = 201° arcsin(-0.629320391) = 321°
arcsin(0.9902680687) = 82° arcsin(-0.3746065934) = 202° arcsin(-0.6156614753) = 322°
arcsin(0.9925461516) = 83° arcsin(-0.3907311285) = 203° arcsin(-0.6018150232) = 323°
arcsin(0.9945218954) = 84° arcsin(-0.4067366431) = 204° arcsin(-0.5877852523) = 324°
arcsin(0.9961946981) = 85° arcsin(-0.4226182617) = 205° arcsin(-0.5735764364) = 325°
arcsin(0.9975640503) = 86° arcsin(-0.4383711468) = 206° arcsin(-0.5591929035) = 326°
arcsin(0.9986295348) = 87° arcsin(-0.4539904997) = 207° arcsin(-0.544639035) = 327°
arcsin(0.999390827) = 88° arcsin(-0.4694715628) = 208° arcsin(-0.5299192642) = 328°
arcsin(0.9998476952) = 89° arcsin(-0.4848096202) = 209° arcsin(-0.5150380749) = 329°
arcsin(1) = 90° arcsin(-0.5) = 210° arcsin(-0.5) = 330°
arcsin(0.9998476952) = 91° arcsin(-0.5150380749) = 211° arcsin(-0.4848096202) = 331°
arcsin(0.999390827) = 92° arcsin(-0.5299192642) = 212° arcsin(-0.4694715628) = 332°
arcsin(0.9986295348) = 93° arcsin(-0.544639035) = 213° arcsin(-0.4539904997) = 333°
arcsin(0.9975640503) = 94° arcsin(-0.5591929035) = 214° arcsin(-0.4383711468) = 334°
arcsin(0.9961946981) = 95° arcsin(-0.5735764364) = 215° arcsin(-0.4226182617) = 335°
arcsin(0.9945218954) = 96° arcsin(-0.5877852523) = 216° arcsin(-0.4067366431) = 336°
arcsin(0.9925461516) = 97° arcsin(-0.6018150232) = 217° arcsin(-0.3907311285) = 337°
arcsin(0.9902680687) = 98° arcsin(-0.6156614753) = 218° arcsin(-0.3746065934) = 338°
arcsin(0.9876883406) = 99° arcsin(-0.629320391) = 219° arcsin(-0.3583679495) = 339°
arcsin(0.984807753) = 100° arcsin(-0.6427876097) = 220° arcsin(-0.3420201433) = 340°
arcsin(0.9816271834) = 101° arcsin(-0.656059029) = 221° arcsin(-0.3255681545) = 341°
arcsin(0.9781476007) = 102° arcsin(-0.6691306064) = 222° arcsin(-0.3090169944) = 342°
arcsin(0.9743700648) = 103° arcsin(-0.6819983601) = 223° arcsin(-0.2923717047) = 343°
arcsin(0.9702957263) = 104° arcsin(-0.6946583705) = 224° arcsin(-0.2756373558) = 344°
arcsin(0.9659258263) = 105° arcsin(-0.7071067812) = 225° arcsin(-0.2588190451) = 345°
arcsin(0.9612616959) = 106° arcsin(-0.7193398003) = 226° arcsin(-0.2419218956) = 346°
arcsin(0.956304756) = 107° arcsin(-0.7313537016) = 227° arcsin(-0.2249510543) = 347°
arcsin(0.9510565163) = 108° arcsin(-0.7431448255) = 228° arcsin(-0.2079116908) = 348°
arcsin(0.9455185756) = 109° arcsin(-0.7547095802) = 229° arcsin(-0.1908089954) = 349°
arcsin(0.9396926208) = 110° arcsin(-0.7660444431) = 230° arcsin(-0.1736481777) = 350°
arcsin(0.9335804265) = 111° arcsin(-0.7771459615) = 231° arcsin(-0.156434465) = 351°
arcsin(0.9271838546) = 112° arcsin(-0.7880107536) = 232° arcsin(-0.139173101) = 352°
arcsin(0.9205048535) = 113° arcsin(-0.79863551) = 233° arcsin(-0.1218693434) = 353°
arcsin(0.9135454576) = 114° arcsin(-0.8090169944) = 234° arcsin(-0.1045284633) = 354°
arcsin(0.906307787) = 115° arcsin(-0.8191520443) = 235° arcsin(-0.08715574275) = 355°
arcsin(0.8987940463) = 116° arcsin(-0.8290375726) = 236° arcsin(-0.06975647374) = 356°
arcsin(0.8910065242) = 117° arcsin(-0.8386705679) = 237° arcsin(-0.05233595624) = 357°
arcsin(0.8829475929) = 118° arcsin(-0.8480480962) = 238° arcsin(-0.0348994967) = 358°
arcsin(0.8746197071) = 119° arcsin(-0.8571673007) = 239° arcsin(-0.01745240644) = 359°

