Как найти угол через теорему синусов

Содержание:

Теорема синусов, теорема косинусов:

Теорема синусов

Вы уже знаете, что в треугольнике против большей стороны лежит больший угол, а против большего угла — большая сторона. Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Отношение стороны треугольника к синусу противолежащего угла равно удвоенному радиусу окружности, описан­ной около треугольника, т. е.
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Пусть дан треугольник АВС, ВС = Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения — радиус его описанной окружности. Угол а может быть острым, тупым или прямым. Рассмотрим эти случаи отдельно.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

1) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения острый (рис. 152, а). Проведя диаметр BD и отрезок DC, получим прямоугольный треугольник BCD, в котором Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения как вписанный угол, опирающийся на диаметр. Заметим, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения как вписанные углы, опирающиеся на одну и ту же дугу ВС. Из прямоугольного треугольника BCD находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решеният. е. Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

2) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения тупой (рис. 152, б). Проведем диаметр BD и отрезок DC. В четырехугольнике ABDC по свойству вписанного четырехугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Из прямоугольного треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения как вписанный угол, опирающийся на диаметр) Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Поскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

3) Для Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения справедливость равенства Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения докажите самостоятельно, В силу доказанного Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема доказана.

Теорема синусов дает возможность решать широкий круг задач.
Так, пропорция Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения позволяет решить две следующие задачи:

  • зная две стороны треугольника и угол, противолежащий одной из них, найти синус угла, противолежащего другой стороне;
  • зная два угла треугольника и сторону, противолежащую одному из этих углов, найти сторону, противолежащую другому углу.

С помощью формулы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияможно решить еще три задачи (рис. 153): 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

  • зная сторону треугольника и противолежащий ей угол, найти радиус окружности, описанной около треугольника;
  • зная угол треугольника и радиус описанной окружности, найти сторону треугольника, противолежащую данному углу;
  • зная сторону треугольника и радиус его описанной окружности, найти синус угла, противолежащего данной стороне.

Повторение

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Пример:

В остроугольном треугольнике известны стороны Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения и угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найти два других угла Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения округлив их значения до 1°, и третью сторону треугольника, округлив ее длину до 0,1.

Решение:

По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения При помощи калькулятора (таблиц). находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Замечание. Если бы по условию треугольник был тупоугольным с тупым углом Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то, зная Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения вначале мы нашли бы острый угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения А за­тем, используя формулу Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения получили бы, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример:

Доказать справедливость формулы площади треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — его стороны, R — радиус описанной окружности.

Доказательство:

Воспользуемся известной формулой площади треугольника: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Что и требовалось доказать.

Замечание. Выведенная формула позволяет найти радиус описанной окружности треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример:

Найти радиус R окружности, описанной около равнобедренного треугольника АВС с основанием АС = 10 и боковой стороной ВС =13 (рис. 154).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Способ 1. Из формулы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найдем Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения. Для этого в треугольнике АВС проведем высоту ВК, которая будет и медианой, откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияпо теореме Пифагора Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Способ 2. Используем формулу Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения из которой Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТак как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениято Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Замечание*. Напомним, что в главе II мы находили радиус R описанной окружности равнобедренного треугольника, проводя серединные перпендикуляры к его сторонам и используя подобие полученных прямоугольных треугольников. Также мы могли использовать формулу Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — боковая сторона, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — высота, проведенная к основанию Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения 

Заменив Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения в формуле Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения получим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — формулу радиуса описанной окружности для произвольного треугольника. Итак, мы имеем четыре формулы для нахождения радиуса R описанной окружности треугольника:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема косинусов

Теорема косинусов позволяет выразить длину любой стороны треугольника через длины двух других его сторон и косинус угла между ними (например, длину стороны Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения треугольника АВС (рис. 165) через длины сторон Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения). Теорему косинусов можно назвать самой «работающей» в геометрии. Она имеет многочисленные следствия, которые часто используются при решении задач.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема косинусов. Квадрат любой стороны треугольника равен сум­ме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними, т. е. 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Докажем теорему для случая, когда в треугольнике АВС угол А и угол С острые (рис. 166).
Проведем высоту ВН к стороне АС. Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме Пифагора Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

