Как найти угол через радиус описанной окружности

Теорема синусов

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Формула теоремы синусов:

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Из этой формулы мы получаем два соотношения:

На b сокращаем, синусы переносим в знаменатели:

  • bc sinα = ca sinβ

  • Из этих двух соотношений получаем:

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° – α.

    Вспомним свойство вписанного в окружность четырёхугольника:

    Также известно, что sin(180° – α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° – α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° – 60°) = sin60° = 3/√2;
    • sin150° = sin(180° – 30°) = sin30° = 1/2;
    • sin135° = sin(180° – 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° – α)

    Так как sin(180° – α) = sinα, то sinγ = sin(180° – α) = sinα

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° – 45° – 15° = 120°

  • Сторону AC найдем по теореме синусов:
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Треугольник вписанный в окружность

    Определение

    Треугольник, вписанный в окружность — это треугольник, который
    находится внутри окружности и соприкасается с ней всеми тремя вершинами.

    На рисунке 1 изображена окружность, описанная около
    треугольника
    и окружность, вписанная в треугольник.

    ВD = FC = AE — диаметры описанной около треугольника окружности.

    O — центр вписанной в треугольник окружности.

    Формулы

    Радиус вписанной окружности в треугольник

    r — радиус вписанной окружности.

    1. Радиус вписанной окружности в треугольник,
      если известна площадь и все стороны:

    Радиус вписанной окружности в треугольник,
    если известны площадь и периметр:

    Радиус вписанной окружности в треугольник,
    если известны полупериметр и все стороны:

    Радиус описанной окружности около треугольника

    R — радиус описанной окружности.

    1. Радиус описанной окружности около треугольника,
      если известна одна из сторон и синус противолежащего стороне угла:

    Радиус описанной окружности около треугольника,
    если известны все стороны и площадь:

    Радиус описанной окружности около треугольника,
    если известны все стороны и полупериметр:

    Площадь треугольника

    S — площадь треугольника.

    1. Площадь треугольника вписанного в окружность,
      если известен полупериметр и радиус вписанной окружности:

    Площадь треугольника вписанного в окружность,
    если известен полупериметр:

    Площадь треугольника вписанного в окружность,
    если известен высота и основание:

    Площадь треугольника вписанного в окружность,
    если известна сторона и два прилежащих к ней угла:

    Площадь треугольника вписанного в окружность,
    если известны две стороны и синус угла между ними:

    [ S = frac<1><2>ab cdot sin angle C ]

    Периметр треугольника

    P — периметр треугольника.

    1. Периметр треугольника вписанного в окружность,
      если известны все стороны:

    Периметр треугольника вписанного в окружность,
    если известна площадь и радиус вписанной окружности:

    Периметр треугольника вписанного в окружность,
    если известны две стороны и угол между ними:

    Сторона треугольника

    a — сторона треугольника.

    1. Сторона треугольника вписанного в окружность,
      если известны две стороны и косинус угла между ними:

    Сторона треугольника вписанного в
    окружность, если известна сторона и два угла:

    Средняя линия треугольника

    l — средняя линия треугольника.

    1. Средняя линия треугольника вписанного
      в окружность, если известно основание:

    Средняя линия треугольника вписанного в окружность,
    если известныдве стороны, ни одна из них не является
    основанием, и косинус угламежду ними:

    Высота треугольника

    h — высота треугольника.

    1. Высота треугольника вписанного в окружность,
      если известна площадь и основание:

    Высота треугольника вписанного в окружность,
    если известен сторона и синус угла прилежащего
    к этой стороне, и находящегося напротив высоты:

    [ h = b cdot sin alpha ]

    Высота треугольника вписанного в окружность,
    если известен радиус описанной окружности и
    две стороны, ни одна из которых не является основанием:

    Свойства

    • Центр вписанной в треугольник окружности
      находится на пересечении биссектрис.
    • В треугольник, вписанный в окружность,
      можно вписать окружность, причем только одну.
    • Для треугольника, вписанного в окружность,
      справедлива Теорема Синусов, Теорема Косинусов
      и Теорема Пифагора.
    • Центр описанной около треугольника окружности
      находится на пересечении серединных перпендикуляров.
    • Все вершины треугольника, вписанного
      в окружность, лежат на окружности.
    • Сумма всех углов треугольника — 180 градусов.
    • Площадь треугольника вокруг которого описана окружность, и
      треугольника, в который вписана окружность, можно найти по
      формуле Герона.

    Доказательство

    Около любого треугольника, можно
    описать окружность притом только одну.

    окружность и треугольник,
    которые изображены на рисунке 2.

    окружность описана
    около треугольника.

    1. Проведем серединные
      перпендикуляры — HO, FO, EO.
    2. O — точка пересечения серединных
      перпендикуляров равноудалена от
      всех вершин треугольника.
    3. Центр окружности — точка пересечения
      серединных перпендикуляров — около
      треугольника описана окружность — O,
      от центра окружности к вершинам можно
      провести равные отрезки — радиусы — OB, OA, OC.

    окружность описана около треугольника,
    что и требовалось доказать.

    Подводя итог, можно сказать, что треугольник,
    вписанный в окружность
    — это треугольник,
    в котором все серединные перпендикуляры
    пересекаются в одной точке, и эта точка
    равноудалена от всех вершин треугольника.

    Радиус описанной около треугольника окружности

    Радиус описанной около треугольника окружности можно найти по одной из двух общих формул.

    Кроме того, для правильного и прямоугольного треугольников существуют дополнительные формулы.

    Радиус описанной около произвольного треугольника окружности

    То есть радиус описанной окружности равен отношению длины стороны треугольника к удвоенному синусу противолежащего этой стороне угла.

    В общем виде эту формулу записывают так:

    То есть чтобы найти радиус описанной около треугольника окружности, надо произведения длин сторон треугольника разделить на четыре площади треугольника.

    Если площадь треугольника находить по формуле Герона

    где p — полупериметр,

    то получим формулу радиуса описанной около треугольника окружности через длины сторон:

    Обе эти формулы можно применить к треугольнику любого вида. Следует только учесть положение центра.

    Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.

    Центр описанной около тупоугольного треугольника окружности лежит вне треугольника, напротив тупого угла.

    Радиус окружности, описанной около прямоугольного треугольника

    Формула:

    То есть в прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.

    Обычно гипотенузу обозначают через c (AB=c) и формулу записывают так:

    Радиус окружности, описанной около правильного треугольника

    Если без иррациональности в знаменателе, то

    В равностороннем треугольнике радиус описанной окружности в два раза больше радиуса вписанной окружности:

    [spoiler title=”источники:”]

    http://colibrus.ru/treugolnik-vpisannyy-v-okruzhnost/

    Радиус описанной около треугольника окружности

    [/spoiler]

    Углы, связанные с окружностью

    Вписанные и центральные углы

    Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

    Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

    Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

    Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

    Теоремы о вписанных и центральных углах

    Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

    Середина гипотенузы прямоугольного треугольника является центром описанной
    около этого треугольника окружности.