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Определения арксинуса, арккосинуса, арктангенса и арккотангенса числа помогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a, тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.

Для четкого понимания рассмотрим пример.

Если имеем арккосинус угла равного π3, то значение косинуса отсюда равно 12 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 12 получим π на 3. Такое тригонометрическое выражение записывается как arcos(12)=π3.

Величиной угла может быть как градус, так и радиан. Значение угла π3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 12 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид arccos12=60°

Основные значения arcsin, arccos, arctg и arctg

Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0, ±30, ±45, ±60, ±90, ±120, ±135, ±150, ±180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.

Таблица синусов основных углов предлагает такие результаты значений углов:

sin(-π2)=-1, sin(-π3)=-32, sin(-π4)=-22, sin(-π6)=-12,sin 0 =0, sinπ6=12, sinπ4=22, sinπ3=32, sinπ2=1

Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от -1 и заканчивая 1, также значения от –π2 до +π2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

α -1 -32 -22 -12 0 12 22 32
arcsin αкак угол

в радианах

-π2 -π3 -π4 -π6 0 π6 π4 π3
в градусах -90° -60° -45° -30° 30° 45° 60°
arcsin α как число -π2 -π3 -π4 -π6 0 π6 π4 π3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

cos 0=1, cos π6=32 , cos π4=22, cos π3=12, cosπ2=0,cos2π3=-12, cos3π4=-22, cos5π6=-32, cosπ=-1

Следуя из таблицы, находим значения арккосинуса:

arccos (-1)=π, arccos (-32)=5π6, arcocos (-22)=3π4, arccos-12=2π3, arccos 0 =π2, arccos 12=π3, arccos 22=π4, arccos32=π6, arccos 1 =0

Таблица арккосинусов.

α -1 -32 -22 -12 0 12 22 32 1
arccos αкак угол

в радианах

π 5π6 3π4 2π3 π2 π3 π4 π6 0
в градусах 180° 150° 135° 120° 90° 60° 45° 30°
arccos α как число π 5π6 3π4 2π3 π2 π3 π4 π6 0

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α -3 -1 -33 0 33 1 3
arctg aкак угол в радианах -π3 -π4 -π6 0 π6 π4 π3
в градусах -60° -45° -30° 30° 45° 60°
arctg a как число -π3 -π4 -π6 0 π6 π4 π3

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

arcsin, arccos, arctg и arcctg

Для точного значения arcsin, arccos, arctg и arcctg числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют таблицу синусов, косинусов, тангенсов и котангенсов Брадиса.

Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения arcsin, arccos, arctg и arcctg отрицательных и положительных чисел сводится к нахождению формул arcsin, arccos, arctg и arcctg противоположных чисел вида arcsin(-α)=-arcsin α, arccos(-α)=π-arccos α, arctg(-α)=-arctg α, arcctg(-α)=π-arcctg α.

Рассмотрим решение нахождения значений  arcsin, arccos, arctg и arcctg с помощью таблицы Брадиса.

Если нам необходимо найти значение арксинуса 0,2857, ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0,2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0,2863 используется та самая поправка в 0,0006, так как ближайшим числом будет 0,2857. Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Таким образом находятся значения arcsin, arccos, arctg и arcctg.

Нахождение значения arcsin, arccos, arctg и arcctg

Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы arcsin α+arccos α=π2, arctg α+arcctg α=π2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).