По основному тригонометрическому тождеству Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Справедливость теоремы для случаев, когда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения или Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения тупой или прямой, докажите самостоятельно. Теорема доказана.
Для сторон Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения теорема косинусов запишется так:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Замечание. Если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения, то по теореме Пифагора Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Таким образом, теорема Пифагора — частный случай теоремы косинусов.
С помощью теоремы косинусов можно решить следующие задачи:

• зная две стороны и угол между ними, найти третью сторону треугольника;

• зная две стороны и угол, противолежащий одной из этих сторон, найти третью сторону (рис. 167) (в этом случае возможны два решения).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Рассмотрим следствия из теоремы косинусов, которые дают возможность решить еще целый ряд задач.

Следствие:

Теорема косинусов позволяет, зная три стороны треугольника, най­ти его углы (косинусы углов). Из равенства Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует формула

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Для углов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияполучим:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Пример:

В треугольнике АВС стороны АВ = 8, ВС = 5, АС = 7. Найдем ZB (рис. 168).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

По теореме косинусов

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Используя записанную выше формулу, можно сра­зу получить: 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Следствие:

С помощью теоремы косинусов можно по трем сторонам определить вид треугольника: остроугольный, прямоугольный или тупоугольный.
 

Так, из формулы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения с учетом того, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует:

  1. если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения острый;
  2. если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения тупой;
  3. если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения прямой.

При определении вида треугольника достаточно найти знак косинуса угла, лежащего против большей стороны, поскольку только больший угол треугольника может быть прямым или тупым.
 

Пример:

Выясним, каким является треугольник со сторонами a = 2, 6 = 3 и с = 4. Для этого найдем знак косинуса угла у, лежащего против большей стороны с. Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения тупой и данный треугольник тупоугольный.

Сформулируем правило определения вида треугольника (относительно углов). Треугольник является:

  1. остроугольным, если квадрат его большей стороны меньше суммы квадратов двух других его сторон: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  2. тупоугольным, если квадрат его большей стороны больше суммы квадратов двух других его сторон:Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  3. прямоугольным, если квадрат его большей стороны равен сумме квадратов двух других его сторон: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Следствие:

Сумма квадратов диагоналей параллелограмма равна сумме квадра­тов всех его сторон: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Пусть в параллелограмме ABCD Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения— острый, откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — тупой (рис. 169). По теореме косинусов из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения                                     (1)
Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Поскольку cos Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения                                   (2)

Сложив почленно равенство (1) и равенство (2), получим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения что и требовалось доказать.

Данная формула дает возможность:

  • • зная две соседние стороны и одну из диагоналей параллелограмма, найти другую диагональ;
  • • зная две диагонали и одну из сторон параллелограмма, найти соседнюю с ней сторону.

Следствие:

Медиану Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения треугольника со сторонами а, b и с можно найти по фор­муле Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

 Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Рассмотрим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения — медиана треугольника (рис. 170). Продлим медиану AM за точку М на ее длину: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Проведем отрезки BD и DC. Так как у четырехугольника ABDC диагонали AD и ВС точкой пересечения делятся пополам, то он — параллелограмм. По свойству диагоналей параллелограмма Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Отсюда следует, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Утверждение доказано.

Аналогично: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Формула медианы позволяет:

  • зная три стороны треугольника, найти любую из его медиан;
  • зная две стороны и медиану, проведенную к третьей стороне, найти третью сторону;
  • зная три медианы, найти любую из сторон треугольника.

Пример:

а) Дан треугольник АВС, а = 5, 5 = 3, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найти сторону с. б) Дан треугольник АВС, а = 7, с = 8, а = 60°. Найти сторону Ь.

Решение:

а) По теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Отсюда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения б) Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то есть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Отсюда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения или Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения так как для наборов длин отрезков 7, 3, 8 и 7, 5, 8 выполняется неравенство треугольника.
Ответ: а) 7; б) 3 или 5.