    Фигура Рисунок Теорема
    Вписанный угол
    Вписанный угол Вписанные углы, опирающиеся на одну и ту же дугу равны.
    Вписанный угол Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
    Вписанный угол Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
    Вписанный угол Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
    Окружность, описанная около прямоугольного треугольника

    Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

    Вписанные углы, опирающиеся на одну и ту же дугу равны.

    Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

    Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

    Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

    Середина гипотенузы прямоугольного треугольника является центром описанной
    около этого треугольника окружности.

    Теоремы об углах, образованных хордами, касательными и секущими

    Вписанный угол
    Окружность, описанная около прямоугольного треугольника

    Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

    Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

    Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

    Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

    Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

    Фигура Рисунок Теорема Формула
    Угол, образованный пересекающимися хордами
    Угол, образованный секущими, которые пересекаются вне круга
    Угол, образованный касательной и хордой, проходящей через точку касания
    Угол, образованный касательной и секущей
    Угол, образованный двумя касательными к окружности

    Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

    Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

    Угол, образованный пересекающимися хордами хордами
    Формула:
    Угол, образованный секущими секущими , которые пересекаются вне круга
    Формула:

    Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

    Угол, образованный касательной и хордой хордой , проходящей через точку касания
    Формула:
    Угол, образованный касательной и секущей касательной и секущей
    Формула:

    Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

    Угол, образованный двумя касательными касательными к окружности
    Формулы:

    Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

    Доказательства теорем об углах, связанных с окружностью

    Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

    Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

    Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

    Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

    В этом случае справедливы равенства

    и теорема 1 в этом случае доказана.

    Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

    В этом случае справедливы равенства

    что и завершает доказательство теоремы 1.

    Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

    Доказательство . Рассмотрим рисунок 8.

    Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

    что и требовалось доказать.

    Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

    Доказательство . Рассмотрим рисунок 9.

    Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

    что и требовалось доказать.

    Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

    Доказательство . Рассмотрим рисунок 10.

    Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

    что и требовалось доказать

    Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

    Доказательство . Рассмотрим рисунок 11.

    Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

    что и требовалось доказать.

    Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

    Доказательство . Рассмотрим рисунок 12.

    Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

    Теорема синусов

    О чем эта статья:

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Доказательство теоремы синусов

    Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

    Нарисуем стандартный треугольник и запишем теорему формулой:

    Формула теоремы синусов:

    Докажем теорему с помощью формулы площади треугольника через синус его угла.

    Из этой формулы мы получаем два соотношения:

    На b сокращаем, синусы переносим в знаменатели:

  • bc sinα = ca sinβ

  • Из этих двух соотношений получаем:

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° – α.

    Вспомним свойство вписанного в окружность четырёхугольника:

    Также известно, что sin(180° – α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° – α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° – 60°) = sin60° = 3/√2;
    • sin150° = sin(180° – 30°) = sin30° = 1/2;
    • sin135° = sin(180° – 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° – α)

    Так как sin(180° – α) = sinα, то sinγ = sin(180° – α) = sinα

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° – 45° – 15° = 120°

  • Сторону AC найдем по теореме синусов:
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Как найти угол через радиус описанной окружности

    Теорема синусов

    О чем эта статья:

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Доказательство теоремы синусов

    Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

    Нарисуем стандартный треугольник и запишем теорему формулой:

    Формула теоремы синусов:

    Докажем теорему с помощью формулы площади треугольника через синус его угла.

    Из этой формулы мы получаем два соотношения:

    На b сокращаем, синусы переносим в знаменатели:

  • bc sinα = ca sinβ
  • Из этих двух соотношений получаем:

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Вспомним свойство вписанного в окружность четырёхугольника:

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Треугольник вписанный в окружность

    Определение

    Треугольник, вписанный в окружность — это треугольник, который
    находится внутри окружности и соприкасается с ней всеми тремя вершинами.

    На рисунке 1 изображена окружность, описанная около
    треугольника
    и окружность, вписанная в треугольник.

    ВD = FC = AE — диаметры описанной около треугольника окружности.

    O — центр вписанной в треугольник окружности.

    Формулы

    Радиус вписанной окружности в треугольник

    r — радиус вписанной окружности.

    1. Радиус вписанной окружности в треугольник,
      если известна площадь и все стороны:

    Радиус вписанной окружности в треугольник,
    если известны площадь и периметр:

    Радиус вписанной окружности в треугольник,
    если известны полупериметр и все стороны:

    Радиус описанной окружности около треугольника

    R — радиус описанной окружности.

    1. Радиус описанной окружности около треугольника,
      если известна одна из сторон и синус противолежащего стороне угла:

    Радиус описанной окружности около треугольника,
    если известны все стороны и площадь:

    Радиус описанной окружности около треугольника,
    если известны все стороны и полупериметр:

    Площадь треугольника

    S — площадь треугольника.

    1. Площадь треугольника вписанного в окружность,
      если известен полупериметр и радиус вписанной окружности:

    Площадь треугольника вписанного в окружность,
    если известен полупериметр:

    Площадь треугольника вписанного в окружность,
    если известен высота и основание:

    Площадь треугольника вписанного в окружность,
    если известна сторона и два прилежащих к ней угла:

    Площадь треугольника вписанного в окружность,
    если известны две стороны и синус угла между ними:

    [ S = frac ab cdot sin angle C ]

    Периметр треугольника

    P — периметр треугольника.

    1. Периметр треугольника вписанного в окружность,
      если известны все стороны:

    Периметр треугольника вписанного в окружность,
    если известна площадь и радиус вписанной окружности:

    Периметр треугольника вписанного в окружность,
    если известны две стороны и угол между ними:

    Сторона треугольника

    a — сторона треугольника.

    1. Сторона треугольника вписанного в окружность,
      если известны две стороны и косинус угла между ними:

    Сторона треугольника вписанного в
    окружность, если известна сторона и два угла:

    Средняя линия треугольника

    l — средняя линия треугольника.

    1. Средняя линия треугольника вписанного
      в окружность, если известно основание:

    Средняя линия треугольника вписанного в окружность,
    если известныдве стороны, ни одна из них не является
    основанием, и косинус угламежду ними:

    Высота треугольника

    h — высота треугольника.