При известном arcsin α= -π12 необходимо найти значение arccos α, тогда необходимо вычислить арккосинус по формуле:

arccos α=π2−arcsin α=π2−(−π12)=7π12.

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Если дан арккосинус числа а равный π10, а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0,9511, после чего заглядываем в таблицу Брадиса.

Нахождение значения arcsin, arccos, arctg и arcctg

При поиске значения арктангенса 0,9511  определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.

Нахождение значения arcsin, arccos, arctg и arcctg

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

  • Определение

  • График арксинуса

  • Свойства арксинуса

  • Таблица арксинусов

Определение

Арксинус (arcsin) – это обратная тригонометрическая функция.

Арксинус x определяется как функция, обратная к синусу x, при -1≤x≤1.

Если синус угла у равен х (sin y = x), значит арксинус x равняется y:

arcsin x = sin-1 x = y

Примечание: sin-1x означает обратный синус, а не синус в степени -1.

Например:

arcsin 1 = sin-1 1 = 90° (π/2 рад)

График арксинуса

Функция арксинуса пишется как y = arcsin (x). График в общем виде выглядит следующим образом (-1≤x≤1, -π/2≤y≤π/2):

График арксинуса

Свойства арксинуса

Ниже в табличном виде представлены основные свойства арксинуса с формулами.

Таблица арксинусов

x arcsin x (рад) arcsin x (°)
-1 -π/2 -90°
-√3/2 -π/3 -60°
-√2/2 -π/4 -45°
-1/2 -π/6 -30°
0 0
1/2 π/6 30°
2/2 π/4 45°
3/2 π/3 60°
1 π/2 90°

microexcel.ru

План урока: 

Арккосинус

Арксинус

Арктангенс

Решение уравнения cosx = a

Решение уравнения sinx = a

Решение уравнений tgx = a и ctgx = a

Арккосинус

Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:

1ghfhjkk

Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1<а < 1, то должно получиться две точки, которым соответствуют два противоположных угла:

2hgjhj

Получается, что каждому значению числа а соответствует некоторый угол α. А если есть соответствие, то есть и функция:

α = f (a)

В математике ее называют арккосинусом. Записывается она так:

3hgfgh

Вертикальная прямая может пересекать единичную окружность в двух разных точках. Им соответствуют разные углы. Принято считать, что арккосинус – это значение того угла, который лежит в первой или второй четверти, то есть ему соответствует точка, лежащая выше оси Ох. Тогда другая точка пересечения будет соответствовать углу (– arccosa):

4gfgh

Выходит, что арккосинус может принимать только значения из отрезка [0; π]. Дадим определение арккосинуса:

5gfdhg

Задание. Вычислите арккосинус числа 1/2.

Решение. Мы помним, что косинус угла π/3 равен 1/2:

6gfgjhj

Следовательно, arccos 1/2 – это и есть угол π/3:

7fdfg

Ответ: π/3.

Обратим внимание, что если число а равно 1 или (– 1), то его арккосинус равен нулю в первом случае и π во втором:

8gfghfgh

В тех случаях, когда а > 1 либо а <– 1, то соответствующая прямая не пересечет единичную окружность. Это значит, что эти значения не входят в область определения арккосинуса:

9gfghh

Получается, что область определения арккосинуса – это промежуток [– 1; 1].

Для вычисления арккосинусов от отрицательных величин удобно пользоваться формулой

10gfdty

Действительно, если отложить на координатной прямой числа а и (– а), то вертикальные прямые, проходящие через них, пересекут окружность в некоторых точках А и С:

11fdty

Дополнительно обозначим буквой В точку с координатами (1; 0) и буквой D точку с координатами (– 1; 0). Эти точки располагаются на пересечении оси Ох и единичной окружности. Тогда можно записать, что

12fgfhgj

ведь эти два угла образуют вместе развернутый угол ВОD, равный π. С другой стороны, из симметрии очевидно, что углы ∠COD и ∠АОВ равны друг другу, значит, ∠COD = ∠АОВ = arccosa. Тогда

13fgghhjghj

Но ∠СОВ – это арккосинус от (– а), поэтому

14gdfgty

15hfyu

Задание. Вычислите arccos (– 1/2).