Пример:

Две стороны треугольника равны 6 и 10, его площадь — Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Найти третью сторону треугольника при условии, что противолежащий ей угол — тупой.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Пусть в Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениястороны АВ = 6, ВС = 10 и Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 171).
Поскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и по условию Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — тупой, то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения. Для нахождения стороны АС применим теорему косинусов:Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Ответ: 14.

Пример:

Найти площадь треугольника, две стороны которого равны 6 и 8, а медиана, проведенная к третьей стороне, равна 5.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Обозначим стороны треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — медиана (рис. 172).
По формуле медианы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения По обратной теореме Пифагора данный треугольник со сторонами 6, 8 и 10 — прямоугольный, его площадь равна половине произведения катетов:Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: 24.

Формула Герона

Мы знаем, как найти площадь треугольника по основанию и высоте, проведенной к этому основанию: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения а также по двум сторонам и углу между ними: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теперь мы выведем формулу нахождения площади треугольника по трем сторонам.

Теорема (формула Герона).

Площадь треугольника со сторонами Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения можно найти по формуле Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения— полупериметр треугольника.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 183). Из основ­ного тригонометрического тождества Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Для Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения синус положительный. Поэтому Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияИз теоремы косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Так какТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема доказана.

Решение треугольников

Решением треугольника называется нахождение его неизвестных сторон и углов (иногда других элементов) по данным, определяющим треугольник.

Такая задача часто встречается на практике, например в геодезии, астрономии, строительстве, навигации.

Рассмотрим алгоритмы решения трех задач.
 

Пример №1 (решение треугольника по двум сторонам и углу между ними). 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Дано: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения(рис. 184).

Найти : Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Решение:

Рис. 184
1) По теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

2) По следствию из теоремы косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

3) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим при помощи калькулятора или таблиц.

4) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Замечание. Нахождение угла Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениятребует выяснения того, острый или тупой угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример №2 (решение треугольника по стороне и двум  прилежащим к ней углам).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Дано: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения(рис. 185).

Найти: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

1) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

2) По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения(sin Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и sin Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим при помощи калькулятора или таблиц).

3) Сторону с можно найти с помощью теоремы косинусов или теоре­мы синусов: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияили Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения(cos Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и sin Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениянаходим при помощи калькулятора или таблиц).

Пример №3 (решение треугольника по трем сторонам).

Дано: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 186).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Найти: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияи радиус R описанной окружности.

Решение:

1) По следствию из теоремы косинусов

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

2) Зная Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим при помощи калькулятора или таблиц.

3) Аналогично находим угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

 4) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

 5) Радиус R описанной окружности треугольника можно найти по фор­муле Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Замечание*. Вторым способом нахождения R будет нахождение косинуса любого угла при помощи теоремы косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения затем нахождение по косинусу угла его синуса Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и, наконец, использование теоремы синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениядля нахождения R.

Пример №4

Найти площадь S и радиус R описанной окружности треугольника со сторонами 9, 12 и 15.

Решение:

Способ 1. Воспользуемся формулой Герона. Обозначим а = 9, b = 12, с = 15. Получим: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Радиус R описанной окруж­ности найдем из формулы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Имеем: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Способ 2. Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияпоскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то треугольник — прямоугольный по обратной теореме Пифагора. Его площадь равна половине произведения катетов: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения а радиус описанной окружности равен половине гипотенузы: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример №5

Найти площадь трапеции с основаниями, равными 5 и 14, и боковыми сторонами, равными 10 и 17.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Пусть в трапеции ABCD основания AD = 14 и ВС = 5, боковые стороны АВ = 10 и Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Проведем Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 187). Так как АВСК — параллелограмм, то СК = АВ = 10, АК = ВС = 5, откуда KD = AD – АК = 9. Найдем высоту СН треугольника KCD, которая равна высоте трапеции. Площадь треугольника KCD найдем по формуле Герона, обозначив его стороны а = 10, b = 17, с = 9. Получим:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияСН = 8. Площадь трапеции Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Ответ: 76.
 