    1. Высота треугольника вписанного в окружность,
      если известна площадь и основание:

    Высота треугольника вписанного в окружность,
    если известен сторона и синус угла прилежащего
    к этой стороне, и находящегося напротив высоты:

    [ h = b cdot sin alpha ]

    Высота треугольника вписанного в окружность,
    если известен радиус описанной окружности и
    две стороны, ни одна из которых не является основанием:

    Свойства

    • Центр вписанной в треугольник окружности
      находится на пересечении биссектрис.
    • В треугольник, вписанный в окружность,
      можно вписать окружность, причем только одну.
    • Для треугольника, вписанного в окружность,
      справедлива Теорема Синусов, Теорема Косинусов
      и Теорема Пифагора.
    • Центр описанной около треугольника окружности
      находится на пересечении серединных перпендикуляров.
    • Все вершины треугольника, вписанного
      в окружность, лежат на окружности.
    • Сумма всех углов треугольника — 180 градусов.
    • Площадь треугольника вокруг которого описана окружность, и
      треугольника, в который вписана окружность, можно найти по
      формуле Герона.

    Доказательство

    Около любого треугольника, можно
    описать окружность притом только одну.

    окружность и треугольник,
    которые изображены на рисунке 2.

    окружность описана
    около треугольника.

    1. Проведем серединные
      перпендикуляры — HO, FO, EO.
    2. O — точка пересечения серединных
      перпендикуляров равноудалена от
      всех вершин треугольника.
    3. Центр окружности — точка пересечения
      серединных перпендикуляров — около
      треугольника описана окружность — O,
      от центра окружности к вершинам можно
      провести равные отрезки — радиусы — OB, OA, OC.

    окружность описана около треугольника,
    что и требовалось доказать.

    Подводя итог, можно сказать, что треугольник,
    вписанный в окружность
    — это треугольник,
    в котором все серединные перпендикуляры
    пересекаются в одной точке, и эта точка
    равноудалена от всех вершин треугольника.

    Радиус описанной около треугольника окружности

    Радиус описанной около треугольника окружности можно найти по одной из двух общих формул.

    Кроме того, для правильного и прямоугольного треугольников существуют дополнительные формулы.

    Радиус описанной около произвольного треугольника окружности

    То есть радиус описанной окружности равен отношению длины стороны треугольника к удвоенному синусу противолежащего этой стороне угла.

    В общем виде эту формулу записывают так:

    То есть чтобы найти радиус описанной около треугольника окружности, надо произведения длин сторон треугольника разделить на четыре площади треугольника.

    Если площадь треугольника находить по формуле Герона

    где p — полупериметр,

    то получим формулу радиуса описанной около треугольника окружности через длины сторон:

    Обе эти формулы можно применить к треугольнику любого вида. Следует только учесть положение центра.

    Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.

    Центр описанной около тупоугольного треугольника окружности лежит вне треугольника, напротив тупого угла.

    Радиус окружности, описанной около прямоугольного треугольника

    Формула:

    То есть в прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.

    Обычно гипотенузу обозначают через c (AB=c) и формулу записывают так:

    Радиус окружности, описанной около правильного треугольника

    Если без иррациональности в знаменателе, то

    В равностороннем треугольнике радиус описанной окружности в два раза больше радиуса вписанной окружности:

    [spoiler title=”источники:”]

    http://skysmart.ru/articles/mathematic/teorema-sinusov

    http://b4.cooksy.ru/articles/kak-nayti-ugol-cherez-radius-opisannoy-okruzhnosti

    [/spoiler]

    Содержание

    1. Определение правильного многоугольника
    2. Элементы правильного многоугольника
    3. Диагонали n — угольника
    4. Внешний угол многоугольника
    5. Сумма внутренних углов
    6. Сумма внешних углов
    7. Виды правильных многоугольников
    8. Основные свойства правильного многоугольника
    9. Свойство 1
    10. Свойство 2
    11. Свойство 3
    12. Свойство 4
    13. Свойство 5
    14. Свойство 6
    15. Доказательства свойств углов многоугольника
    16. Правильный n-угольник — формулы
    17. Формулы длины стороны правильного n-угольника
    18. Формула радиуса вписанной окружности правильного n-угольника
    19. Формула радиуса описанной окружности правильного n-угольника
    20. Формулы площади правильного n-угольника
    21. Формула периметра правильного многоугольника:
    22. Формула определения угла между сторонами правильного многоугольника:
    23. Формулы правильного треугольника:
    24. Формулы правильного четырехугольника:
    25. Формулы правильного шестиугольника:
    26. Формулы правильного восьмиугольника:
    27. Сторона правильного многоугольника через радиус описанной вокруг него окружности
    28. Шаг 1
    29. Шаг 2
    30. Шаг 3

    Определение правильного многоугольника

    Правильный многоугольник – это выпуклый многоугольник, у которого равны все стороны и углы.

    Правильный шестиугольник

    Признаки правильного n-угольника

    • a1 = a2 = a3 = … an-1 = an
    • α1 = α2 = α3 = … αn-1 = αn

    Примечание: n – количество сторон/углов фигуры.

    Элементы правильного многоугольника

    Для рисунка выше:

    • a – сторона/ребро;
    • α – угол между смежными сторонами;
    • O – центр фигуры/масс (совпадает с центрами описанной и вписанной окружностей);
    • β – центральный угол описанной окружности, опирающийся на сторону многоугольника.

    Диагонали n — угольника

    Фигура Рисунок Описание
    Диагональ
    многоугольника
    диагонали многоугольника Диагональю многоугольника называют отрезок, соединяющий две несоседние вершины многоугольника
    Диагонали
    n – угольника, выходящие из одной вершины
    диагонали многоугольника Диагонали, выходящие из одной вершины
    n – угольника, делят n – угольник на
    n – 2 треугольника
    Все диагонали
    n – угольника
    диагонали многоугольника Число диагоналейn – угольника равно
    Диагональ многоугольника
    диагонали многоугольника

    Диагональю многоугольника называют отрезок, соединяющий две несоседние вершины многоугольника

    Диагонали n – угольника, выходящие из одной вершины
    диагонали многоугольника

    Диагонали, выходящие из одной вершины n – угольника, делят n – угольник на n – 2 треугольника

    Все диагонали n – угольника
    диагонали многоугольника

    Число диагоналей n – угольника равно

    Внешний угол многоугольника

    Определение 5 . Два угла называют смежными, если они имеют общую сторону, и их сумма равна 180° (рис.1).

    Внешний угол многоугольника смежные углы

    Рис.1

    Определение 6 . Внешним углом многоугольника называют угол, смежный с внутренним углом многоугольника (рис.2).

    Внешний угол многоугольника смежные углы

    Рис.2

    Замечание. Мы рассматриваем только выпуклые многоугольники выпуклые многоугольники .

    Сумма внутренних углов

    Сумма внутренних углов выпуклого многоугольника равна произведению  180°  и количеству сторон без двух.

    s = 2d(n — 2),

    где  s  — это сумма углов,  2d  — два прямых угла (то есть  2 · 90 = 180°),  а  n  — количество сторон.