Решение. Используем только что полученную формулу:

16hyutyu

17hgyuty

Ответ: 2π/3.

Арксинус

Арккосинус – это ф-ция, обратная косинусу. Аналогично можно вести и другие обратные тригонометрические ф-ции. Пусть нам требуется узнать, синус какого угла равен числу а. Так как синус – это координата у точки на единичной окружности, то достаточно провести горизонтальную линию у = а:

18bgfhy

Прямая может пересечь окружность сразу в двух точках. За арксинус принимают угол, соответствующей точке, расположенной правее оси Оу. Вторая же точка соответствует углу π – arcsin α:

19gnhjjk

Арксинус может быть вычислен и для отрицательного значения а. В этом случае точка пересечения прямой и окружности будет располагаться в IV четверти, а соответствующий ему угол окажется отрицательным:

20nhkjk

При значениях а, равных (– 1) и 1, точка пересечения будет только одна. В этих случаях арксинус окажется равным либо углу π/2, либо углу (– π/2):

21bghjk

Таким образом, арксинус может принимать значения из отрезка [– π/2; π/2], а вычислить его можно для чисел а, принадлежащих отрезку [– 1; 1]. Если же число а выходит за пределы этого промежутка, то горизонтальная прямая не пересекает единичную окружность, а потому ф-ция арксинуса становится неопределенной:

22hghjt

Получается, что областью определения арксинуса является промежуток [– 1; 1], а областью значений – промежуток [– π/2; π/2].

Дадим определение арксинусу:

23gfghy

Задание. Чему равен arcsin0,5?

Решение. Мы знаем, что sinπ/6 = 1/2 = 0,5. Следовательно, арксинус 0,5 равен π/6.

24bgfhy

Для вычисления арксинусов отрицательных углов используется формула

25bgj

Справедливость этой формулы очевидна из картинки:

26bghj

27nhgkjk

Задание. Вычислите arcsin (– 0,5).

Решение. Используем формулу для арксинуса отрицательного числа:

28bgjhj

Арктангенс

Введем ф-цию, обратную тангенсу. Она называется арктангенс.

Напомним, что величину тангенса на координатной плоскости можно получить, если продолжить угол до его пересечения с вертикальной прямой х = 1. Аналогично, чтобы определить арктангенс некоторого числа а, надо отметить на этой прямой точку с координатами (1; а) и соединить её с началом координат:

29bghjf

Несложно видеть, что, какое бы число а нами не было выбрано, мы с помощью построения всегда сможем соединить точку А с началом координат и получить некоторый угол arctga. Это значит, что область определения арктангенса – это вся числовая прямая, то есть промежуток (– ∞; + ∞).

Ещё раз уточним, что вводимые нами функции arcos, arcsin, arctg называются ОБРАТНЫМИ тригонометрическими функциями. C их помощью можно определить угол, если известно значение его синуса, косинуса или тангенса.Образно говоря, обратные триг-кие функции играют в тригонометрии ту же роль, что и квадратные корни при исследовании квадратных ур-ний. Как без квадратных корней невозможно решать квадратные ур-ния, так и без знания об обратных триг-ких функций нельзя решать уже тригом-кие уравнения.

Теперь вернемся к понятию арктангенса. При положительном значении числа а угол arctga будет принадлежать I четверти. Если же а – отрицательное число, то угол arctga окажется также отрицательным и будет принадлежать IV четверти:

30ghjuk

Получается, что величина arctgа может принадлежать промежутку (– π/2; π/2). Обратите внимание, что в данном случае у промежутка круглые скобки. Действительно для углов (– π/2) и π/2 тангенс не определен, а потому арктангенс не может принимать эти два значения.

31gfgh

Задание. Чему равен arctg 1?

Решение. Из таблицы тангенсов мы знаем, что tgπ/4 = 1. Это значит, что

32bgfhgj

Для вычисления арктангенсов отрицательных чисел используют формулу

33bgj

В ее справедливости можно убедиться, взглянув на рисунок:

34gfhj

35nghjh

Задание. Вычислите arctg (– 1).

Решение.