Примеры решения задач с использованием теоремы синусов и теоремы косинусов

Пример:

Внутри угла А, равного 60°, взята точка М, которая находится на расстоянии 1 от одной стороны угла и на расстоянии 2 от другой стороны. Найти расстояние от точки М до вершины угла А (рис. 189, а).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найдем
длину отрезка AM. Сумма углов четырехугольника АВМС равна 360°.
Поэтому Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Так как в четырехугольнике АВМС Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения, то около него можно описать окружность по признаку вписанного четырехугольника (рис. 189, б). Поскольку прямой вписанный угол опирается на диаметр, то отрезок AM — диаметр этой окружности, т. е. Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где R — радиус. Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Замечание. Вторым способом решения будет продление отрезка ВМ до пересечения с лучом АС и использование свойств полученных прямоугольных треуголь­ников. Рассмотрите этот способ самостоятельно.

Пример №6

В прямоугольном треугольнике АВС известно: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения высота СН = 2 (рис. 190). Найти гипотенузу АВ.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Построим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения симметричный Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения относительно прямой АВ (см. рис. 190).
Поскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то вокруг четырехугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения можно описать окруж­ность, где АВ — диаметр этой окружности (прямой вписанный угол опирается на диаметр). Треугольник Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения вписан в эту окруж­ность, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: 8.

Пример №7

Дан прямоугольный треугольник АВС с катетами ВС = а и АС = Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения На гипотенузе АВ как на стороне построен квадрат ADFB (рис. 191). Найти расстояние от центра О этого квадрата до вершины С прямого угла, т. е. отрезок СО.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Способ 1. Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (диагона­ли квадрата ADFB взаимно перпендикулярны), то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения поэтому четырехугольник АОВС является вписанным в окружность, ее диа­метр Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Пусть СО = х. По теореме косинусов из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

По свойству вписанного четырехугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Поскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияоткуда находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения.

 Способ 2. Используем теорему Птолемея, которая гласит: «Произведение диагоналей вписанного четырехугольника равно сумме произведений его противоположных сторон». Для нашей задачи получаем (см. рис. 191):

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Способ 3. Достроим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения до квадрата CMNK, как показано на рисунке 192. Можно показать, что центр квадрата CMNK совпадет с центром квадрата ADFB, т. е. с точкой О (точки В и D симметричны относительно центров обоих квадратов). Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример №8

Точка О — центр окружности, вписанной в треуголь­ник АВС, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найти стороны треугольника (см. задачу 232*).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — радиус вписанной окружности (рис. 193).
Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Отсюда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Применим формулу Герона:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

С другой стороны, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Из уравнения Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения = 2. Откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (см), Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (см), Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (см).
Ответ: 15 см; 20 см; 7 см.

Теорема Стюарта

Следующая теорема позволяет найти длину отрезка, соединяющего вершину треугольника с точкой на противоположной стороне.
 

Теорема Стюарта. «Если а, b и с — стороны треугольника и отре­зок d делит сторону с на отрезки, равные х и у (рис. 194), то справедлива формула

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

По теореме косинусов из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияи Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (см. рис. 194) следует:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения                                     (1)

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения              (2)

Умножим обе части равенства (1) на у, равенства (2) — на Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Сложим почленно полученные равенства:
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Из последнего равенства выразим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема доказана.

Следствие:

Биссектрису треугольника можно найти по формуле (рис. 195)

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

По свойству биссектрисы треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Разделив сторону Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияс в отношении Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения получим: 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме Стюарта Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Пример №9

Доказать, что если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера—Лемуса).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Пусть дан треугольник АВС, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — биссектрисы, проведенные к сторонам ВС = а и АС = b соответственно, и Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 196). Нужно доказать, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Выразим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и через Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и приравняем полученные выражения. Биссектриса делит противолежащую сторону на части, пропорциональные прилежащим сторонам. Поэтому Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

По формуле биссектрисы треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Из условия Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Перенеся слагаемые в одну сторону равенства и разложив на множители (проделайте это самостоятельно), получим: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Отсюда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (второй множитель при положительных Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения больше нуля). Утверждение доказано.