    Если мы проведём из вершины  A  многоугольника  ABCDEF  все возможные диагонали, то разделим его на треугольники, количество которых будет на два меньше, чем сторон многоугольника:

    сумма внутренних углов многоугольника

    Следовательно, сумма углов многоугольника будет равна сумме углов всех получившихся треугольников. Так как сумма углов каждого треугольника равна  180°  (2d),  то сумма углов всех треугольников будет равна произведению  2d  на их количество:

    s = 2d(n — 2) = 180 · 4 = 720°.

    Из этой формулы следует, что сумма внутренних углов является постоянной величиной и зависит от количества сторон многоугольника.

    Сумма внешних углов

    Сумма внешних углов выпуклого многоугольника равна  360°  (или  4d).

    s = 4d,

    где  s  — это сумма внешних углов,  4d  — четыре прямых угла (то есть 4 · 90 = 360°).

    Сумма внешнего и внутреннего угла при каждой вершине многоугольника равна  180°  (2d),  так как они являются смежными углами. Например,  ∠1  и  ∠2:

    Сумма внешних углов многоугольника

    Следовательно, если многоугольник имеет  n  сторон (и  n  вершин), то сумма внешних и внутренних углов при всех  n  вершинах будет равна  2dn.  Чтобы из этой суммы  2dn  получить только сумму внешних углов, надо из неё вычесть сумму внутренних углов, то есть  2d(n — 2):

    s = 2dn — 2d(n — 2) = 2dn — 2dn + 4d = 4d.

    Виды правильных многоугольников

    1. Правильный (равносторонний) треугольник
    2. Правильный четырехугольник (квадрат)
    3. Правильный пяти-, шести-, n-угольник

    Основные свойства правильного многоугольника

    • Все стороны равны:
      a1 = a2 = a3 = … = an-1 = an2. Все углы равны:
      α1 = α2 = α3 = … = αn-1 = αn3. Центр вписанной окружности Oв совпадает з центром описанной окружности Oо, что и образуют центр многоугольника O4. Сумма всех углов n-угольника равна:

    180° · (n — 2)

    • Сумма всех внешних углов n-угольника равна 360°:

    β1 + β2 + β3 + … + βn-1 + βn = 360°

    • Количество диагоналей (Dn) n-угольника равна половине произведения количества вершин на количество диагоналей, выходящих из каждой вершины:
    • В любой многоугольник можно вписать окружность и описать круг при этом площадь кольца, образованная этими окружностями, зависит только от длины стороны многоугольника:
    • Все биссектрисы углов между сторонами равны и проходят через центр правильного многоугольника O

    Свойство 1

    Внутренние углы в правильном многоугольнике (α) равны между собой и могут быть рассчитаны по формуле:

    Формула расчета внутреннего угла правильного многоугольника

    где n – число сторон фигуры.

    Свойство 2

    Сумма всех углов правильного n-угольника равняется: 180° · (n-2).

    Свойство 3

    Количество диагоналей (Dn) правильного n-угольника зависит от количества его сторон (n) и определяется следующим образом:

    Формула расчета количества диагоналей правильного многоугольника

    Свойство 4

    В любой правильный многоугольник можно вписать круг и описать окружность около него, причем их центры будут совпадать, в том числе, с центром самого многоугольника.

    В качестве примера на рисунке ниже изображен правильный шестиугольник (гексагон) с центром в точке O.

    Площадь (S) образованного окружностями кольца вычисляется через длину стороны (a) фигуры по формуле:

    Формула расчета площади кольца, образованного описанной и вписанной в правильный многоугольник окружностями

    Между радиусами вписанной (r) и описанной (R) окружностей существует зависимость:

    Зависимость между радиусами описанной и вписанной в правильный многоугольник окружностей

    Свойство 5

    Зная длину стороны (a) правильного многоугольника можно рассчитать следующие, относящиеся к нему величины:

    • Площадь (S):

    Формула расчета площади правильного многоугольника через длину его стороны

    • Периметр (P):Формула расчета периметра правильного многоугольника через длину его стороны
    • Радиус описанной окружности (R):

    Формула расчета радиуса описанной около правильного многоугольника окружности через длину его стороны

    • Радиус вписанной окружности (r):

    Формула расчета радиуса вписанной в правильный многоугольник окружности через длину его стороны

    Свойство 6

    Площадь (S) правильного многоугольника можно выразить через радиус описанной/вписанной окружности:

    Формула расчета площади правильного многоугольника через радиус вписанной в него окружности

    Формула расчета площади правильного многоугольника через радиус описанной около него окружности

    Доказательства свойств углов многоугольника

    Теорема 1. В любом треугольнике сумма углов равна 180°.

    Доказательство. Проведем, например, через вершину B произвольного треугольника ABC прямую DE, параллельную прямой AC, и рассмотрим полученные углы с вершиной в точке B (рис. 3).

    Свойства углов треугольника доказательство

    Рис.3

    Углы ABD и BAC равны как внутренние накрест лежащие. По той же причине равны углы ACB и CBE. Поскольку углы ABD, ABC и CBE в сумме составляют развёрнутый угол, то и сумма углов треугольника ABC равна 180°. Теорема доказана.

    Теорема 2. Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

    Доказательство. Проведём через вершину C прямую CE, параллельную прямой AB, и продолжим отрезок AC за точку C (рис.4).

    Свойства углов треугольника доказательство
    Свойства углов треугольника доказательство

    Рис.4

    Углы ABC и BCE равны как внутренние накрест лежащие. Углы BAC и ECD равны как соответственные равны как соответственные . Поэтому внешний угол BCD равен сумме углов BAC и ABC. Теорема доказана.

    Замечание. Теорема 1 является следствием теоремы 2.

    Теорема 3. Сумма углов  – угольникаn равна

    Доказательство. Выберем внутри n – угольника произвольную точку O и соединим её со всеми вершинами n – угольника (рис. 5).

    Свойства углов многоугольника

    Рис.5

    Получим n треугольников:

    OA1A2,  OA2A3,  …  OAnA1

    Сумма углов всех этих треугольников равна сумме всех внутренних углов n – угольника плюс сумма всех углов с вершиной в точке O. Поэтому сумма всех углов n – угольника равна

    что и требовалось доказать.

    Теорема 4. Сумма внешних углов  – угольникаn , взятых по одному у каждой вершины, равна 360°.

    Доказательство. Рассмотрим рисунок 6.

    Свойства углов многоугольника

    Рис.6

    В соответствии рисунком 6 справедливы равенства

    Теорема доказана.