36nhgh

Ответ: – 1

В принципе можно ввести ещё ф-цию, обратную котангенсу – арккотангенс. Однако для решения тригонометрических уравнений, как мы убедимся далее, она не требуется, а поэтому в рамках школьного курса математики ее можно не изучать.

В заключение приведем таблицы, которые помогают вычислять значение обратных тригон-ких функций:

37nfgjhj

Решение уравнения cosx = a

Рассмотрим тригонометрическое уравнение, в левой части которого стоит ф-ция cosx, а в правой – число, например, 0,5:

38hfgh

По определению арккосинуса очевидно, что arccos 0,5 будет его решением, ведь

39hgfgh

Так как arccos 0,5 = π/3, то мы находим очевидный корень х = π/3. И действительно, если подставить это значение в исходное ур-ние, то получится верное равенство:

40gfyu

Значит ли это, что мы решили ур-ние? Нет, ведь мы нашли только один корень, а их может быть несколько. Проведем на единичной окружности вертикальную прямую х = 0,5 и посмотрим, где она пересечет окружность:

41gfdyu

Видно, что есть ещё одна точка пересечения, соответствующая углу (– arccos 0,5). Это значит, что этот угол также является решением ур-ния. Проверим это:

42gfjhj

Здесь мы использовали тот факт, косинус – четная функция, то есть

43gfgjhj

Итак, число – π/3 также является корнем ур-ния. Есть ли ещё какие-нибудь корни? Оказывается, есть. Построим график ф-ции у = cosx и посмотрим, где ее пересекает прямая у = 0,5:

44hgfjhj

Оказывается, прямая пересекает график в бесконечном количестве точек! Это связано с периодичностью ф-ции у = cosx. Период этой ф-ции равен 2π, то есть

45bgjhj

Поэтому, если число π/3 является решением ур-ния, то так же решением будут и число π/3 + 2π. Но к этому числу можно ещё раз добавить 2π и получить число π/3 + 4π. И оно тоже будет корнем. С другой стороны, период можно не только добавлять, но и вычитать, поэтому корнями ур-ния окажутся числа π/3 – 2π, π/3 – 4π и т.д. Как же записать все эти бесчисленные решения? Для этого используется такая запись:

46hhkjk

Запись «π/3+ 2πn» называется серией решений. Она включает в себя бесконечное количество значений х, которые обращают ур-ние в справедливое равенство. Достаточно выбрать любое целое число и подставить его в серию решений. Например, при n = 0 получим решение

47hgfj

При n = 5 получим корень

48hgjj

При n = – 10 у нас получится решение

49jhkjk

Однако помимо серии х = π/3 + 2πn решениями ур-ния будет определять ещё одна серия:

50hgfyu

Действительно, число (– π/3) является корнем, но не входит в первую серию. Поэтому оно порождает собственную серию корней. Так, подставив в эту серию n = 4, получим корень

51ghjhj

Итак, решением ур-ния являются две серии решений. Заметим, что каждой серии решений с периодом 2π соответствует ровно одна точка на единичной окружности:

52hjkjk

Объединить же обе серии можно одной записью:

53ghyu

Напомним, что мы решали ур-ние

54gfhyu

и получили для него решение

55bggfh

Число π/3 появилось в записи по той причине, что arccos 0,5 = π/3. Поэтому в общем случае, когда ур-ние имеет вид

56hgi

где а – некоторое число, его решением будут все такие х, что

57jhjk

58jyui

Для краткости запись «n– целое число» заменяют эквивалентной записью

«n ∈ Z»

Напомним, что буквой Z обозначают множество целых чисел.

Задание. Решите ур-ние

59nhgj

Решение. Вспомним, что

60hgfhf

Задание. Решите ур-ние

61gfty

Решение. В таблице стандартных углов нет такого числа, у которого косинус равен 0,25. Поэтому вычислить значение arccos 0,25 мы не сможем. Но для записи решения и не нужно его вычислять:

62kgit

Иногда встречаются задачи, в которых надо не просто решить ур-ние, но и выбрать некоторые его корни, удовлетворяющие определенному условию. Процедуру выбора корней, удовлетворяющих условию задачи, часто называют отбором корней. Заметим, что иногда при отборе корней удобнее записывать решение ур-ние не в виде одной серии, а в виде двух серий, у каждой из которых период равен 2π. Рассмотрим отбор корней на примере.