Теорема Птолемея о вписанном четырехугольнике

Произведение диагоналей вписанного четырехугольника равно сумме произведений его противоположных сторон, т. е.Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 197).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (по свойству вписанного четырехугольника) и Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияоткуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Аналогично из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения получим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТогда  Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теорема доказана.

Запомните:

  1. Теорема синусов. Стороны треугольника пропорциональны синусам про­тиволежащих углов. Отношение стороны треугольника к синусу проти­волежащего угла равно удвоенному радиусу его описанной окружности:Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  2. Радиус описанной окружности треугольника можно найти, используя формулы: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  3. Теорема косинусов. Квадрат любой стороны треугольника равен сумме ква­дратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  4. Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — стороны треугольника и с — большая сторона. Если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения, то треугольник тупоугольный, если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то треугольник остроугольный, если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения, то треугольник прямоугольный.
  5. Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  6. Формула Герона: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  7. Формула медианы: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямой и плоскости
  • Взаимное расположение прямых в пространстве, прямой и плоскости
  • Перпендикулярность прямых и плоскостей в пространстве
  • Углы и расстояния в пространстве
  • Подобие треугольников
  • Решение прямоугольных треугольников
  • Параллелограмм

Теоре́ма си́нусов — теорема, устанавливающая зависимость между длинами сторон треугольника и величиной противолежащих им углов.
Существуют два варианта теоремы; обычная теорема синусов:

Стороны треугольника пропорциональны синусам противолежащих углов.

{frac {a}{sin alpha }}={frac {b}{sin beta }}={frac {c}{sin gamma }}

и расширенная теорема синусов:

Доказательства[править | править код]

Доказательство обычной теоремы синусов[править | править код]

Воспользуемся только определением высоты  h_b треугольника, опущенной на сторону b, и синуса для двух углов:

 h_b=a sin gamma= c sin alpha . Следовательно, frac{a}{sinalpha} = frac{c}{singamma}, что и требовалось доказать. Повторив те же рассуждения для двух других сторон треугольника, получаем окончательный вариант обычной теоремы синусов.

Доказательство расширенной теоремы синусов[править | править код]

Доказательство через формулы нахождения площади треугольника

Triangle with notations 2.svg

Возьмем две формулы для нахождения площади треугольника {displaystyle S={frac {abc}{4R}}} и {displaystyle S={frac {1}{2}}absin gamma .}

{displaystyle {begin{cases}{frac {abc}{4R}}={frac {1}{2}}absin gamma \{frac {abc}{4R}}={frac {1}{2}}acsin beta \{frac {abc}{4R}}={frac {1}{2}}bcsin alpha end{cases}}Leftrightarrow {begin{cases}{frac {c}{2R}}=sin gamma \{frac {b}{2R}}=sin beta \{frac {a}{2R}}=sin alpha end{cases}}Leftrightarrow {begin{cases}2R={frac {c}{sin gamma }}\2R={frac {b}{sin beta }}\2R={frac {a}{sin alpha }}end{cases}}Leftrightarrow 2R={frac {a}{sin alpha }}={frac {b}{sin beta }}={frac {c}{sin gamma }}.}

Вариации и обобщения[править | править код]

В треугольнике против большего угла лежит бо́льшая сторона, против большей стороны лежит больший угол.

В симплексе

{displaystyle V_{n}={frac {n-1}{n}}cdot {frac {{V_{n-1}^{i}}{V_{n-1}^{j}}}{V_{n-2}^{i,j}}}cdot sin {A_{i,j}},}

где {displaystyle A_{i,j}} — угол между гранями {displaystyle V_{n-1}^{i}} и {displaystyle V_{n-1}^{j}}; {displaystyle V_{n-2}^{i,j}} — общая грань {displaystyle V_{n-1}^{i}} и {displaystyle V_{n-1}^{j}}; V_{n} — объём симплекса.