    Правильный n-угольник — формулы

    Формулы длины стороны правильного n-угольника

    • Формула стороны правильного n-угольника через радиус вписанной окружности:
    • Формула стороны правильного n-угольника через радиус описанной окружности:

    Формула радиуса вписанной окружности правильного n-угольника

    Формула радиуса вписанной окружности n-угольника через длину стороны:

    Формула радиуса описанной окружности правильного n-угольника

    Формула радиуса описанной окружности n-угольника через длину стороны:

    Формулы площади правильного n-угольника

    • Формула площади n-угольника через длину стороны:
    • Формула площади n-угольника через радиус вписанной окружности:
    • Формула площади n-угольника через радиус описанной окружности:

    Формула периметра правильного многоугольника:

    Формула периметра правильного n-угольника:

    P = na

    Формула определения угла между сторонами правильного многоугольника:

    Формула угла между сторонами правильного n-угольника:

    Изображение правильного треугольника с обозначениями
    Рис.3

    Формулы правильного треугольника:

    • Формула стороны правильного треугольника через радиус вписанной окружности:

    a = 2r √3

    • Формула стороны правильного треугольника через радиус описанной окружности:

    a = R√3

    • Формула радиуса вписанной окружности правильного треугольника через длину стороны:
    • Формула радиуса описанной окружности правильного треугольника через длину стороны:
    • Формула площади правильного треугольника через длину стороны:
    • Формула площади правильного треугольника через радиус вписанной окружности:

    S = r2 3√3

    • Формула площади правильного треугольника через радиус описанной окружности:
    • Угол между сторонами правильного треугольника:

    α = 60°

    Изображение правильного четырехугольнику с обозначениями
    Рис.4

    Формулы правильного четырехугольника:

    • Формула стороны правильного четырехугольника через радиус вписанной окружности:

    a = 2r

    • Формула стороны правильного четырехугольника через радиус описанной окружности:

    a = R√2

    • Формула радиуса вписанной окружности правильного четырехугольника через длину стороны:
    • Формула радиуса описанной окружности правильного четырехугольника через длину стороны:
    • Формула площади правильного четырехугольника через длину стороны:

    S = a2

    • Формула площади правильного четырехугольника через радиус вписанной окружности:

    S = 4 r2

    • Формула площади правильного четырехугольника через радиус описанной окружности:

    S =  2 R2

    • Угол между сторонами правильного четырехугольника:

    α = 90°

    Формулы правильного шестиугольника:

    Формула стороны правильного шестиугольника через радиус вписанной окружности:

    Формула стороны правильного шестиугольника через радиус описанной окружности:

    a = R

    Формула радиуса вписанной окружности правильного шестиугольника через длину стороны:

    Формула радиуса описанной окружности правильного шестиугольника через длину стороны:

    R = a

    Формула площади правильного шестиугольника через длину стороны:

    Формула площади правильного шестиугольника через радиус вписанной окружности:

    S = r2 2√3

    Формула площади правильного шестиугольника через радиус описанной окружности:

    8. Угол между сторонами правильного шестиугольника:

    α = 120°

    Формулы правильного восьмиугольника:

    Формула стороны правильного восьмиугольника через радиус вписанной окружности:

    a = 2r · (√2 — 1)

    Формула стороны правильного восьмиугольника через радиус описанной окружности:

    a = R√2 — √2

    Формула радиуса вписанной окружности правильного восьмиугольника через длину стороны:

    Формула радиуса описанной окружности правильного восьмиугольника через длину стороны:

    Формула площади правильного восьмиугольника через длину стороны:

    S = a2 2(√2 + 1)

    Формула площади правильного восьмиугольника через радиус вписанной окружности:

    S = r2 8(√2 — 1)

    Формула площади правильного восьмиугольника через радиус описанной окружности:

    S = R2 2√2

    Угол между сторонами правильного восьмиугольника:

    α = 135°

    Сторона правильного многоугольника через радиус описанной вокруг него окружности

    Сторону правильного многоугольника через радиус описанной вокруг него окружности можно найти по формуле

    Где:

    a – длина его стороны;

    R – радиус описанной окружности;

    n – число сторон многоугольника.

    Формула стороны правильного многоугольника

    Шаг 1

    Рассмотрим правильный многоугольник А1А2А3…Аn.

    Пусть его сторона будет равна a.

    Опишем вокруг этого многоугольника окружность с центром в точке О и радиусом R.

    Вывод формулы стороны правильного многоугольника.

    Шаг 2

    Соединим точку О с его вершинами. А1А2А3…Аn.

    Рассмотрим треугольник ОА1А2.

    Рассматриваемый треугольник будет равнобедренным, так как его стороны А1О и А2О – радиусы описанной окружности.

    Проведем в треугольнике А1ОА2 высоту ОК.

    Так как треугольник А1ОА2 равнобедренный, то высота будет медианой:

    Вывод формулы стороны правильного многоугольника.

    Шаг 3

    Рассмотрим треугольник А1КО.

    Этот треугольник прямоугольный, так как ОК – высота по построению.

    Так как точка О – центр правильного многоугольника, то отрезки АnO являются биссектрисами углов этого многоугольника.

    Таким образом, если углы многоугольника обозначим буквой α, то угол ОА1К будет равен:

    По свойству углов правильного многоугольника, каждый угол равен:

    Тогда угол ОА1К будет равен:

    Из определения косинуса угла получим:

    Отсюда:

    Подставим в формулу значения, полученные выше и на шаге 2:

    Умножим обе части уравнения на 2:

    Воспользуемся формулами приведения

    Так как А1О является радиусом описанной окружности, то сторона правильного многоугольника может быть найдена по формуле:

    Вывод формулы стороны правильного многоугольника.

    как найти стороны треугольника если дан радиус описанной окружности

    Отношение сторон треугольника к синусам противолежащих углов равны и равны диаметру описанной окружности. Отсюда любая сторона треугольника равна удвоенному радиусу описанной окружности, умноженному на синус противолежащего угла. Третий угол треугольника найти элементарно, зная два других, из теоремы о сумме углов треугольника.

    P.S.
    Блин, обязательно кто-нибудь опередит.. .
    Теорему синусов в школе проходят, но о последнем равенстве в большинстве случаев почему-то умалчивается.

    Есть такая теорема, которая называется теорема синусов.

    Али в школе не проходили?
    И теорему о сумме углов в треугольнике тоже не проходили, походу?

    Радиус описанной окружности равностороннего треугольника

    Равносторонний треугольник - сторона, периметр, площадь, высота, радиус вписанной окружности, радиус описанной окружности

    Зная радиус описанной окружности, можно найти сразу не только сторону равностороннего треугольника, но и радиус вписанной в него окружности, так как они напрямую связаны друг с другом. Сторона треугольника будет равна произведению радиуса описанной окружности на корень из трех, а радиус вписанной окружности – его половине. (рис.100) a=√3 R r=R/2

    Чтобы вычислить периметр и площадь равностороннего треугольника через радиус описанной вокруг него окружности, необходимо подставить полученное выражение для стороны в соответствующие формулы. P=3a=3√3 R S=(√3 a^2)/4=(3√3 R^2)/4

    Высоты, медианы и биссектрисы являются одними и теми же отрезками в равностороннем треугольнике, и вычислить их можно по единой формуле, где искомая величина равна корню из трех, умноженному на сторону и деленному на два. Подставив вместо стороны произведение радиуса и корня из трех, получаем, что высота равна трем радиусам, деленным на два. (рис.99) h=m=l=(√3 a)/2=(√3 √3 R)/2=3R/2

    Чтобы найти среднюю линию равностороннего треугольника через радиус описанной вокруг него окружности, необходимо разделить произведение радиуса и корня из трех на два. (рис.97.3) M=(√3 R)/2

    Калькулятор расчета стороны правильного многоугольника через радиусы окружностей

    В публикации представлены онлайн-калькуляторы и формулы для расчета длины стороны правильного многоугольника через радиус вписанной или описанной окружности.