Задание. Укажите три наименьших положительных корня ур-ния

63bgh

Решение. Так как

64gfdgd

то все решения образуют две серии:

65gfdfg

Начнем подставлять вместо n целые числа и выпишем из каждой серии несколько чисел. Так мы сможем найти наименьшие положительные числа в каждой серии.

Для первой серии:

66gfdfg

Для второй серии:

67gdffgs

Отметим все найденные корни на координатной прямой (схематично, не выдерживая масштаб):

68gfdgs

Видно, что тремя наименьшими положительными корнями являются числа π/4, 7π/4 и 9π/4

Ответ: π/4, 7π/4 и 9π/4.

Отметим, что возможны три частных случая, когда две серии решений сливаются в одну. Для ур-ния

69fhgh

На графике видно, что этим значениям х соответствуют вершины синусоиды. Решениями же ур-ния

70gfdhgh

являются точки, в которых график пересекает ось Ох:

71gdfg

Отдельно отметим, что если правая часть в ур-нии – это число, большее единицы или меньшее (– 1), то ур-ние корней не имеет, ведь область определения косинуса – это отрезок [– 1; 1].

Решение уравнения sinx = a

Ур-ние cosx = a называют простейшим тригонометрическим уравнением, ведь, ведь для его решения не требуется проводить никаких преобразований. Аналогично простейшими являются ур-ния sinx = a, tgx = a и ctgx = a.

Ситуация с ур-нием sinx = a аналогична ситуации с косинусом. Если число а не принадлежит промежутку [– 1; 1], то корней у ур-ния не будет. Если же число а будет принадлежать этому промежутку, то у ур-ния окажется бесконечное число решений.

Рассмотрим случай, когда 0<а< 1. Тогда решениями ур-ния окажутся числа arcsina и π – arcsina:

72jgjfkd

В свою очередь каждое из этих двух решений порождает свою собственную бесконечную серию решений

73fdhh

Однако, как и в случае с косинусом, существует способ записать одной формулой сразу оба этих решения. Для этого перепишем первую серию таким образом:

74gfjhjh

Действительно, если n окажется четным, то, то выражение (– 1)n,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1)n окажется равным (– 1), и мы получим вторую серию.

75ggfdhgh

Задание. Решите ур-ние

76gghj

Задание. Запишите корни ур-ния

77gdhgh

Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.

78dfgf

Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:

79gfdfg

Ответ: 7π/3 и 8π/3.

Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние

80gdfhg

Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:

81jhdfg

Решениями ур-ния

82kjhgfg

83gtyui

Наконец, решениями ур-ния

84hkjhjk

Решение уравнений tgx = a и ctgx = a

Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):

85ghyu

Таким образом, у ур-ния tgx = a существует очевидное решение

x = arctg a

Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:

86gdfgy

87fgjt

88yiui

Задание. Решите ур-ние

89gfjdg

Задание. Запишите формулу корней ур-ния

90fjdfgfg

Далее рассмотрим ур-ние вида

91gfdgu

Задание. Решите ур-ние

92gjiyu

Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии

93jkyllu

Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.

Арк- переводится, как арка. В нашем случае аркой является дуга окружности, на которую опирается центральный угол. Ее можно по наикратчайшему пути взять, а можно и по длинному.

Термин арк-синус переводится так: “дуга, синус центрального угла которой равен… тому-то и тому-то”. Арксинус нельзя взять от аргумента угла, можно только от синуса угла. Точно так же и для прочих арк-ов.

Что до углов, то ф-ции эти периодические: добавь-вычти период и приведешь, куда надо.

WildBearПрофи (594)

8 лет назад

немного ошибся….
известен арксинус синуса какого-то угла и арккосинус косинуса того же угла. Вопрос: можно ли по двум этим величинам однозначно восстановить значение угла ?

WildBear
Профи
(594)
угол может меняться в пределах от 0 до 360 градусов

Добавить комментарий