История[править | править код]

  • В первой главе Альмагеста (около 140 года н. э.) теорема синусов используется, но явно не формулируется[1].
  • Древнейшее из дошедших до нас доказательств теоремы синусов на плоскости описано в книге Насир ад-Дин Ат-Туси «Трактат о полном четырёхстороннике» написанной в XIII веке[2].
  • Теорема синусов для сферического треугольника была доказана математиками средневекового Востока ещё в X веке[3]. В труде Ал-Джайяни XI века «Книга о неизвестных дугах сферы» приводилось общее доказательство теоремы синусов на сфере[4].

Вариации и обобщения[править | править код]

  • Теорема косинусов
  • Теорема котангенсов
  • Теорема о проекциях
  • Теорема Пифагора
  • Теорема тангенсов
  • Тригонометрические тождества
  • Тригонометрические функции
  • Формулы Мольвейде

Примечания[править | править код]

  1. Florian Cajori. A History of Mathematics (англ.). — 5th edition. — 1991. — P. 47.
  2. Berggren, J. Lennart. Mathematics in Medieval Islam // The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook (англ.). — Princeton University Press, 2007. — P. 518. — ISBN 9780691114859.
  3. Sesiano just lists al-Wafa as a contributor. Sesiano, Jacques (2000). «Islamic mathematics», pp. 137. — Page 157, in Selin, Helaine & D’Ambrosio, Ubiratan (2000), Mathematics Across Cultures: The History of Non-western Mathematics, Springer, ISBN 1402002602
  4. Abu Abd Allah Muhammad ibn Muadh Al-Jayyani. Дата обращения: 24 августа 2011. Архивировано 29 мая 2016 года.

Содержание:

  • Формулировка теоремы синусов
  • Расширенная теорема синусов
  • Примеры решения задач
  • Историческая справка

Формулировка теоремы синусов

Теорема

Стороны треугольника пропорциональны синусам противолежащих углов.

$frac{a}{sin alpha}=frac{b}{sin beta}=frac{c}{sin gamma}$

Теорема синусов устанавливает зависимость между сторонами треугольника и противолежащими им углами.

Расширенная теорема синусов

Теорема

Для произвольного треугольника имеет место соотношение:

$frac{a}{sin alpha}=frac{b}{sin beta}=frac{c}{sin gamma}=2 R$

Здесь $R$ – радиус окружности, описанной около рассматриваемого треугольника.

Примеры решения задач

Пример

Задание. Основание треугольника равно 10 см, один из углов при основании равен
$45^{circ}$, а противолежащий основанию угол равен $60^{circ}$. Найдите сторону, противолежащую углу в
$45^{circ}$.

Решение. Пусть искомая сторона – $x$ см. Тогда по теореме синусов имеем:

$$frac{10}{sin 60^{circ}}=frac{x}{sin 45^{circ}} Rightarrow x=frac{10 cdot frac{sqrt{2}}{2}}{frac{sqrt{3}}{2}}=frac{10 sqrt{2}}{sqrt{3}}=frac{10 sqrt{6}}{3} (mathrm{см})$$

Ответ.$frac{10 sqrt{6}}{3}(mathrm{см})$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. В треугольнике $A B C quad angle A=45^{circ}, angle C=15^{circ},$
$B C=4 sqrt{6}$. Найти $A C$ .

Решение. Согласно
теореме о сумме углов треугольника

$$angle A+angle B+angle C=180^{circ} Rightarrow angle B=180^{circ}-45^{circ}-15^{circ}=$$

Сторону $AC$ найдем по теореме синусов:

$$frac{A C}{sin angle B}=frac{B C}{sin angle A} Rightarrow frac{A C}{sin angle 120^{circ}}=frac{4 sqrt{6}}{sin angle 45^{circ}} Rightarrow$$

$$Rightarrow frac{A C}{frac{sqrt{3}}{2}}=frac{4 sqrt{6}}{frac{sqrt{2}}{2}} Rightarrow A C=frac{4 sqrt{18}}{sqrt{2}}=4 cdot sqrt{9}=12$$

Ответ. $A C=12$

Историческая справка

Самое древнее доказательство для теоремы синусов на плоскости описано в книге “Трактат о полном четырёхстороннике” персидского математика,
механика и астронома Насира ад-Дина Ат-Туси (1201 – 1274), которая была написана в 13 веке. Теорема синусов для сферического треугольника
была доказана математиками средневекового Востока ещё в 10 веке. В труде западноарабского математика, астронома и законоведа
Ал-Джайяни (989 – 1050) 11 века “Книга о неизвестных дугах сферы” приводилось общее доказательство теоремы синусов на сфере.