    • Расчет длины стороны
      • Через радиус вписанной окружности
      • Через радиус описанной окружности

      Расчет длины стороны

      Правильный многоугольник и вписанная/описанная окружность

      Инструкция по использованию: введите радиус вписанной (r) или описанной (R) окружности, укажите количество вершин правильного многоугольника (n), затем нажмите кнопку “Рассчитать”. В результате будет вычислена длина стороны фигуры (a).

    Решаем задачи по геометрии: углы в окружностях

    Основные теоремы

    Определение 1. Угловой величиной дуги называется отношение длины этой дуги к длине окружности, умноженное на 2π.

    Теорема 1. Величина центрального угла равна угловой величине дуги, на которую он опирается.

    Теорема 2. Величина вписанного угла равна половине угловой величины дуги, на которую он опирается.
    Следствие. Вписанные углы, опирающиеся на одну и ту же дугу или на равные дуги одной окружности, равны.

    Теорема 3. Угол между касательной и хордой, выходящими из одной точки окружности, измеряется половиной угловой величины дуги, заключенной внутри этого угла (рис. 1).

    Теорема 4. Угол, вершина которого расположена вне круга, измеряется полуразностью угловых величин дуг окружности этого круга, заключенных внутри угла (рис. 2).

    Теорема 5. Угол, вершина которого расположена внутри круга, измеряется полусуммой угловых величин дуг, которые высекают из окружности круга стороны угла и их продолжения (рис. 3).

    Теорема 6. Сумма противоположных углов четырехугольника, вписанного в окружность, равна π, и наоборот, если сумма противоположных углов выпуклого четырехугольника равна π, то вокруг этого четырехугольника можно описать окружность.

    Теорема 7. Произведения длин отрезков двух пересекающихся хорд равны (см. рис. 3).

    Теорема 8. Произведение длины отрезка секущей на длину ее внешней части есть величина постоянная, и она равна квадрату длины касательной, проведенной к окружности из той же точки (рис. 4).

    Доказательства некоторых теорем

    Доказательство теоремы 4. Рассмотрим сначала случай, когда лучи, образующие данный угол, пересекают окружность каждый в двух различных точках (рис. 5).

    Обозначим через O вершину угла, а точки пересечения лучей и окружности через A, B, C и D (A между O и B, C между O и D). Тогда

    Первое равенство верно, так как в треугольнике OBC внешний угол BCD равен сумме двух внутренних углов, с ним не смежных.
    Пусть теперь один из лучей (например, OA) касается окружности в точке A, а другой пересекает ее в точках B и C; B между O и C (рис. 6).

    Тогда

    И наконец, пусть оба луча OA и OB касаются окружности в точках A и B (рис. 7).

    Тогда треугольник OAB является равнобедренным, и

    где дуга ACB — большая из дуг окружности, заключенных между точками A и B.

    Доказательство теоремы 5. Пусть хорды AB и CD окружности пересекаются в точке O (рис. 8). Так как в треугольнике OBD внешний угол AOD равен сумме двух внутренних углов, с ним не смежных, то

    Доказательство теоремы 8. Докажем сначала первую часть теоремы. Пусть OB и OD — две секущие к окружности, а OA и OC — соответственно их внешние части. Так как углы ABC и ADC равны (как вписанные, опирающиеся на одну и ту же дугу), то треугольники AOD и BOC подобны (по двум углам). Следовательно,

    Пусть теперь OK — касательная к окружности, а OB — секущая (OA ее внешняя часть) (рис. 9).

    Так как угол OKA равен половине угловой величины дуги KA (как угол между касательной и хордой), а угол KBA равен половине угловой величины дуги KA (как вписанный, опирающийся на эту дугу), то ∠OKA = ∠KBA, и треугольник OKA подобен треугольнику KOB (по двум углам). Имеем:

    Решения задач

    Задача 1. Правильный треугольник ABC со стороной, равной 3, вписан в окружность. Точка D лежит на окружности, причем длина хорды AD равна (рис. 10). Найти длины хорд BD и CD.

    Решение.

    Легко видеть, что радиус окружности, описанной около правильного треугольника со стороной a, равен
    начит, радиус данной окружности равен . Пусть O — центр данной окружности. В треугольнике AOD все стороны равны. Поэтому ∠DAO = 60°. Кроме того, так как треугольник ABC — правильный, то ∠OAC = 30°.
    Значит, ∠DAC = 90°, и треугольник DAC — прямоугольный. Следовательно, CD — диаметр окружности, и Значит, и треугольник BCD прямоугольный, откуда по теореме Пифагора находим, что Ясно, что при переобозначении точек B и C получим, что

    Ответ: и

    Задача 2. Окружность радиуса R проходит через вершины A и B треугольника ABC и касается прямой AC в точке A (рис. 11). Найти площадь треугольника ABC, зная, что ∠ABC = β, ∠CAB = α.

    Решение. Угол α между касательной AC и хордой AB, выходящими из точки A окружности, равен половине угловой величины дуги AB и, значит, равен любому вписанному углу, опирающемуся на ту же дугу. Поэтому мы можем применить теорему синусов: AB = 2Rsin α.
    Рассмотрим треугольник ABC, к которому также применим теорему синусов:

    Следовательно,

    Ответ:

    Задача 3. Вокруг треугольника ABC описана окружность. Медиана AD продолжена до пересечения с этой окружностью в точке E (рис. 12). Известно, что AB + AD = DE, угол BAD равен 60° и AE = 6. Найти площадь треугольника ABC.

    Решение. Пусть AB = x, AD = y, тогда, согласно условию задачи, DE = x + y. Так как в окружности произведения отрезков двух пересекающихся хорд равны, имеем:
    AD∙DE = BD∙DC ⇔
    Применим к треугольнику ABD теорему косинусов:
    BD2 = AB2 + AD2 – 2AB∙AD∙cos ∠BAD ⇔
    ⇔ x2 = 2xy ⇔ x = 2y.
    Условие AE = 6 дает равенство x + 2y = 6. Подставляя в него x = 2y, находим: x = 3. Искомая площадь равна

    Ответ:

    Задача 4. На стороне AC остроугольного треугольника ABC взята точка D так, что AD = 1,
    DC = 2 и BD является высотой треугольника ABC. Окружность радиуса 2, проходящая через точки A и D, касается в точке D окружности, описанной около треугольника BDC (рис. 13). Найти площадь треугольника ABC.

    Решение. Треугольник BCD — прямоугольный, поэтому центр описанной около него окружности есть середина M стороны BC. Пусть O — центр окружности радиуса 2, проходящей через A и D. Так как данные окружности касаются, то точки O, D, M лежат на одной прямой. А из равенства углов ADO и CDM, в силу равнобедренности треугольников ADO и CDM, следует подобие этих треугольников. Значит, DM = 4 и BC = 2 DM = 8.Применив теорему Пифагора к треугольнику BCD, получим, что Следовательно,

    Ответ:

    Задача 5. Дан треугольник ABC, в котором
    BC = 5. Окружность проходит через вершины B и C и пересекает сторону AC в точке K так, что
    CK = 3, KA = 1. Известно, что косинус угла ACB равен (рис. 14). Найти отношение радиуса данной окружности к радиусу окружности, вписанной в треугольник ABK.

    Решение. Применим к треугольнику ABC теорему косинусов:
    AB2 = BC2 + AC2 – 2BC∙AC∙cos ∠ACB = 9 ⇒
    ⇒ AB = 3.
    Следовательно, треугольник ABC — прямоугольный (так как его стороны равны 3, 4, 5). Треугольник ABK также прямоугольный, применив к нему теорему Пифагора, получим, что Значит, радиус вписанной в треугольник ABK окружности равен

    Статья опубликована при
    поддержке учебного центра “НП МАЭБ” в Санкт-Петербурге. Организация работы службы охраны труда и производственной безопасности, обучение профессионалов в этой области. Программы пожарно-технического минимума для руководителей и специалистов, стропальщики, лифтеры, машинисты подъемника, рабочие по работе с баллонами со сжиженными углеводородными газами и др. Узнать подробнее о центре, цены, контакты и оставить заявку Вы сможете на сайте, который располагается по адресу: http://www.maeb.ru/.

    Окружность, данная в условии задачи, описана около треугольника BCK. По теореме синусов ее радиус равен

    Тогда искомое отношение равно

    Ответ:

    Задача 6. В треугольнике ABC известны стороны AB = 6, BC = 4, AC = 8. Биссектриса угла C
    пересекает сторону AB в точке D. Через точки A, D, C проведена окружность, пересекающая сторону BC в точке E (рис. 15). Найти площадь треугольника ADE.

    Решение. Биссектриса CD угла ACB делит сторону AB на отрезки, пропорциональные прилежащим сторонам, поэтому AD = 4 и BD = 2. Далее, углы DAE и DCE равны, как опирающиеся на одну и ту же дугу, и аналогично равны углы AED и ACD. Но ∠ACD = ∠DCE, поэтому все четыре названных угла равны. Следовательно, треугольник ADE — равнобедренный и DE = 4.
    Найдем синус угла ADE. Так как четырехугольник ADEC вписан в окружность, то
    ∠ADE + ∠ACE = 180°, sin ∠ADE = sin ∠ACE.
    Применим к треугольнику ABC теорему косинусов:

    Значит,

    Ответ:

    Задача 7. Вокруг треугольника ABC со сторонами AC = 20 и углом B, равным 45°, описана окружность. Через точку C проведена касательная к окружности, пересекающая продолжение стороны AB за точку A в точке D (рис. 16). Найти площадь треугольника BCD.

    Решение. Угол ABC равен половине угловой величины дуги AC, как вписанный угол, опирающийся на эту дугу. Угол ACD также равен половине угловой величины дуги AC, как угол между касательной и хордой. Следовательно, эти углы равны, и треугольники DBC и DCA подобны по двум углам. Площади этих треугольников относятся как квадрат коэффициента подобия. Найдем этот коэффициент, он равен BC : AC. Пусть BC = 10x, тогда, применив к треугольнику ABC теорему косинусов, получим:


    Значит,

    Поэтому

    С другой стороны, легко вычислить

    Значит,

    Ответ:

    Задача 8. В окружность радиуса 17 вписан четырехугольник, диагонали которого взаимно перпендикулярны и находятся на расстоянии 8 и 9 от центра окружности (рис. 17). Найти длины сторон четырехугольника.

    Решение. Обозначим исходный четырех­угольник через ABCD таким образом, чтобы точка B лежала на меньшей дуге AC, а точка A лежала на меньшей дуге BD. Пусть O — центр окружности, OQ и OP — перпендикуляры, опущенные из центра окружности на хорды AC и BD соответственно, M — точка пересечения
    AC и BD. Тогда AQ = QC, BP = PD, OQMP — прямоугольник со сторонами OQ = PM = 8 и
    OP = QM = 9. Применим к треугольнику COQ теорему Пифагора:


    Аналогично из треугольника ODP получим, что

    Значит,

    Находим стороны четырехугольника ABCD, пользуясь теоремой Пифагора:

    Ответ:

    Задача 9. Пятиугольник ABCDE вписан в окружность единичного радиуса (рис. 18).
    Известно, что и BC = CD. Чему равна площадь пятиугольника?

    Решение. Пусть O — центр данной окружности. Так как стороны треугольника AOB равны 1, 1 и то этот треугольник прямоугольный, и угол AOB равен . Поскольку угол ABE равен , то угол AOE также равен , и BE — диаметр окружности. Угол EBD равен  следовательно, угол EOD равен  а так как BC = CD, то
    Итак, пятиугольник ABCDE состоит из двух прямоугольных и трех равносторонних треугольников. Его площадь равна

    Ответ:

    Задача 10. Выпуклый четырехугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке K (рис. 19). Найти длину отрезка KC, если BC = 4, а AK = 6.

    Решение. Так как AC — биссектриса угла BAD, то угол BAC равен углу CAD. С другой стороны, углы CAD и CBD равны (как вписанные, опирающиеся на одну и ту же дугу). Значит, угол BAC равен углу CBK. Следовательно, треугольник ABC подобен треугольнику BCK (по двум углам). Имеем:

    Ответ: 2.