На странице содержится информация о теореме синусов, калькулятор, с помощью которого можно найти стороны и угол треугольника, а также формула теоремы синусов.

Теорема синусов — теорема, которая устанавливает зависимость между сторонами треугольника и величиной противолежащих им углов.

Стороны треугольника пропорциональны синусам противолежащих углов.

Кроме того теорему синусов можно записать в расширенной форме. В этом случае в нее добавляется значение радиуса описанной окружности треугольника.

Формула теоремы синусов

Теоремы синусов

{dfrac{a}{sin alpha} = dfrac{b}{sin beta} = dfrac{c}{sin gamma} = 2R}

a, b, c – стороны треугольника,

α, β, γ – углы треугольника.

R – радиус описанной около треугольника окружности.

Расширенная синусов теорема с примерами

Добавлено: 5 ноября 2021 в 18:07

Теорема синусов с примерами: классика и расширенная

При подготовке к ЕГЭ по математике одиннадцатиклассник должен помнить базовый набор формул, которые помогут решать задачи. Одной из них является синусов теорема, которая отражает взаимосвязь между сторонами и углами треугольника.

Напомним, доказательство теоремы учить не нужно, поскольку экзамен ориентирован на проверку практических навыков. Лучше посвятить время разбору примеров, в которых можно применить указанную математическую закономерность.

Теорема синусов с примерами

Человечество знакомо с теоремой синусов довольно давно — еще в начале XXI века ее доказательство приводил в своей работе «Книга о неизвестных дугах сферы» западноарабский астроном и математик Ибн Муаз аль-Джайяни.

Существует два варианта теоремы синусов:

  • обычный — устанавливает соотношения между сторонами треугольника и синусами его углов;
  • расширенный — связывает соотношение сторон треугольника с радиусами описанной окружности.

Формулировка обычной синусов теоремы: отношение сторон треугольника к синусам противолежащих углов равны или стороны пропорциональны синусам противолежащих углов.

Теорема синусов с примерами: классика и расширенная

Теорема синусов с примерами: классика и расширенная

Пример 1. В треугольнике АВС сторона АВ равна 5 см, а синус противолежащего угла АСВ = 3/5. Найти сторону ВС, если синус угла САВ, прилежащего к стороне АВ, равен 1/2.

Решение

Составим соотношение фигурирующих в условии сторон и синусов их углов:

АВ : sin ∠АСВ = ВС : sin ∠САВ.

Подставим известные значения:

5 : 3/5 = ВС : 1/2.

Выразим из этого выражения ВС:

ВС = (5 : 3/5) : 1/2 = 5 : 1/2 = 10 см.

Ответ: ВС = 10 см.

Пример 2. В треугольнике АВС сторона АВ равна 10 см, а противолежащий угол АСВ = 30°. Найти остальные стороны, если угол САВ равен 60°.

Решение

Для решения этой задачи воспользуемся прилагаемой таблицей, в которой указаны значения синусов основных углов. В остальном ход решения будет аналогичен предыдущему примеру за исключением одного маленького хода. Для начала составим соотношение сторон и синусов противолежащих углов:

АВ : sin ∠АСВ = ВС : sin ∠САВ = АС : sin ∠ВАС.

На первом этапе нам известны только три из шести членов этого равенства, причем два из них в косвенном виде:

10 : sin 30° = ВС : sin 60° = АС : sin ∠ВАС.

Если вспомнить, что сумма углов треугольника равна 180°, то легко найти оставшийся угол:

∠ВАС = 180° – (∠АСВ + ∠САВ) = 180° – (30° + 60°) = 90°.