    Задачи для самостоятельного решения

    С-1. В треугольнике ABC имеем: AB = 20,
    AC = 24. Известно, что вершина C, центр вписанного в треугольник ABC круга и точка пересечения биссектрисы угла A со стороной BC лежат на окружности, центр которой находится на стороне AC. Найдите радиус описанной около треугольника ABC окружности.
    С-2. Дан прямоугольный треугольник ABC
    с прямым углом при вершине C. Угол CAB равен α.
    Биссектриса угла ABC пересекает катет AC в точке K. На стороне BC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке M. Найдите угол AMK.
    С-3. На плоскости даны две пересекающиеся окружности. Первая имеет центр в точке O1 и радиус, равный 4, вторая — центр в точке O2 и радиус, равный  Отрезок O1O2 пересекает обе окружности, а угол KO1O2 равен 30° (где K — одна из точек пересечения окружностей). Вершина A равностороннего треугольника ABC является точкой пересечения второй окружности и отрезка O1O2, а сторона BC — хордой первой окружности, перпендикулярной к прямой O1O2. Найдите площадь треугольника ABC, если известно, что AB < 4.
    С-4. В окружность вписан четырехугольник ABCD, диагонали которого взаимно перпендикулярны и пересекаются в точке E. Прямая, проходящая через точку E и перпендикулярная к AB, пересекает сторону CD в точке M. Докажите, что EM — медиана треугольника CED, и найдите ее длину, если AD = 8, AB = 4 и ∠CDB = α.
    С-5. Трапеция ABCD вписана в окружность (BC C AD). На дуге CD взята точка E и соединена со всеми вершинами трапеции. Кроме того, известно, что ∠CED = 120° и ∠ABE – ∠BAE = α. Для треугольника ABE найдите отношение периметра к радиусу вписанной окружности.
    С-6. В треугольнике ABC известно, что  BC = 4. Кроме того центр окружности, проведенной через середины сторон треугольника, лежит на биссектрисе угла C. Найдите AC.
    С-7. В треугольнике ABC на сторонах AB и AC выбраны соответственно точки B1 и C1 таким образом, что AB1 : AB = 1 : 3 и AC1 : AC = 1 : 2. Через точки A, B1 и C1 проведена окружность. Через точку B1 проведена прямая, пересекающая отрезок AC1 в точке D, а окружность — в точке E.
    Найдите площадь треугольника B1C1E, если
    AC1 = 4, AD = 1, DE = 2, а площадь треугольника ABC равна 12.
    С-8. Диагонали четырехугольника ABCD, вписанного в окружность, пересекаются в точке E. На прямой AC взята точка M, причем ∠DME = 80°, ∠ABD = 60°, ∠CBD = 70°. Где находится точка M: на диагонали или на ее продолжении? Ответ обоснуйте.
    С-9. Через центр окружности, описанной около треугольника ABC, проведены прямые, перпендикулярные сторонам AC и BC. Эти прямые пересекают высоту CH треугольника или ее продолжение в точках P и Q. Известно, что CP = p, CQ = q. Найдите радиус окружности, описанной около треугольника ABC.
    С-10. На стороне AB треугольника ABC как на диаметре построена окружность, пересекающая стороны AC и BC в точках D и E соответственно. Прямая DE делит площадь треугольника ABC пополам и образует с прямой AB угол 15°. Найдите углы треугольника ABC.
    С-11. Окружность касается сторон угла с вершиной O в точках A и B. На этой окружности внутри треугольника AOB взята точка C. Расстоя­ния от точки C до прямых OA и OB равны соответственно a и b. Найдите расстояние от точки C до хорды AB.
    С-12. В трапеции ABCD с основаниями AD и BC диагонали AC и BD пересекаются в точке E. Вокруг треугольника ECB описана окружность, а касательная к этой окружности, проведенная в точке E, пересекает прямую AD в точке F таким образом, что точки A, D и F лежат последовательно на этой прямой. Известно, что AF = a,
    AD = b. Найдите EF.
    С-13. В четырехугольнике ABCD диагонали AC и BD перпендикулярны и пересекаются в точке P. Длина отрезка, соединяющего вершину C с точкой M, являющейся серединой отрезка AD, равна  Расстояние от точки P до отрезка BC равно  и AP = 1. Найдите длину отрезка AD, если известно, что вокруг четырехугольника ABCD можно описать окружность.
    С-14. В окружности проведены диаметр MN и хорда AB, параллельная диаметру MN. Касательная к окружности в точке M пересекает прямые NA и NB соответственно в точках P и Q. Известно, что MP = p, MQ = q. Найдите MN.
    С-15. Через вершины A и B треугольника ABC проведена окружность, пересекающая стороны BC и AC в точках D и E соответственно. Площадь треугольника CDE в 7 раз меньше площади четырехугольника ABDE. Найдите DE и радиус окружности, если AB = 4 и ∠C = 45°.
    С-16. Через точку L окружности проведена касательная и хорда LM длины 5. Хорда MN параллельна касательной и равна 6. Найдите радиус окружности.
    С-17. Диагонали вписанного в окружность четырехугольника ABCD пересекаются в точке E, причем  BD = 6 и AD∙CE = DC∙AE. Найдите площадь четырехугольника ABCD.
    С-18. В треугольнике ABC известно, что длина AB равна 3,  Хорда KN окружности, описанной около треугольника ABC, пересекает отрезки AC и BC в точках M и L соответственно. При этом ∠ABC = ∠CML, площадь четырехугольника ABLM равна 2, а длина LM равна 1. Найдите высоту треугольника KNC, опущенную из вершины C, и его площадь.
    С-19. В треугольнике ABC точка D лежит на стороне BC, прямая AD пересекается с биссектрисой угла ACB в точке O. Известно, что точки C, D и O лежат на окружности, центр которой находится на стороне AC, AC : AB = 3 : 2, а величина угла DAC в три раза больше величины угла DAB. Найдите косинус угла ACB.
    С-20. Окружность, вписанная в равнобедренный треугольник ABC, касается основания AC в точке D и боковой стороны AB в точке E. Точка F — середина стороны AB, а точка G — точка пересечения окружности и отрезка FD, отличная от D. Касательная к данной окружности, проходящая через точку G, пересекает сторону AB в точке H. Найдите угол BCA, если известно, что FH : HE = 2 : 3.
    С-21. На отрезке AB взята точка C и на отрезках AB и CB как на диаметрах построены окружности. Хорда AM большей окружности касается меньшей окружности в точке D. Прямая BD пересекает большую окружность в точке N. Известно, что ∠DAB = a, AB = 2R. Найдите площадь четырехугольника ABMN.
    С-22. В треугольнике ABC биссектрисы AD и BL пересекаются в точке F. Величина угла LFA равна 60°.
    1) Найдите величину угла ACB.
    2) Вычислите площадь треугольника ABC, если ∠CLD = 45° и AB = 2.
    С-23. Две окружности пересекаются в точках A и B. Через точку B проведена прямая, пересекающая окружности в точках C и D, лежащих по разные стороны от прямой AB. Касательные к этим окружностям в точках C и D пересекаются в точке E. Найдите AD, если AB = 15, AC = 20 и AE = 24.
    С-24. В трапеции ABCD с боковыми сторонами AB = 9 и CD = 5 биссектриса угла D пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла B пересекает те же две биссектрисы в точках L и K, причем точка K
    лежит на основании AD. В каком отношении прямая LN делит сторону AB, а прямая MK — сторону BC? Найдите отношение MN : KL, если LM : KN = 3 : 7.

    Ответы:

    Садовничий Ю.

    Добавить комментарий