Мы уже знаем и третий угол, поэтому уравнение приобретет следующий вид:

10 : sin 30° = ВС : sin 60° = АС : sin 90°.

Дальше поступаем, как в предыдущей задаче, выразив стороны через известные члены выражений:

ВС = sin 60° ∙ 10 : sin 30°,

АС = sin 90° ∙ 10 : sin 30°.

Обратимся к таблице, приведенной выше и выберем из нее соответствующие синусы известных углов:

ВС = √3/2∙ 10 : 1/2 = 10√3 см,

АС = 1 ∙ 10 : 1/2 = 20 см.

Ответ: ВС = 10√3 см; АС = 20 см.

Теорема синусов с примерами: классика и расширенная

Теорема синусов с примерами: классика и расширенная

Расширенная синусов теорема с примерами

Формулировка расширенной теоремы синусов: отношение сторон треугольника к синусам противолежащих углов равны друг другу и удвоенному радиусу окружности, описанной вокруг него.

Пример 3. Найти площадь треугольника, если диаметр описанной окружности D равен 20 см. Угол АСВ = 30°, а угол САВ = 60°.

Решение

Для решения воспользуемся расширенной формулировкой теоремы синусов:

АВ : sin ∠АСВ = ВС : sin ∠САВ = АС : sin ∠ВАС = 2R.

В этой формулировке нам известны два из семи компонентов и еще лва мы можем определить из базовых знаний по геометрии:

  • R = ½ D, следовательно 2 R = D = 20 см;
  • ∠ВАС = 180° – (∠АСВ + ∠САВ) = 180° – (30° + 60°) = 90°.

Подставим в исходное выражение известные величины и получим соотношение:

АВ : sin 30° = ВС : sin 60° = АС : sin 90° = 20.

Основным отличием от предыдущей задачи является то, что нам неизвестна сторона АВ, зато известен удвоенный радиус описанной окружности. Это позволяет составить выражения для нахождения всех сторон треугольника:

ВС = 20 ∙ sin 60°

АС = 20 ∙ sin 90°,

АВ = 20 ∙ sin 30°.

Выберем из таблицы значения синусов углов и вычитаем стороны треугольника:

ВС = 20 ∙ sin 60° = 20 ∙ √3/2 = 10√3 см,

АС = 20 ∙ sin 90° = 20 ∙ 1 = 20 см,

АВ = 20 ∙ sin 30° = 20 ∙ 1/2 = 10 см.

Теорема синусов с примерами: классика и расширенная

Теорема синусов с примерами: классика и расширенная

Внимательный читатель заметил, что мы «зашифровали» в этой задаче треугольник из предыдущего примера. Теперь осталось найти его площадь. Для этого берем стандартную формулу площади произвольного треугольника, которая равна половине произведения сторон на синус угла между ними

S = ½ ∙ a ∙ b ∙ sin α

Поскольку нам известны все стороны и все углы, то мы можем выбрать любые из них. Возьмем стороны АС и АВ, а также угол САВ между ними:

S = ½ ∙ АС ∙АВ ∙ sin 60° = ½ ∙ 20 ∙10 ∙ √3/2 = 50√3 см2.

Примечание: внимательный читатель заметил, что наш треугольник — прямоугольный, так как один из его углов равен 90°. В таком случае можно обойтись без знания синуса угла, вычислив площадь треугольника как половину площади прямоугольника, длина и ширина которого равна катетам треугольника.

S = ½ ∙ ВС ∙АВ = ½ ∙ 10√3 ∙ 10 = 50√3 см2.

Ответ: S = 50√3 см2.


Занимайтесь на курсах ЕГЭ и ОГЭ в паре TwoStu и получите максимум баллов на экзамене:

Владислав Барышников

Эксперт по подготовке к ЕГЭ, ОГЭ и ВПР

Задать вопрос

Закончил Московский физико-технический институт (Физтех) по специальности прикладная физика и математика. Магистр физико-математических наук. Преподавательский стаж более 13 лет. Соучредитель курсов ЕГЭ и ОГЭ в паре TwoStu.

Читайте также:

Добавить комментарий